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A novel problem in computational materials modeling is addressed: “Are the computational microstructure

reconstruction techniques reliable enough to replace experiments?” Here, “reliable” computations are associated

with producing “expected” reconstructions that are adequately close to the experimental data. The output of

computational techniques can deviate from the experimental measurements because of the epistemic uncertainties

in the algorithms. In this work, an analytical formulation for quantification of epistemic uncertainties in a

microstructure reconstruction algorithm based onMarkov random field is presented. The method is used to predict

the large-scale spatial distribution of a microstructure given an experimental input measured over a small spatial

domain.However, small variations are observed on themicrostructural features of the synthesized samples due to the

Markov random field algorithm. The proposed analytical technique aims to quantify these uncertainties and estimate

their propagation to themacroscalematerial properties to provide a significant understanding on how reliable it is to

replace the experiments with the Markov random field model to predict microstructural maps over large spatial

domains.

Nomenclature

A = orientation distribution function
C = stiffness matrix, GPa
E = experimental microstructure
G = coloring level
L = lattice
Nnodes = number of independent nodes
N = number of samples
Nelem = number of finite elements
Nf = number of failed samples
Nint = number of integration points
Pf = probability of failure
p = property matrix
q = volume normalization vector
r = Rodrigues vector
S = synthesized microstructure
Sν = colors of pixels in synthesized image
X = color variable
β = reliability index
μA = mean values of orientation distribution function
ν = pixel
ω = Gaussian weight function
ΣA = covariance matrix for orientation distribution function
σy = yield stress, MPa

I. Introduction

C OMPUTATIONAL models using deterministic parameters
have been traditionally in use to study microstructural features

and link these features to macroscale material properties. However,
none of the computational models can produce an output that

provides a 100% match with the test data. This is because of the
uncertainties that are arising from “lack of knowledge” such as
inaccuracies, errors, or assumptions in computations. Suchuncertainties
are categorized as “epistemic uncertainties” and they are independent
from the variations that are seen due to the stochastic nature of
microstructures. The stochastic behavior is associatedwith the aleatoric
uncertainty, which is an irreducible variation that is naturally present in
the system. The aleatoric uncertainties can be quantified by analyzing
the experimental data, and they can propagate to the larger scales
randomly. However, the epistemic uncertainty is an aspect of the
computational model in use, and it is usually very hard to distinguish it
from the aleatoric uncertainty. The uncertainties in physical systems can
alter the expected performance of the material systems. This is
especially very important for aerial vehicles that are highly sensitive to
thematerial features. The variations in thematerial properties caused by
the small-scale (microscopic level) uncertainties can lead to severe
problems, including failure of the vehicle. To achieve reliable designs
for aerial vehicles, the stochasticity introduced in the computational
models should be modeled (Fig. 1). The reliability of the designs can
then be defined using the probability distributions of the output
parameters. Because of its critical role in modeling and design, the
uncertainty quantification (UQ) has been a growing field in aerospace
engineering.
The present study addresses a UQmethodology to study the effect

of epistemic uncertainties for metallic materials that are used in
aerospace vehicles. First, the verification of the UQ approach will be
performed for copper. Next, the UQ technique will be studied
comprehensively for a titanium–aluminum alloy (Ti-7Al), which is
a widely preferred alloy in aerospace engineering owing to its
high strength, excellent corrosion resistance, and high temperature
stability [1]. In this work, the uncertainties in the material system are
introduced by a microstructure reconstruction algorithm, which
generates larger-scale microstructural data by using the available
small-scale data. The reconstruction problem helps the engineers
avoid the expensive large-scale measurements. With the integration
of a reconstruction strategy, larger-scale data become available by
using the test data measured at a smaller-scale domain. One of the
goals in this work is to implement a Markov random field (MRF)–
based reconstruction study to achieve the large-scale data of
microstructures. Here, the readers are referred to Ref. [2] for the
fundamental aspects of the MRFs. The MRF technique introduces
epistemic uncertainties to the system because of the algorithmic
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randomness. These uncertainties can affect the overall accuracy of

the algorithm and thus the desired material properties and structural
performance. Therefore, we check the accuracy of the MRF-based

reconstruction strategy by comparing the results to the available
experimental measurements. However, another aspect appears here:

the experiments are performed on the different parts of the same

material and they predict a range for material properties rather than a
deterministic property value. This experimental variability is known

as aleatoric uncertainty and it is conceptually different from the
epistemic uncertainty. Here, to distinguish the epistemic uncertainties

(model uncertainty) from the aleatoric uncertainties (experimental

uncertainty), the experimental prediction regions are assumed to be
100% reliable. Thus, the MRF-based computational algorithm is

assumed to be reliable if it estimates a material property value within

the experimental ranges. Any computational result that is not a
subspace of the experimental prediction domain is assumed to occur

because of the epistemic uncertainties in the algorithm. This is a novel
problem in computational materials modeling because the epistemic

uncertainties have not been independently studied in the community

yet to the best of authors’ knowledge. Instead, the UQ problem
has only been solved for aleatoric uncertainties in the literature.

The aleatoric uncertainties have been mostly modeled by using
computationalUQ techniques such asMonteCarlo simulation (MCS),

polynomial chaos expansion (PCE), and stochastic collocation (SC).

For example, Creuziger et. al. [3] used MCS to examine the
uncertainties in the microstructures that are introduced by the

variations in the pole figure data. Kouchmeshky and Zabaras [4]

presented the propagation of initial texture and deformation process
uncertainties on the final product properties. They used a data-driven

approach to identify the joint probability distributions of random
variables with maximum entropy method, and modeled the stochastic

problem using the SC approach. These computational methods

presented in literature employ a numerical algorithm for quantification
and propagation of aleatoric uncertainties. They represent the joint

probability distributions of uncertainvariables either using interpolation
functions or sampling for random points. These techniques are not very

computationally efficient because, as the problem complexity or the

number of variables increases, the number of interpolation terms or
samplingpoints should also increase.Another drawback is the difficulty

of satisfying strict design constraints (such as unit volume fraction)

using the joint probability distributions of the numerical approaches.
Becauseof all these disadvantages arising from theuseof computational

UQ techniques, an analytical UQ formulation has been previously

presented by the authors to model the aleatoric uncertainties in

microstructures [5–7].
In the present work, the analytical UQ formulation is extended to

study the effect of epistemic uncertainties in the MRF-based

microstructure reconstruction algorithm. The MRF model predicts
the evolution of synthetic microstructures over large spatial domains

given an experimental input. In this computational model, the

“texture synthesis” is performed as the first step. Different windows

taken from a polycrystallinemicrostructure generally “look alike.” In
mathematical terms, this amounts to the presence of a stationary

probability distribution from which various microstructural snap-

shots are sampled. There are various ways of modeling this
probability distribution indirectly. Feature-based algorithms have

long been used that categorize various microstructural snapshots

based on a common set of underlying features, and generate

new synthetic images with similar features [8–10]. These features
could include marginal histograms [8], multiresolution filter outputs

(Gaussian [9] and wavelet [10] filters), and point probability functions

(e.g., autocorrelation function) [11]. These methods are good at
capturing the global features of the image; however, local information

in the form of per-pixel data is lost. Thus, features such as grain

boundaries are smeared out when reconstructing polycrystalline

structures [10]. Alternatively, one could start with sampling the
conditional probability density for the state of a pixel given the known

states of its neighboring pixels using reference 2D or 3D experimental

images. If only the nearest neighbors are chosen, this amounts to
sampling from an Ising-type model [12]. For general microstructures,

the correlation lengths can span several pixels [11] and a larger

neighbor window may be needed. In this study, the generalized Ising

models, called MRFs, are employed to model the spatial probability
distribution. In Ising models, a lattice is constructed with pixels (with

binary states) interacting with its nearest neighbors, whereas inMRFs,

pixels take up integer or vector states and interact with multiple
neighbors over awindow. The sampling of conditional probability of a

pixel given the states of its known neighbors is based on Claude

Shannon’s generalized Markov chain [13]. In the one-dimensional
problem, a set of consecutive pixels is used as a template to determine

the probability density function (PDF) of the next pixel. The study by

Efros and Leung [14] developed a nonparameteric sampling approach

for extending the sampling technique to 2D microstructures. In this
approach, microstructures are grown layer by layer from a small

seed image (3 × 3 pixels) taken randomly from the experimental

micrograph. Here, the algorithm first finds all windows in an

Input (microstructure 
features) Output (material properties of an aircraft) 

Deterministic case 

Epistemic 
uncertainties 

reliable 
domain 

Stochastic output 
(material properties 

of an aircraft) 

Computational 
Model 

Computational 
Model 

Stochastic case 

Input (microstructure 
features) 

Fig. 1 Comparison of deterministic and stochastic analyses for aerospace materials. The deterministic designs are not able to examine the model
uncertainties. However, these epistemic uncertainties can be modeled with a stochastic computational approach. In stochastic modeling, the output
parameters, such as the material properties of an aircraft (e.g., yield strength, stiffness), are stochastic as well.
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experimental micrograph that are similar to an unknown pixel’s
neighborhood window. One of these matching windows is chosen and
its center pixel is taken to be the newly synthesized pixel. This
technique is popular in the field of texture synthesis [14–17] and in
geological material reconstruction literature, where such sampling
methods are termed “multiple-point statistics” [18], andmore recently,
it has been applied for modeling polycrystalline microstructures
[19,20]. An alternate methodology based on optimization has become
popular in recent years. The nonparameteric samplingmethod of Efros
and Leung [14] is posed in the form of an expectation-maximization
algorithm [21–23]. The approach minimizes a neighborhood cost
function that ensures that the local neighborhood of the Ising lattice
taken along the x, y, or z directions through the 3D microstructure is
similar to some neighborhood in the 2D lattice imaged along that
plane. This reconstruction problem leads to anisotropic micro-
structures that have similar high-order statistics [23], which is in
contrast to other such works in literature that use assumptions of
microstructural isotropy [24] or methods that use lower order statistics
such as two-point correlation functions to synthesize 3D micro-
structures [25,26]. The sampling approach and the optimization
approach can also be applied in tandem for various applications
involving MRFs. The MRF model presented in this work has been
studied before for predicting the spatiotemporal evolution of micro-
structures that are having different grain structures in our previous
paper [20].
The synthesized microstructures with the MRF approach are

quantified using an orientation distribution function (ODF), which
measures the volumes of different orientations in a microstructure.
The ODF is assigned as a mathematical parameter representing the
microstructural features, and the epistemic uncertainties arising from
the computational models are captured by modeling the variations in
the ODFs. The analytical UQ algorithm is based on a Gaussian
distribution approach [5–7], and here it can be implemented to study
the epistemic uncertainties because the variations in the ODF
values are found to be consistent with the Gaussian distribution. The
analytical solution is also used to model the propagation of these
uncertainties to the macroscale material properties such as stiffness
and yield stress. The experimental electron backscatter diffraction
(EBSD) samples of a titanium–aluminum alloy are used to predict the
spatial evolution of the polycrystallinemicrostructure using theMRF
model. Hundreds of synthesized images are generated to create
sufficient statistics to analyze the uncertainties. The probability
distributions of the material properties are then computed using the
discrete MRF samples and analytical UQ algorithm. The analytical
UQ algorithm is found to provide a very good estimate to the
variations in the MRF samples. The material properties are also
computed using the experimental EBSD samples. The material
property values that are computed from the EBSD data have
small variations due to the aleatoric uncertainties. These aleatoric
uncertainties are eliminated from the epistemic uncertainties by
defining the limits of thematerial properties that are predicted from the
experimental data as reliable regions. Therefore any computational
output that is not a subspace of the reliable region is assumed to occur
because of the epistemic uncertainties. A mathematical reliability
index approach is presented to define the similarity between the
probability distribution of the analytical UQ method, and discrete
experimental andMRF samples. The reliability analysis shows that the
analytical model can accurately capture the variations arising from the
epistemic uncertainties, and the epistemic uncertainties have a very
little impact on the overall accuracy of the algorithm even though the
algorithm predicts the spatial evolution in a larger domain. The high
confidence levels show that theMRFalgorithm should be avery strong
candidate to replace the costly experimental data that are obtainedwith
the measurements at large domains. The reliability analysis is also
performed tomodel the effect of epistemic uncertaintieswhen different
window size parameters are used in the MRF model.
The findings of this studywillmake significant contributions to the

computational materials modeling studies in the following aspects.
First, it is shown that a computationally efficient analytical UQmodel
can be used to study not only the aleatoric uncertainties but also the
epistemic uncertainties in microstructure modeling. This is the first

time that an epistemic UQ problem has been addressed in the field to
the best of authors’ knowledge, and this problem has been handled by
using a cost-effective analytical methodology. Therefore it has the
potential to open up a new way in the community for studying the
effect of epistemic uncertainties in common computational models/
techniques that are used in microscale modeling and design. Second,
the present work shows that to what extent the computational models
can be reliably used to replace experimental data. This is studied by
performing a mathematical reliability analysis that can define the
similarity between continuous and discrete probability distributions
and it concludes with an important suggestion on replacing costly
experiments (or a portion of experiments) that are performed over
larger spatial domainswith computational reconstruction algorithms.
The organization of the paper is as follows. The mathematical
modeling aspects of the MRF approach and analytical UQ algorithm
are discussed in Sec. II. An example is also studied in Sec. II tomodel
the epistemic uncertainties when the input data are a cellular
automata simulation output. In Sec. III, the epistemic uncertainties
arising from the MRF approach when reconstructing synthesized
samples from an experimental input are studied. A reliability index
approach is also introduced to analyze the uncertainty results for
different image andwindowsizes to provide a significant understanding
on how much experimental data can reliably be captured by the MRF
approach. The summary of the paper and suggestions for a potential
future work are given in Sec. IV.

II. Mathematical Background

The mathematical modeling aspects of the MRF approach for
generating synthesized microstructure samples and analytical UQ
algorithm are discussed in this section. Section II.A briefly
summarizes the fundamental features of the MRF approach as it was
previously presented by the authors [20]. Section II.B gives brief
information about the analytical UQ algorithm, which was employed
to capture the aleatoric uncertainties in our previous works [5–7].

A. Mathematical Modeling of Microstructures as

Markov Random Fields

Some of early attempts at microstructure modeling were based on
Ising models [12]. In the Ising model, an N × N lattice (L) is
constructed with values Xi assigned for each particle i on the lattice,
i ∈ �1; : : : ; N2�. In an Ising model, Xi is a binary variable equal to
either�1 or−1 (e.g.,magneticmoment [12]). In general, the valuesXi

may contain any one of G color levels in the range f0; 1; : : : ; G − 1g
(following the integer range extension of the Ising model by Besag
[27]). A coloring ofL denoted byXmaps each particle in the latticeL
to a particular value in the set f0; 1; : : : ; G − 1g. Ising models fall
under the umbrella of undirected graph models in probability theory.
To rewrite the Ising model as a graph, the neighbors to particles are
assigned and the pairs of neighbors are linked using a bond as shown in
Fig. 2a. The rule to assign neighbors is based on a pairwise Markov
property. A particle j is said to be a neighbor of particle i only if the
conditional probability of the valueXi, given all other particles [except
�i; j�, i.e., p�XijX1;X2; : : : ;Xi−1;Xi�1; : : : ;Xj−1;Xj�1; : : : ;XN2�],
depends on the value Xj.
Note that the above definition does not warrant the neighbor

particles to be close in distance, although this is widely employed for
physical reasons. For example, in the classical Ising model, each
particle is bonded to the next nearest neighbor as shown in Fig. 2a.
For modeling microstructures, a higher-order Ising model (Fig. 2b)
can be used. The particles of the lattice correspond to pixels of the 2D
microstructure image. The neighborhood of a pixel is modeled using
a square window around that pixel and bonding the center pixel to
every other pixel within the window. Using this graph structure, a
Markov random field can be defined as the joint probability density
P�X� on the set of all possible coloringsX, subject to a local Markov
property. The local Markov property states that the probability of
valueXi, given its neighbors, is conditionally independent of thevalues
at all other particles. In other words, P�Xijall particles except i� �
p�Xijneighbors of particle i�. Next, a method based on Ref. [14] is
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described to sample from the conditional probability density
p�Xijneighbors of voxel i�.
In the following discussion, the color (Xi) of a pixel i is represented

using G color levels in the range f0; 1; : : : ; G − 1g each of which
maps to anRGB triplet. The number of color levels is chosen based on
the microstructure to be reconstructed (e.g., for binary images
G � 2). Let E and S denote the experimental and synthesized
microstructure, respectively. Let v be a pixel in S whose color needs
to inferred using the sampling procedure. LetSv denote the colors in a
neighborhood window around pixel v. Let Ew denote the colors of
pixels in a window of the same size in the input 2D micrograph.
To find the coloring of pixel v, one needs to compute the

conditional probability density p�XvjSv�. Explicit construction of
such a probability density is often computationally intractable.
Instead, the most likely value of v is identified by first finding a
window Ev in the input 2D micrograph that is most similar to Sv

(see Fig. 3). This is done by solving the following problem (where
Sv;u denotes the color of pixel u in Sv and Ew

u denotes the color of
pixel u in Ew):

Ev � arg min
Ew

X
u

ωv;u�Sv;u −Ew
u �2 (1)

where D � P
u ωv;u�Sv;u −Ew

u �2 is a distance measure defined as
the normalized sum of weighted squared differences of pixel colors.
To preserve the short-range correlations of the microstructure as
much as possible, the weight for nearby pixel is taken to be greater
than pixels farther away (Gaussian weighting function ω is used).

If the pixel u is located at position �x; y� (in lattice units) with respect
to the center pixel v (located at (0, 0)), ωv;u is given as:

ωv;u � exp�−��x2 � y2�∕2σ2��P
i

P
j exp�−��i2 � j2�∕2σ2�� (2)

Here, the summation in the denominator is taken over all the
known pixels inSv. Theweightsωv;u for the unknown pixels inSv are
taken to be zero. This ensures that the distance measure is computed
only using the knownvalues and is normalized by the total number of
known pixels. The standard deviation (σ) is taken to be 0.16w. The
problem in Eq. (1) is solved using an exhaustive search by comparing
all the windows in the input 2D micrograph to the corresponding
neighborhood of pixel v. In our approach, a measure of stochasticity
is introduced by storing all matches with a distance measure that is
within 1.3 times that of the best matching window [14]. The center
pixel colors of all these matches give a histogram for the color of the
unknown pixel (Xv), which is then sampled using a uniform random
number.
The microstructure is grown layer by layer starting from a small

seed image (3 × 3 pixels) taken randomly from the experimental
micrograph (Fig. 3). In this way, for any pixel the values of only
some of its neighborhood pixels will be known. The fundamental
approximation in this numerical implementation is that the PDF of an
unfilled pixel is assumed to be independent of the PDF of its unfilled
neighbors. Each iteration in the algorithm involves coloring the
unfilled pixels along the boundary of filled pixels in the synthesized

Fig. 3 The MRF approach [14,28]: The image is grown from a 3 × 3 seed image (center). As the algorithm progresses along the path shown (right),
the unknown output pixel (shown in blue) is computed by searching for a pixel with a similar neighborhood in the input image (left).

Fig. 2 MRF as an undirected graphmodel; circles are pixels in the image and bonds are used to connect neighbors: a) Isingmodel with nearest neighbor
interactions. b) Microstructure modeled by including higher-order interactions in the Ising model.
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image as shown in Fig. 3. An upper limit of 0.1 is enforced for the
distancemeasure initially. If thematchingwindow for a unfilled pixel
has a larger distance measure, then the pixel is temporarily skipped
while the other pixels on the boundary are filled. If none of the pixels
on the boundary can be filled during an iteration, then the threshold is
increased by 10% for the next iteration.
The window size is the only adjustable parameter for different

microstructures. Window size plays an important role in the MRF
model. At window sizes much smaller than the correlation lengths,
false matches lead to high noise in the reconstructions. At very high
window sizes, not enough matching windows can be identified.
Hence, there is an ideal window size that needs to be found through
numerical trial. More details about the effect of window size can be
found in our previous work [20].

B. Analytical UQ Algorithm

The epistemic uncertainties arising from the reconstruction of the
microstructural samples using the MRF approach are quantified
using an analytical algorithm that was previously introduced in our
earlier works [5–7]. The analytical UQmethod is based on a Gaussian
distribution approach. Given the input variations that can be represented
with a Gaussian distribution, the propagation of the uncertainties is
computed with the linear transformation feature of the Gaussian
distribution for linear output parameters, and with transformation of
variables rule for nonlinear output parameters. Similar to our previous
works, the microstructure is quantified with the ODF. The ODF
measures the volume fraction of different orientations in a micro-
structural space. The ODF values at each nodal point are discretized
using a finite element approach in Rodrigues fundamental domain
[29,30]. Discretizing the ODF in the Rodrigues space is advantageous
because of the regularity of its geometry [29], which allows
discretization of the space using finite elements. The ODF is discretized
intoN independent nodeswithNelem finite elements andNint integration
points per element. Using this parametrization, any polycrystal property
can be expressed in a linear form [31] as in Eq. (3). A finite element
integration scheme usingGauss quadrature allowsmatrix representation
of Eq. (3).

hχ i �
Z
R
χ�r�A�r� dv

�
XNelem

n�1

XNint

m�1

χ�rm�A�rm�wmjJnj
1

�1� rm ⋅ rm�2
(3)

where A�rm� is the value of the ODF at the mth integration point with
global coordinate rm of thenth element, jJnj is the Jacobian determinant
of the nth element,wm is the integration weight associated with themth
integration point, and 1∕�1� rm ⋅ rm�2 represents the metric of
Rodrigues parameterization. This can be shown to be equivalent to an
equation linear in the ODF: hχ i � pTA, where A is a column vector
containing theODF values at the k independent nodes of theODFmesh
[7]. In addition, theODF is normalized to unity asqTA � 1whereq is a
normalization (column) vector. The modeling with the ODF approach
is very effective for capturing the uncertainties because the material
properties can be computed using the volume-averaged (homogeniza-
tion) equations that are linear in the ODFs according to the Taylor
approximation [32]. Therefore the uncertainty propagation to the
material properties can also be computed with linear relations using the
Gaussian feature.

TheODF is represented using ad-dimensionalmultivariateGaussian
distribution:A∼N�μA;ΣA�, where μA is a vector of mean values of the
ODF at independent nodes such that μA � �μ1; : : : ; μk�T � E�A�
and ΣA is the covariance matrix, ΣAij

� cov �Ai; Aj� �
E��Ai − μAi

��Aj − μAj
��, i; j � 1; : : : ; k. In our previous work [7], it

is shown that the volume-averaged material properties are linearly
related to theODF. For example, Eq. (3) can be generalized to amatrix–
vector product, Z � PA, that is also Gaussian: Z∼N�μZ;ΣZ�. The
mean and covariance of vector Z are given by:

μZ � PμA (4)

ΣZ � PΣAP
T (5)

Using the same idea, the uncertainties in thematerial properties canbe
computed with the following relations given the ODF uncertainties.

qTμA � 1 (6)

qTΣAq � 0 (7)

pTμA � μC (8)

pTΣAp � ΣC (9)

where Eqs. (6) and (7) show the ODF normalization constraint as
applied for the Gaussian distribution. Equation (8) shows the
formulation to obtain the vector of mean values of the properties, μC,
using the linear transformation rule for Gaussian distribution [Eq. (4)]
and the homogenization equation. Equation (9) shows the computation
of the covariance matrix for the properties using linear transformation
rule for Gaussians [Eq. (5)]. More details on Gaussian uncertainty
representation of the ODFs can be found in our earlier works [5–7] and
are not repeated here for brevity.

C. Example: Synthesis and UQ for a Colored Microstructure Movie

The uncertainties arising from the stochastic nature of the MRF
approach are analyzed initially for an example problem that was
studied previously in our study [20] for optimum window size
determination. The example problem consists of a 2Dmicrostructure
generated from a cellular automata method [33]. The microstructure
reconstruction was performed for window sizes of 5, 7, and 9 and the
window size of 9 was found to provide the optimum result among all
options by analyzing the results shown in Fig. 4.
The reconstructedmicrostructureswere already comparedwith the

original samples taken from the input coloredmovie at different times
using statistical measures such as grain area and perimeter statistics
and rose of interactions [20]. Therefore the microstructure
reconstruction with different window sizes is not discussed in this
study. Instead, the focus here is to model the epistemic uncertainties
that introduced with the MRF algorithm. To generate statistical data
100 synthesized images are reconstructed at the final time step of the
movie using the MRF method with the optimum fixed window size
of 9. The size of the original image is 87 × 106 pixels, and the
synthesized images are twice the size of the original. Generating
synthesized microstructures over a larger domain compared with the

Fig. 4 Synthesized images with different window sizes using cellular automata simulation data.
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input samples is important because if the computational model
predicts the microstructural evolution accurately, then it would
provide a huge cost reduction as the experiments over larger domains
can be avoided.
Given a microstructure sample the ODF can be computed by

assigning an orientation to each color in the sample because theODF,
in principle, is equivalent to a color histogram and contains the
volume density of each crystal orientation (color) in the Rodrigues
fundamental region. Using the synthesized image samples the
uncertainties in the ODF values are first identified. The ODFs in
these samples have similar distributions but with slightly different
magnitudes, and their probability distributions are found to agree with
the Gaussian distribution. Therefore the uncertainty propagation to
the material properties is investigated by computing the probability
distributions of these properties using the analytical UQ algorithm
discussed in theprevious section. In this example thematerial is anFCC
copper polycrystal, and thevalues of the elastic parameters for a copper
crystal are taken as [31]: C11 � 168.0 GPa, C12 � 121.4 GPa, and
C44 � 75.4 GPa. The polycrystal stiffness C is computed through a
weighted average of the stiffness of individual crystals expressed in the
sample reference frame over the fundamental region. The material is
modeled using 10 independent nodal points. However, the synthesized
microstructure samples indicate eight number of stronglynonzeroODF
parameters, whereas the other two ODF values are positive but they
have negligible magnitudes. Therefore the probability distributions of
these eight strongly nonzero ODF values are visualized in Fig. 5. The
probability distributions of the stiffness parameters are shown in Fig. 6.
As illustrated by Figs. 5 and 6 the analytical UQmodel captures the

entire variability of the ODFs and stiffness parameters in the
synthesized images. Even though the real MRF samples do not show
a perfectly Gaussian distribution feature the analytical model is still
able to represent all the uncertainty intervals, including the extreme
(minimum and maximum) points. Therefore the analytical model is
said to be reliable in this example with a simple visual check as it can
predict the most extreme behaviors that are seen due to the epistemic
uncertainties in theMRF approach. The uncertainties on the material
properties can also be represented in terms of an “uncertainty
closure,” which is a convex hull showing all possible values of the
material properties of interest. Generating the uncertainty hull is
significant for material design because it shows how the values of
engineering properties can differ from the deterministic values.

An example computation is given in Fig. 7, which shows the convex
hull of all possible C11, C12, and C22 values of MRF samples and
analytical UQ solution. This figure shows that a designer should
expect to see any value inside this convex hull for the stiffness
parameters if themicrostructural evolution is predictedwith theMRF
approach using the given input simulation data. The likelihood of any
point occurrence in this domain is measured by the computed joint
probability distributions. The analytical algorithm is said to be
reliable by also looking at Fig. 7 because it has entirely covered
the uncertainty domain of the MRF samples. The microstructure
reconstruction will be performed using experimental data, and the
uncertainty resultswill be comparedwith themeasurements in the next
section.

III. Quantification of Epistemic Uncertainties with
Experimental Input Data

The analytical UQ algorithm has performed satisfactorily in the
previous example discussed in Sec. II.Cwhen the input data are taken
from a cellular automata simulation. However, the uncertainty
bounds have not been compared against measurements. Therefore
this result leads us to another question: “Can the analytical UQ
algorithm perform satisfactorily when the input is an experimental
measurement?”The goal of this section is to analyze the uncertainties
in theMRF samples to answer this question. The EBSD samples of a
titanium–aluminum alloy (Ti-7Al) is used as the experimental input
data. These samples were subject to the same thermomechanical
process. All samples were compressed to 20% height reduction at
room temperature, and annealed for 72 h at 1073K. The compression
direction is also the longitudinal direction of the forging. The
microstructures were fully recrystallized at these conditions. Scans
were taken from different regions of the processed samples. Each of
the EBSD samples has an image size of 193 × 193 pixels, and the
microstructure reconstruction is performed in two different domains:
the first set of the synthesized images has the same image sizewith the
EBSD samples, and the second set has 1.5 times larger image size
than the EBSD data. Therefore the results of the first set are expected
to provide an initial understanding such that if replacing experiments
can be possible with theMRF approach. The results of the second set
extend this understanding and show what happens when the MRF
model generates larger-scale data than the experimental input.
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Fig. 5 Variations in the ODF parameters (green bars indicate ODF values that are calculated by using 100 MRF samples; red curves illustrate
analytically calculated Gaussian probability distributions).
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To analyze the uncertainties 100 MRF samples are generated from
each EBSD image for each case. The original EBSD samples are
visualized with example synthesized images for the same and larger
image sizes in Fig. 8. Note that Fig. 8 illustrates two example
synthesized images for each case (same or larger image size) per each
of four input EBSD samples.
The material properties of interest in this application are not only

the stiffness parameters but also the yield stress values at different
strain offsets because the yield stress is more sensitive to the micro-
structural uncertainties. The property matrices for stiffness and yield
stress values are obtained using the single crystal values presented in

our previous work [34]. The probability distributions of the material

properties computed using the MRF samples can also be compared
with the experimental values. This is possible because the ODFs can

directly be computed from the EBSD images as each different color

in an EBSD sample corresponds to a different orientation. Therefore

the volume fraction of each color in an EBSD sample relates to the

ODF value of that particular orientation. Using the same volume

averaging equations the material property values can be identified
using the EBSD samples, and the performance of the MRF samples

can be measured against these experimental values. For measuring

the similarity between the probability distributions computed with

the analytical UQ algorithm and the data represented by the MRF

samples, a reliability index approach is used. There are some well-
known similarity measurements available in literature such as

Bhattacharyya distance [35] and Hellinger distance [36]. These

measurements are beneficial when both sides of the data agree on

either discrete or continuous probability distributions. However, in

this application one data set indicates a continuous probability distri-
bution (analytical UQ) and the other represents a discrete distribution

(MRF samples). Tomeasure the similarity between these two different

data representations, the reliability index approach is found to bemore

convenient. Another advantage of this approach is that the reliability

index can directly give information about how large an experimental

data domain can reliably be captured by the MRF approach.

A. Results of Epistemic Uncertainty Analysis for the Same Image Size

The epistemic uncertainties arising from the MRF approach are

first analyzed when the synthesized images have the same image size

(193 × 193 pixels) with the experimental EBSD samples. The image
reconstructionwas repeated 100 times for each of the EBSD samples,

resulting 400 samples generated by the MRF approach. To quantify

the epistemic uncertainties the effect of aleatoric uncertainties are

first eliminated from the EBSD data. This elimination is possible

because all four input EBSD samples were measured from the same
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Fig. 7 Uncertainty closure for C11, C12, and C22.
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Fig. 6 Variations in stiffness parameters (blue bars indicate stiffness values that are calculated by using 100 MRF samples; red curves illustrate
analytically calculated Gaussian probability distributions).
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material, but from different regions, which causes aleatoric

uncertainties. Therefore the ODF and material property values of all

four EBSD samples are calculated, and the MRF approach is

considered to be 100% reliable if it produces results in between

experimental values. The probability of failure for the MRF samples

is computed by considering the regions that are outside of the
experimental points. The epistemic uncertainties are analyzed for

stiffness parameters and yield stress values at different strain offsets

(0.2%, 1%, 2%, 5%, and 10% strains). The introduction of the yield

stress parameter is important because it is more sensitive to the

uncertainties than the stiffness properties. The probability distributions

of the stiffness parameters that are computed using the 400 MRF

samples are shown in Fig. 9. In Fig. 9, the blue bars are showing the
material property values of theMRF samples, the red curve represents

the probability distribution of the analytical UQ approach, and the

black lines represent the experimental values that are computed using

the four input EBSD images. It can be clearly seen that the analytical

UQ algorithm provides a very good estimate to the MRF samples for

the probability distributions of the stiffness parameters. A similar plot

is also given in Fig. 10 to show the probability distributions of the yield
stress values measured at different strain points by using the 400MRF

samples. The results in Fig. 10 also show that the analytical UQ

algorithm is very good at capturing the variations in theMRF samples.

Another important result that can be noticed in Figs. 9 and 10 is that

the variations arising from the epistemic uncertainties of the MRF

approach do not cause a significant deviation from the experimental

values. From a visual check it can be observed that the limits of the
EBSD samples shown by the black lines in Figs. 9 and 10 are mostly
within the bounds defined by the MRF samples and corresponding
analyticalUQresults. The effect of epistemic uncertainties on theMRF
approach as well as the accuracy of the analytical UQ technique to
represent the MRF data are analyzed further by implementing a
reliability index approach in Sec. III.C.

B. Results of Epistemic Uncertainty Analysis for the

Larger Image Size

A second set of synthesized images were generated by inputting
the same 4 EBSD samples. In this case a total of 400 MRF samples
were reconstructed for 1.5 times larger image size (290 × 290 pixels)
than the original EBSD data. This analysis holds another importance
as it can reveal the accuracy of the MRF approach when it predicts
over larger regions of experimental input data. The accuracy of
predicting over larger domains is significant because it is less costly
when the experiments are performed at smaller scales. Therefore the
high accuracy of the MRF-based technique in predicting micro-
structural features as well asmaterial properties by using smaller-scale
experimental data would be advantageous in terms of eliminating the
high costs of large-scale experiments.
The probability distributions that are computed using the 400MRF

samples for the stiffness parameters and yield stress values measured
at different strain offsets (0.2%, 1%, 2%, 5%, and 10% strains) by
using a larger image size are shown in Figs. 11 and 12. The analytical

EBSD MRF (Same Image Size) MRF (Larger Image Size)

Fig. 8 Experimental EBSD samples and example MRF synthesized images.
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MRF Samples Analytical UQ Experimental Data

182 183 184 185 186
C11 (GPa)

C22 (GPa)

C44 (GPa) C55 (GPa) C66 (GPa)

C23 (GPa) C33 (GPa)

C12 (GPa) C13 (GPa)
73 74 75 76 77 70.5 71 71.5 72

183 184 185 186 70 70.5 71 71.5 72 188 190 192 194

58 58.5 59 59.5 60 57.5 58 58.5 59 59.5 53 54 55 56

Fig. 9 Variations in stiffness parameters (blue bars indicate stiffness values that are calculated by using 400MRF samples generated for the same EBSD
image size, red curves illustrate analytically calculated Gaussian probability distributions using theMRF samples, and black lines show the experimental
values computed using the EBSD images).
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0.2% strain offset

MRF Samples

Analytical UQ

Experimental Data

600 650 700 750
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700 720 740 760 780

2% strain offset

800 820 840 860 880

5% strain offset

860 880 900 920

10% strain offset
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y4 
(MPa) y5 
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y2 
(MPa) y3 

(MPa)

Fig. 10 Variations in yield stress values measured at different strain offsets (gray bars indicate yield stress values that are calculated by using 400MRF
samples generated for the same EBSD image size, red curves illustrate analytically calculated Gaussian probability distributions using theMRF samples,
and black lines show the experimental values computed using the EBSD images).
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MRF Samples Analytical UQ Experimental Data

182 183 184 185
C11 (GPa)

C22 (GPa)

C44 (GPa) C55 (GPa) C66 (GPa)

C23 (GPa) C33 (GPa)

C12 (GPa) C13 (GPa)
74 75 76 77 70.5 71 71.5 72

183 184 185 186 70 70.5 71 71.5 72 188 190 192 194

58 58.5 59 59.5 60 57.5 58 58.5 59 59.5 53 54 55 56

Fig. 11 Variations in stiffness parameters (blue bars indicate stiffness values that are calculatedbyusing 400MRF samples generated for 1.5 times larger
EBSD image size, red curves illustrate analytically calculated Gaussian probability distributions using the MRF samples, and black lines show the
experimental values computed using the EBSD images).

440 450 460 470

0.2% strain offset

MRF Samples
Analytical UQ
Experimental Data
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1% strain offset

700 720 740 760 780

2% strain offset

820 830 840 850 860
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Fig. 12 Variations in yield stress values measured at different strain offsets (gray bars indicate yield stress values that are calculated by using 400MRF
samples generated for 1.5 larger EBSD image size, red curves illustrate analytically calculatedGaussian probability distributions using theMRF samples,
and black lines show the experimental values computed using the EBSD images).
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UQ algorithm is again very good at capturing the variations of the
MRF samples as shown by Figs. 11 and 12. Even for the larger image
size problem the MRF-based approach is again mostly within the
limits of the experimental values, revealing that the epistemic
uncertainties are not critical. The mathematical analysis of the
epistemic uncertainties in this case as well as the accuracy of the
analytical UQ technique to represent the variations of the synthesized
samples are presented in Sec. III.C.

C. Reliability Index Approach

This section discusses a mathematical approach to analyze the
effect of epistemic uncertainties arising from the MRF approach and
the accuracy of the analytical UQapproach to predict the variations of
the synthesized samples. This mathematical approach requires a
technique to measure similarity between discrete data–discrete data
and discrete data–continuous probability distribution because the
effects of epistemic uncertainties are analyzed by comparing the
MRF samples to the experimental values (discrete data–discrete
data), and the accuracy of the analytical UQ algorithm is studied by
measuring the similarity between the MRF samples and analytical
probability distributions (discrete data–continuous probability distri-
bution). The available numerical similarity measures focus more on
comparing either discrete–discrete or continuous–continuous distri-
butions. Therefore a reliability index approach that is capable of
computing probability of failure for both discrete and continuous data
sets is presented in this section instead of implementing an available
numerical similarity test. The reliability index β is computed using
the normal cumulative distribution function for the analytical UQ
algorithm in Eq. (10).

β � normin v�P�A ≤ x ≤ B�� (10)

In Eq. (10), P�A ≤ x ≤ B� shows the probability of having a
random parameter, x, in between points A and B. The experimental
value limits shown by the black lines in Figs. 9–12 denote the pointsA
and B. The norminv function in Eq. (10) is the inverse Gaussian
cumulative distribution function because the analytical UQ represents
a Gaussian distribution. The definition for the norminv function is
given in Eq. (11):

norminv � F−1�Pjμ; σ� � fx:F�xjμ; σ� � Pg (11)

where F−1 denotes the inverse function (norminv) of the normal
cumulative function F; μ and σ are the mean value and standard

deviation of the distribution, respectively; and P shows the
probability.
The computation of the reliability index for a discrete data set is

based on the computation of the probability of failure value, Pf. The
probability of failure indicates the ratio of number of failed samples
that are outside of the region defined by the points A and B over the
total number of samples as shown in Eq. (12):

Pf � Nf

N
(12)

where Nf shows the number of failed samples and N is the total
number of samples. The reliability index of the discrete system is then
computed using the norminv function such that

β � norminv�1 − Pf� (13)

To analyze the epistemic uncertainties the reliability index
parameter β is found to be more preferable than the probability of
failure parameter Pf because the probability of failure values is
usually very small (in the order of 0.01). However, the reliability
index parameter β can provide a better understanding as its values are
very sensitive to the small changes in the probability of failure (the
range for β is typically in between 1 and 3.5). Using the presented
formulation, the reliability index values are computed for analytical
UQ algorithm and MRF samples for the same and larger image sizes
in Fig. 13. The reliability index that is calculated for the analytical
UQ model indicates the accuracy of the technique to capture the
variations of the MRF samples, whereas the reliability index of the
MRF samples shows the importance of the epistemic uncertainties.
Because the analytical UQ algorithm represents the MRF samples,
these two reliability indexes are expected to be similar. To provide a
better understanding of the reliability index values, the 90%, 95%,
and 99% confidence (or reliability) levels are also illustrated
in Fig. 13.
One important result that can be observed from Fig. 13 is that the

analytical UQ algorithm never overpredicts the reliability because, in
most cases, the reliability index value computed for the analytical
technique is lower than the reliability index value for the discrete
MRF samples. These two sets of reliability indexes have very similar
values as expected, which shows the accuracy of the analytical UQ
approach in modeling the variations of the MRF samples. Therefore
the analytical algorithm is a very safe candidate to represent the
epistemic uncertainties. The reliability index values in Fig. 13 are
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Fig. 13 Reliability of analytical UQ method and MRF samples based on the experimental EBSD data for the same and larger image sizes.

1088 ACAR AND SUNDARARAGHAVAN

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
IC

H
IG

A
N

 o
n 

M
ay

 8
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

74
88

 



satisfactory because the confidence level is more than 95% in all
cases and 99% inmost of the cases. This alsomeans that the epistemic
uncertainties arising from theMRF approach have a very little impact
on the overall accuracy of the algorithm even though the algorithm
predicts the spatial evolution in a larger domain. The high confidence
levels show that the MRF algorithm should be a very good candidate
to replace the costly experimental data that are obtained with the
measurements at large domains.

D. Effect of Window Size Parameter

The window size is the most effective parameter in terms of the
accuracy of the synthesized images with theMRF approach. The UQ
analysis in this work is performed using the synthesized images that
are all generated for a window size of 9. This window size value was
previously found to be optimum in the first application problem that
was solved by using a cellular automata simulation output. Based on
the results presented previously, this window size value also looks to
be very effective on generating synthesized image samples from
experimental EBSD data as the epistemic uncertainties arising from
the MRF model do not violate the reliability expectations. This
section focuses on a different analysis of epistemic uncertainties
when different window size values are used in the MRF approach.
For this purpose, another set of total 800 synthesized images (400
samples for the same image size and 400 samples for 1.5 times larger
image size) are generated using the same input EBSD data but for a
window size value of 5. Another important difference between using
different window size values is the required computational times. The
computational times that were spent to generate one synthesized
image using the same and 1.5 larger image sizeswithwindow sizes of
5 and 9 on the same computational platform are compared in Table 1.
The computational time that was required by the analysis with a
window size of 5 is significantly less than the required computational
timewith awindowsizeof 9.However, the accuracy that is achievedby
different window sizes may not be reflecting the same characteristic
because there is a different optimal window size for each different
problem depending on the crystal structure. Therefore spending more
computational timesmay not mean achieving the best accuracy, which
makes the MRF approach more attractive because it can produce

accurate results in a computational time-efficient way. The only
problem that can be noticed from the results in Table 1 is that the
computational time that is required by theMRFapproach to generate a
1.5 times larger image ismore than 1.5 times of the computational time
to generate an image having the same size with the input sample.
Therefore the growth in computational time requirement is not linear,
and it can cause some restriction for generating very big synthesized
images. However, the probability of having an issue because of the
computational time requirement is negligible considering the current
high-technology computing resources.
Some of the material property values of the synthesized samples

that are generated for the window size of 5 are compared with the
previously generated images with the window size of 9 in Fig. 14.
Figure 14 represents the property hulls of some of the stiffness
parameters for the same and larger image sizes, and it shows all
possible values that the synthesized MRF samples with different
window size parameters can take.
The stiffness hulls in Fig. 14 show that the MRF samples that are

generated using the window size of 5 predict very similar stiffness
values to the previously synthesized images with the window size
of 9. The similarity of the synthesized images with different window
size values is analyzed further with the reliability index approach.
The reliability index values are computed using the same formulation
presented in the previous section. In this case, only the reliability
indexes of the analytical UQ algorithm are illustrated because it is
already shown that they agree verywell with the reliability indexes of
the discrete MRF samples. The reliability index values computed for
thewindow size of 5 are compared with the previous reliability index
values that were obtained for the window size parameter of 9
in Fig. 15.
According to the reliability results illustrated by Fig. 15 the

reliability of the synthesized samples using a window size of 5 is as
good as the samples generated with the window size of 9. The most
reliability levels are above 99% confidence, and all samples are
providing a reliability more than 95%. Even though the window size
parameter is important for the accuracy of the MRF samples it is not
critical in this example application. The reason is that the experimental
input EBSD images represent a microstructural texture that is very
close to a perfect random texture. All the grains in this texture have
regular shapes and similar sizes. Therefore the reconstruction can be
very accurate even with small window sizes. The accuracy of the
synthesized images with different window sizes for anisotropic grain
structures has been discussed before by the authors [20]. The results of
this previous study [20] showed that the window size parameter is
significant when the grains have different structures in contrast to the
results presented in this work for a random texture. However, the
present study shows that theMRFapproach is a very good candidate to
eliminate the large-scale experiments that are performed for materials
with regular grain structures. The replacement of the experiments with

Table 1 Required computational times for different window size
values in the MRF approach

Case
Computational time
ratio per one sample

Same image size, window size of 5 1
1.5 times larger image size, window size of 5 2.24
Same image size, window size of 9 3.34
1.5 times larger image size, window size of 9 7.57
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Fig. 14 Stiffness hulls for the synthesized MRF samples with different window sizes.
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the MRF approach for anisotropic microstructures should be studied
more extensively in future.

IV. Conclusions

An analytical formulation tomodel epistemic uncertainties that are
arising from a microstructure reconstruction algorithm is addressed.
The spatial evolution of synthetic microstructures is predicted by an
Markov random field (MRF) model given an experimental electron
backscatter diffraction (EBSD) input data. Tounderstand the effects of
epistemic uncertainties, the aleatoric uncertainties are eliminated by
using four different EBSD samples that indicate measurements at
different regions of the same material. The variations of the material
properties that are computed from the EBSD samples are related to
aleatoric uncertainties. Therefore the outputs that are produced by the
MRF algorithm within the experimental property bounds are assumed
to be reliable. The epistemic uncertainties are analyzed for the material
property values that are not a subspace of the experimental values
region. A reliability index approach is presented to compute the
similarity between the analytical uncertainty quantification (UQ)
algorithm and discrete MRF samples to show the accuracy of the
analytical algorithm in modeling epistemic uncertainties, and between
the analytical algorithm and discrete experimental values to show the
effect of epistemic uncertainties on the expected performance of the
MRF model. The analytical UQ algorithm is found to be providing a
very good estimate for thevariations in theMRF samples.Moreover, the
reliability analysis shows that the epistemic uncertainties arising from
the MRF algorithm do not lead to unexpected results because the
confidence levels in all cases for different image and window sizes are
more than 95%. The window size parameter does not play a significant
role on the accuracy of the synthesized samples because the input
experimental data represent a random texture. The future work should
focus more on the development of techniques to identify the optimum
window size parameter, which provides improvement on both accuracy
and computational time, to analyze uncertainties whenmodelingmicro-
structures with different grain structures over larger spatial domains.
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