
Stochastic Design Optimization of Microstructural Features
Using Linear Programming for Robust Design

Pinar Acar∗

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

and

Veera Sundararaghavan†

University of Michigan, Ann Arbor, Michigan 48109

DOI: 10.2514/1.J057377

Microstructure design can have a substantial effect on the performance of critical components in numerous

aerospace applications. However, the stochastic nature of metallic microstructures leads to deviations in material

properties from the design point and alters the performance of these critical components. In this paper, a novel

stochastic linear programming (LP)methodology is developed formicrostructure design accounting for uncertainties

in desired properties. The metallic microstructure is represented using a finite element discretized form of the

orientation distribution function (ODF). The inverseLP problem solves themean values and covariancematrix of the

ODFs tomaximize themean values of a property, given the statistical constraints on other properties. The highlight is

an analytical uncertainty quantification model via a Gaussian distribution to model propagation of microstructural

uncertainties to the properties. Examples illustrate maximization of the yield strength and magnetostriction of a

galfenol alloy when constrained by uncertainties in a set of stiffness constants.

Nomenclature

A = orientation distribution function
C = stiffness
E = expected value
m = property vector for magnetostrictive strain
p = property matrix for stiffness
q = volume normalization vector
V = null space vector
y = property vector for yield stress
μA = mean value of the orientation distribution function
μC = mean value of the stiffness
ΣA = variance of the orientation distribution function
ΣC = variance of the stiffness

I. Introduction

M ICROSTRUCTURE design has been typically addressed as a
deterministic optimization problem in which features such as

volume fractions of various phases are controlled to achieve the
desired property. Several issues arise: First, multiple microstructures
can lead to the desired property, and some microstructures are easier
to manufacture than others [1,2]. Thus, the deterministic optimizer
has to be capable of predicting nonunique solutions. Second,
manufacturing process conditions create uncertainties in micro-
structural features. This is an aleatoric uncertainty, is unavoidable,
and is naturally present in metallic systems. Thus, the final realized
material has variability in properties around the design endpoint.
Although small variability is acceptable, larger variabilities can often
lead to severe performance issues. For example, unfavorable
crystallographic texture in a polycrystalline alloy can create
weaknesses that can initiate fracture [3].
The current state of the art mostly addresses the direct uncertainty

quantification (UQ) problem, i.e., prediction of the effect of

microstructural uncertainty on properties. The direct problem has
been generally addressed using computational techniques such as
the Monte Carlo simulation (MCS), collocation, and spectral
decomposition methods. Huyse and Maes [4] studied the effect of
microstructural uncertainties on homogenized parameters by using
random windows from the real microstructure, and they performed a
MCS to identify the stochasticity in elastic parameters such as
Young’s modulus and Poisson’s ratio. Sakata et al. [5] showed the
variations inYoung’smodulus and Poisson’s ratio due tomicroscopic
uncertainties. They validated the results of their perturbation-based
homogenizationmethodwith theMCS. In another paper, Sakata et al.
[6] implemented a kriging approach to calculate the probability
density functions of the material properties and used the MCS to
study the uncertainties in geometry and the material properties of a
microstructure through the same perturbation-based homogenization
method. A computational stochastic modeling approach for random
microstructure geometry was presented by Clement et al. [7,8].
The authors presented a high-dimensional problem due to the
high number of stochastic variables to represent the micro-
structure geometry. This high-dimensionality was reduced with the
implementation of polynomial chaos expansion. Creuziger et al. [9]
examined the uncertainties in the orientation distribution function
(ODF) values of a microstructure due to the variations in the pole
figure values by using the MCS. Juan et al. [10] used the MCS to
study the effects of a sampling strategy on the determination of
various characteristic microstructure parameters such as grain size
distribution and grain topology distribution. Hiriyur et al. [11]
studied an extended finite element method coupled with an MCS
approach to quantify the uncertainties in the homogenized effective
elastic properties of multiphase materials. The uncertain parameters
were assumed to be aspect ratios, spatial distribution, and orientation.
They used a strain energy approach to analyze the uncertainties of an
in-plane Young’s modulus and Poisson’s ratio. Kouchmeshky and
Zabaras [12] presented the propagation of initial texture and
deformation process uncertainties on the final product properties.
They used a data-driven approach to identify the joint probability
distributions of random variables with a maximum entropy method,
and they modeled the stochastic problem using a stochastic
collocation approach. Madrid et al. [13] examined the variability
and sensitivity of an in-plane Young’s modulus of thin nickel
polycrystalline films due to uncertainties in the microstructure
geometry, crystallographic texture, and numerical values of single
crystal elastic constants by using a numerical spectral technique.
Niezgoda et al. [14] computed the variances of the microstructure
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properties by defining a stochastic process to represent the micro-
structure. In Ref. [15], the uncertainty in properties was estimated
numerically using maximum information entropy given the known
average grain size and texture.
Traditional numerical techniques, such as the MCS, are robust but

computationally expensive [16]. In addition, these methods are
generally able to represent the small variations in properties [17–21].
These UQ techniques studied in the literature also required high
computational costs because they represented the joint probability
distributions of the random variables using either interpolation
functions or samples. As the problem complexity or the number of
variables increased, the number of interpolation terms or sampling
points also increased. This was especially true for the ODFs that were
discretized using finite element nodes or a spectral basis, and they
contained a large number of free parameters for which the joint
distribution needed to be sampled. For computationally efficient
simulations, the high-performance computing (HPC) could be
considered for the solution.However, theHPCwas not always optimal
for the expense [22]. Thus, the materials community has recently
focused on reduced-order modeling techniques. The most preferred
method is proper orthogonal decomposition (POD) [1,23–27].
However, POD provides a linear formulation in the reduced basis, and
it is better suited for linear or weakly nonlinear problems. All these
disadvantages imply the necessity of developing analytical solutions as
the first step inUQ. In our recent paper [28], we presented an analytical
formulation based on multivariate Gaussian representation to model
thevariations in texture.Although thisworkpropagated the uncertainty
in the microstructure to the endpoint properties, the inverse problem
was of specific interest in the paper. In the context of deterministic
inverse problems, notable contributions includeRefs. [29,30], inwhich
the authors demonstrated texture design so as to maximize the elastic
and plastic properties of a structure. Data-mining methods have been
used for microstructure design in Refs. [31–33]. On the other hand, a
survey of the literature revealed that the stochastic optimization
problem for microstructure design has still not been addressed.
In this paper, we have developed a novel stochastic linear

programming (LP) methodology for microstructure design. The
inverse LP problem of the present work solves themeanvalues and the
covariance matrix of the ODFs to maximize the mean values of a
property, given statistical constraints on other properties. To the best of
the authors’ knowledge, this is the first stochastic microstructure
optimization effort in the literature that can handle fully correlated
ODFs. The organization of the paper is as follows: Section II
addresses the multiscale modeling of microstructures: particularly, the
computation of volume-averaged properties. The Gaussian random
variables concept is introduced in Sec. III. We present the analytical
model for UQ and the stochastic optimization approach using fully
correlated random variables in Sec. IV. In Sec. V, we report the results
of the stochastic optimization studies performed using the analytical
algorithm to quantify the uncertainties. A summary of the paper with
potential future applications is presented in Sec. VI.

II. Microstructure Representation

The alloy microstructure consists of multiple crystals with each
crystal having an orientation. The generalized Hooke’s law for the
aggregate of crystals may be written in the following form:

hσi � Ceffhϵi (1)

where hϵi and hσi are the volume-averaged strain and stress,
respectively; andCeff is the effective stiffness tensor in the coordinate
system of the part. Assuming homogeneity of the deformation in a
macroscale elementary volume, the effective elastic constantsmay be
found through averaging using the Taylor approximation [34]:

Ceff � hCi (2)

If the effect of factors (e.g., crystal size and shape) is ignored,
averaging (denoted by h⋅i in the preceding equation) can be
performed over the ODF (represented by A). The ODF gives the

volume density of each orientation in the microstructure. If the
orientation-dependent property for single crystals χ�r� is known, any
polycrystal property can be expressed as an expected value, or
average, given by the following:

hχ i �
Z
R
χ�r�A�r� dv (3)

where the ODF A is a function of the crystal orientation r. The
average value is computed by integrating in the fundamental regionR
of the crystal orientation space, which can be obtained by considering
crystallographic symmetries.
The present work employs the Rodrigues axis-angle parameter-

ization of the crystal orientation space [35,36]. The Rodrigues
parameterization is created by scaling the axis of rotation n as
r � n tan�θ∕2�, where θ is the rotation angle. TheRodrigues space is
advantageous due to the regularity of its geometry [35], which allows
us to discretize the space using finite elements. The ODF is
discretized into N independent nodes with Nelem finite elements and
Nint integration points per element. A finite element integration
scheme using Gauss quadrature allows the matrix representation of
Eq. (3). Using this parametrization, any polycrystal property can be
expressed in a linear form as follows [37]:

hχ i �
Z
R
χ�r�A�r�dv�

XNelem

n�1

XNint

m�1

χ�rm�A�rm�wmjJnj
1

�1� rm ⋅ rm�2
(4)

where A�rm� is the value of the ODF at themth integration point with
global coordinate rm of the nth element, jJnj is the Jacobian
determinant of the nth element, wm is the integration weight

associated with the nth integration point, and 1∕�1� rm ⋅ rm�2
represents the metric of Rodrigues parameterization. This can be

shown to be equivalent to an equation linear in the ODF: hχ i � pTA,
where A is a column vector containing the ODF values at the k
independent nodes of the ODF mesh [28]. In addition, the ODF is

normalized to unity as qTA � 1, where q is a normalization (column)
vector. An example for the ODF representation for body-centered
cubic (BCC) galfenol material is shown in Fig. 1.

III. Uncertainty Representation

The ODF is represented using a d-dimensional multivariate
Gaussian distribution A∼N�μA;ΣA�, where μA is a vector of
mean values of the ODF at independent nodes μA �
�μ1; : : : ; μk�T � E�A�, and ΣA is the covariance matrix ΣAij

�
cov�Ai; Aj� � E��Ai − μAi

��Aj − μAj
��; i; j � 1; : : : ; k. In our

previous work [28], we showed that any property that is linearly
related to the ODF (e.g., Eq. (3), generalized to a matrix–vector
product, Z � PA) is also Gaussian Z∼N�μZ;ΣZ�. The mean and
covariance of vector Z are given by the following:

μZ � PμA (5)

ΣZ � PΣAP
T (6)

More details on the Gaussian uncertainty representation of
ODFs can be found in earlier works [28,38] and are not repeated

Fig. 1 ODF representation in the Rodrigues fundamental region for

cubic crystal symmetry, showing the location of the k � 10 independent
nodes of the ODF in red.
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for brevity. In the stochastic inverse problem, we are required to

estimate the uncertainty in the ODF, given statistical constraints

on the properties. The unknown ODF values are computed as

Gaussian distributions. In our previous work, given k number of

total ODF variables, the first k − 1 ODF values were modeled to

be independent, and the kth ODF was modeled and correlated

due to the volume normalization constraint (qTA � 1). The key

difference in the Gaussian representation used here is that all k
independent nodes are taken to be unknowns, and the

normalization constraint is posed as an equality constraint (as

described in the next section).

IV. StochasticDesignOptimizationwithCorrelatedODFs

Using the Gaussian representation, a linear system is developed to

relate the unknown mean values and covariance matrix elements of

theODFA to the given uncertainty in a set of propertiesC. TheODFs
are modeled as correlated random variables, which lead to a full

positive semidefinite symmetric covariance matrix with nonzero

entries. The relation between the material properties and the ODF

values is defined using the homogenized (volume-averaged)

equations as discussed earlier in [31]:

pTA � C (7)

In Eq. (7), p is a �m × k� matrix including the k single crystal

values for m properties and denotes the property averaging matrix

for C [37].
The linear system solves for mean values of these k ODF

parameters and their full �k × k� symmetric covariancematrix, which

is the n � k� k�k� 1�∕2 number of unknowns in total. The linear

system is derived using theODFnormalization constraint (qTA � 1)
and homogenized equations for the properties [Eq. (7)]:

qTμA � 1 (8)

qTΣAq � 0 (9)

pTμA � μC (10)

pTΣAp � ΣC (11)

where Eqs. (8) and (9) show the ODF normalization constraint as

applied for the Gaussian distribution. Equation (10) shows the

formulation to obtain the vector of mean values of the properties μC
using the linear transformation rule for Gaussian distribution

[Eq. (5)] and the homogenized equation [Eq. (7)]. Equation (11)

shows the computation of the covariance matrix for the properties

using a linear transformation rule for Gaussians [Eq. (6)].
It is assumed that the mean values of the stiffness parameters μC

and the stiffness covariance matrix ΣC are provided. The unknowns

of the problem are the ODF mean values vector μA and the ODF

covariance matrix: ΣA.
The ODF covariance matrix is expected to agree with the given

relation in Eq. (9) because, for any point drawn from the joint ODF

probability distribution, the normalization constraint (qTA � 1)
should be satisfied.However, this constraint [Eq. (9)] can be enforced

by an equivalent constraint derived separately for all rows of the

covariance matrix such that

ΣAq � 0 (12)

The derivation of this constraint is discussed in more detail in the

Appendix. Using the preceding formulation, the augmented system

of equality constraints for the ODFs can be derived as follows:

2
666664

qT�1×k� 0�1×n−k�

pT
�m×k� 0�m×n−k�

0�r×k� �P�r×n−k�

0�k×k� �Q�k×n−k�

3
777775
"

μA�k×1�

ΣAvec
�n−k×1�

#
�

2
666664

1

μC�m×1�

ΣCvec
�r×1�

0�k×1�

3
777775 (13)

where μC is the vector of the property mean values (e.g., μvecC �
� μC11

μC12
μC13

: : : μC66
�T for modeling stiffness values of an

anisotropic material): Σvec
C is the vector containing the upper diagonal

elements of the symmetric covariancematrix of the followingproperties:

ΣC such that Σvec
C ��ΣC1;1

ΣC1;2
::: ΣC1;m

ΣC2;2
::: ΣC2;m

::: ΣCm;m
�T

with a total of r � m�m� 1�∕2 elements.
Similarly, the upper diagonal entries of the ODF covariance matrix

elements are also included in Σvec
A such that Σvec

A �
�ΣA1;1

ΣA1;2
: : : ΣA1;k

ΣA2;2
: : : ΣA2;k

: : : ΣAk;k
�T .

Note that �P is the coefficientmatrix derived through the covariance
relation in Eq. (11) to represent the ODF covariance matrix ΣA in the
vector form Σvec

A . Likewise, �Q is the coefficient matrix derived
through Eq. (12). The total number of variables n is equal to

n � k� k ⋅ �k� 1�
2

where k shows the number of unknowns of the ODF mean values
vector, and k ⋅ �k� 1�∕2 shows the number of unknowns of
the symmetric ODF covariance matrix. Therefore, the problem
dimensionality is directly dependent on the number of ODF variables
k that are used to model the microstructure. The lower bounds of the
ODF mean values and variance terms (ondiagonal entries on the
covariancematrix) are defined to be zero. TheLPproblems are solved
using an interior-point algorithm.

V. Example Problems

Optimization of the texture of the BCC magnetoelastic alloy
galfenol (Fe100−xGax) is considered in the examples. The alloy
has been shown to exhibit magnetostrictive strains up to 400 ppm
in single crystal form (more than 10 times that of α-Fe). Although
single crystals of galfenol provide large magnetostriction, their
preparation is expensive. Thus, development of polycrystalline
galfenol with favorable properties for various applications is
desirable. In single crystals of galfenol, the elastic modulus can vary
over a large range, from 86 to 260 GPa, depending upon the loading
direction. In the rolled sheet form of the alloy, the saturation values of
magnetostrictive strains vary as a function of crystal orientation, with
the highest strains (attained along the h001i crystal directions) several
times greater than the strains for unfavorable crystal directions.
Sensors or actuators in the form of compliant beams of galfenol give
the best performance ifmagnetostriction and strength aremaximized.
The property matrices for this alloy were calculated based on
previous work in [39].

A. Deterministic Nonunique Solutions

Because the linear system developed in the previous section
generally corresponds to an underdetermined system of equations,
the optimum ODF may not be a unique solution. There might be
multiple ODF vectors that can satisfy the prescribed distribution of
material properties. To illustrate this, we first identify all possible
ODF solutions, given the values of the stiffness parameters

�C11 C12 � � � 510.9785 329.0219 � GPa

using the deterministic solver explained in Ref. [2]. The solver is
capable of finding multiple/infinite solutions using the null space of
the linear system relating ODF to properties. The infinite solutions
are defined as the sum of an initial optimum ODF solution A1, and
solution directions are represented by null space vectors Vi of the
coefficient matrix D. The infinite solutions can mathematically be
represented as shown in the following:
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Ai � A1 � βVi; where i � 1; 2; 3; 4; : : : ; s (14)

Vi � Null�D�:; i�� (15)

The number of null space vectors is denoted by s. Even though the
number of null space vectors is finite, the number of solutions can be
infinite because β can be any number that satisfies the ODF

positiveness constraint (A ≥ 0). Note that the coefficient matrix D
also includes the ODF normalization constraint. The null space

approach is explained in detail by the authors in Ref. [2]. Using the
given input information, we compute the multiple ODF solutions by

implementing the null space approach. Each ODF solution identified

by the null space approach satisfies the given constraints on the

stiffness parametersC11 andC12; however, they can provide different
values for other material properties. After obtaining the general null

space solutions for the stiffness parameters, we solve two different

optimization problems. In the first problem, we maximize the

magnetostrictive strain λxx by satisfying the same stiffness criteria
that we used to find the null space solutions. The second problem

aims to maximize the yield stress σy by again satisfying the same

prescribed criteria for the stiffness parameters. In Fig. 2, some of the

multiple ODF solutions that were identified through the null space
approach are shown. TheseODF solutions provide the samevalues of

stiffness parameters C11 and C12; however, they provide different

values for the magnetostrictive strain λxx and yield stress σy as,

indicated in Fig. 2. In the next example problems, we will solve the

stochastic counterpart of this problem. We find the stochastic ODF

solutions, whichmaximize themeanvalue of λxx and σy, respectively,
given the statistical variations in the stiffness parameters.

B. Stochastic Solution: MaximumMean Magnetostrictive Strain of a
Galfenol Beam

To represent the Gaussian probability distributions, the mean

values and covariance matrix of the stiffness parameters C11 and C12

are assumed to be provided initially. A full covariance matrix for the
ODF increases the problem dimensionality; therefore, a coarsermesh
in the Rodrigues domain is employed with 10 ODF nodes. The input
parameters for all the application problems are taken as follows:

μC � � μC11
μC12

�T � � 510.9785 329.0219 �T GPa

and

Σvec
C � �ΣC1;1

ΣC1;2
ΣC2;2

�T � �0.5859 −0.0500 0.0171 �T GPa2

The example problem aims to maximize the mean magnetostrictive
strain component of the galfenol beam using the same initially
prescribed probability distributions ofC11 andC12. The ODF solution
that provides the maximum value of the mean magnetostrictive strain
max μλxx will be a subset of the null space solutions shown in Fig. 2.

The magnetostrictive strain component to be maximized in this
problem is λxx, and it can be computed using the homogenized

equation such that λxx � mTA, wherem shows the property vector for
themagnetostrictive strain. The objective function of the stochastic LP
problem can be defined as follows:

min fTx

f � �−mT�1 × k� 01×n−k �T
x � � μA�k×1� Σvec

A�n−k×1� �T

such that Eq. (13) is satisfied:

μAi
≥ 0; ΣAii

≥ 0

The deterministic and stochastic LP problems identify the same

optimal value such thatmax λxx � 7.3285 × 10−5 in the deterministic

solution and max μλxx � 7.3285 × 10−5 in the stochastic solution.

0 2 4 6 8 10 12 14

C11= 510.9785 GPa 

C12= 329.0219 GPa 

C11= 510.9785 GPa 

C12= 329.0219 GPa 

y= 503.1607 MPa y= 502.2867 MPa 

C11= 510.9785 GPa

C12= 329.0219 GPa

y= 496.6244 MPa

xx= 6.4021 x 10-5

C11= 510.9785 GPa 

C12= 329.0219 GPa 

y= 510.7541 MPa

xx= 7.0884 x 10-5

xx= 6.9220 x 10-5

C11= 510.9785 GPa 

C12= 329.0219 GPa 

y= 510.7541 MPa 

xx= 7.0884 x 10-5

xx= 6.7330 x 10-5

y= 510.7541 MPa 

C11= 510.9785 GPa

C12= 329.0219 GPa

xx= 7.3285 x 10-5

Fig. 2 Some of the multiple deterministic ODF solutions that satisfy the prescribed values of the stiffness parameters.
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However, due to the allowed variations on the stiffness constants, higher

or lower values of magnetostrictive strains can be obtained. This is

reflected as a Gaussian probability distribution of the magnetostrictive

strain, as seen in Fig. 3. The deterministic and stochastic approaches

identify the same solution among all the designs, satisfying the stiffness

constraint as shown in Fig. 4. Note that the stochastic ODF solution is

illustrated in terms of the ODF mean values. The probability

distributions of the optimumODF solution are shown in Fig. 5. All the

ODF values are positive, although the optimal ODF is dominated by

nodes 2, 6, 9, and 10. The rest of the independent nodes carry negligible

ODF weights. The mean values and standard deviations of the ODF

solution in this problem are shown in the orientation space; see Fig. 6.

The ODF values with higher mean values also have higher standard

deviations.

C. Stochastic Solution: MaximumMean Yield Stress of a
Galfenol Beam

This example problem aims to maximize the mean yield stress of a

galfenol beam, given the LP problem formulation in the previous

sections. Using the same prescribed probability distributions of the

stiffness parameters (C11 and C12) as the input, the corresponding

ODF probability distributions that also maximize the mean yield

stress value are identified. The yield stress can be obtained using the

homogenized equation such that yTA � σy, where yT shows the

property vector for yield stress σy. The optimization is again solved

for deterministic and stochastic approaches. The objective function

of the stochastic LP problem can be defined as follows:

f � �−yT�1×k� 01×n−k �T (16)

The optimum value of the objective function is calculated as

follows in the deterministic and stochastic problems:

max σy � max μσy � 510.7541 MPa

The optimum polycrystal solutions of the deterministic and

stochastic problem are compared in Fig. 7 (in which a stochastic

solution is given in terms of the ODF mean values). The probability

distributions of the stochastic optimum ODF design are given in

Fig. 8. The optimum yield stress distribution is shown in Fig. 9.
In this problem, the stochastic optimization problem identifies one

of the solutions from the null space containing all ODFs with the

samemaximumyield stress. In Fig. 7, we show another solution (left)

that is obtained in the deterministic problem that is not identified as

one of the solutions in the stochastic problem. This is because the

6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4

Stochastic
Deterministic

10-5
xx

Fig. 3 Magnetostrictive strain distributions of stochastic and
deterministic optimization solutions.

Deterministic Stochastic

0 2 4 6 8

Fig. 4 Comparison of optimum deterministic and stochastic designs for
maximum magnetostrictive strain objective.

4.1 4.12 4.14

ODF1× 10-7

ODF7× 10-5 ODF8× 10-7

ODF3× 10-7 ODF4× 10-7 ODF5× 10-7

8.3 8.35 8.4

ODF2

ODF6 ODF9 ODF10

7.35 7.4 7.45 7.3 7.4 7.5 4.3 4.35 4.4

5.9 5.95 6 2.2365 2.237 2.2375 4.3 4.35 4.4 7.55 7.6 7.65 6.45 6.5 6.55

Fig. 5 Probability distributions of the optimum stochastic ODF solution for maximum magnetostrictive strain objective.
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stochastic LP solver is also attempting to match the assigned

covariances of the properties, in addition to maximizing the mean
yield stress. If the other ODF solution from the deterministic null

space solutions is picked, the variances of the stiffness values deviate
from the constraint. This difference in the variances between the

global stochastic optimum solution and an example null space
solution is shown in Fig. 9.Note that the stochastic (null space) plot in

Fig. 9 shows the stochastic solution for the yield stresswhen themean

values of the ODFs are taken from a deterministic null space solution
that is not the subset of the global stochastic solution. Therefore, the
probability distribution looks different than the optimum stochastic
result because the null space solutions differ in variance terms when
the stochastic problem is solved. The optimum ODF solutions
discussed in this paper satisfy positive semidefiniteness for the ODF
covariance matrices. The stiffness covariance matrix, which is
computed using the optimumODF solutions, is found to be the same
with the initially provided values Σvec

C .
The mean values and standard deviations of the ODF solution are

shown in theorientation space; seeFig. 10.TheODFvalueswithhigher
mean values also have higher standard deviations in this problem.
Note that the probability distributions given in Figs. 5 and 8 satisfy

nonnegativity for the ODFs, although Gaussian distributions include
negative support. All the variables considered here (i.e., ODFs and
the properties) are all positive. Probability density functions (PDFs)
with positive variables (e.g., gamma distribution) can instead be
considered; however, the only useful analytical result that the authors
could find to statistically relate ODFs to properties was the case of the
correlated sum of Gamma distribution variables with a constant size
parameter [40]. Gaussian methods provide a considerable reduction
in computational times as compared to available numerical
techniques such as the MCS. Thus, it is recommended that the
Gaussian approach presented here be used as a first step before using
more advanced inverse UQ models.

Fig. 6 Statistical features of the optimumODFprobability distributions
for the maximum magnetostrictive strain objective.

0 2 4 6 8 10 12 14

Deterministic Stochastic

Fig. 7 Comparison of optimum deterministic and stochastic designs for
the maximum yield stress objective.
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Fig. 8 Probability distributions of the optimum stochastic ODF solution for maximum yield stress objective.
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Fig. 9 Yield stress distributions of stochastic and deterministic
optimization solutions.
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VI. Conclusions

A novel stochastic microstructure optimization methodology

is presented that employs an analytical Gaussian uncertainty

representation. The microstructure is represented using the ODF,

which is discretized using a finite element mesh. Given the probability

distributions of a set ofmaterial properties, an inverse problem is solved

to identify the statistical parameters of microstructures that maximize

the mean values of the desired material property. The method takes

advantage of the linear relationship between the ODF and properties in

the homogenization approach, and the linear transformation rule of

Gaussian distributions. The variations in the initially provided material

properties are assumed to follow aGaussian distribution, and the linear

transformation feature of the Gaussian distribution is used to solve the

ODF probability distributions by defining an inverse LP problem. In

the example problems, we use this method to optimize the mean

magnetostrictive strains and yield stress of a galfenol alloy, given

the stochastic constraints (mean and variances) of two stiffness

parameters. It is noted that the deterministic optimization problem

results in multiple solutions due to the null space of the coefficient

matrix. The stochastic optimization problem can be understood in this

context. The Probability Density Function (PDF) of the ODF that

results in a given set of stiffness properties is nonunique. There are

several solutions to the mean value of the ODF that can result in the

desired set of properties. In the formulation, the aim is to identify the

PDF that will maximize the mean yield stress, and this will result in a

much more constrained solution. In effect, the null space is looked at,

and the small set of solutions that leads to the highest mean yield

strength is identified. The statistics around one of these solutions was

solved for in this example. Having multiple solutions for material

design problems is advantageous for manufacturing because it

increases the likelihood that one of these textures can bemanufactured

using a conventional processing technique. Therefore, future effort in

this field should focus on integrating processing constraints into this

problem.

Appendix: Proof for Covariance Relation

We present that the constraint qTΣAq � 0 given in Eq. (9) can be
enforced strictly by using the new constraint equations defined

as ΣAq � 0.
Assume that k is the last nodal point, and i represents that anynodal

point of the following derivation can be made:

Σik � E��Ai − μAi
��Ak − μAk

��

where E denotes the expected value operator, Ai and Ak are the ODF

values of the ith and kth nodal points, and μAi
and μAk

show the mean

values for these nodal points:

Σik � E

�
�Ai − μAi

�
�
1 −

P
k−1
1 Aiqi
qk

−
1 −

P
k−1
1 qiμAi

qk

��

Σik � E

�
�Ai − μAi

�
�
−

1

qk

�Xk−1
1

Aiqi −
Xk−1
1

qiμAi

���

−qkΣik � E

�
�Ai − μAi

�
�Xk−1

1

�Ai − μAi
�qi

��

−qkΣik �
Xk−1
j�1

qjΣij

The relation can finally be shown as follows:

Xk−1
j�1

qjΣij � qkΣik � Σq � 0
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