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a b s t r a c t 

Non-ordinary state–based peridynamics is a promising continuum mechanics theory that combines non- 

local dynamics with conventional material models. Within this theory, the correspondence principle can 

be invoked to compute deformation gradients from the computed displacement fields. However, corre- 

spondence based models are prone to a zero-energy mode. This paper proposes the use of stress points 

to resolve this issue in the peridynamic family with nearest-neighbor discretizations. Each particle hori- 

zon is assigned with stress points at which derivatives of field variables are computed. The method is 

first demonstrated in a simple 1D problem and is compared with the analytical solution and other con- 

trol methods. 2D and 3D examples are compared with the finite-element method. Zero-energy modes 

are shown to be completely damped in all cases. The computation efficiency of the explicit stress-point 

based peridynamic model is analyzed in the end. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In classical elasticity, stress at a point is locally dependent on

he strain at that point which leads to stress singularities at crack

ips and dislocation cores. To resolve this issue, generalized con-

inuum theories have been developed that introduce a length-

cale via the assumption of non-locality ( Bažant et al., 1984; Ghosh

t al., 2013; 2014; Sundararaghavan and Waas, 2011; Coleman and

odgdon, 1985 ). In these theories, length scale dependent con-

titutive laws that involve higher-order strain or stress gradients

nd higher order stiffness tensors are introduced. Peridynamics,

ntroduced as an alternative integral formulation for continuum

echanics ( Silling, 20 0 0 ), is a relatively new theory that natu-

ally lends itself to the use of meshfree and particle-based dis-

retizations. In the particle-based peridynamic approach, the mo-

ion of material points is modeled by an integral operator that

ums internal forces between particles in this horizon similar to

 molecular dynamics approach. However, the original bond–based

eridynamic model which assumes pairwise forces between parti-

les resulted in a fixed Poisson’s ratio of 0.25. A generalized Non-

rdinary State-Based (NOSB) peridynamics theory was later pro-

osed by Silling et al. (2007) , in which particles interact with

orce states that may be computed from conventional constitutive
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odels. Thus, the nonlocality is conveniently introduced without

he need to alter the underlying constitutive equations. The de-

ormation measure in this model is computed by integrating mo-

ion of particles across a finite horizon via the correspondence

rinciple. Using this approach, the method can directly model

harp displacement singularities and discontinuities ( Sun and Sun-

araraghavan, 2014; Agwai et al., 2011; Madenci and Oterkus, 2014;

erstle, 2015 ). 

One particular drawback of NOSB peridynamics using cor-

espondence material models is the presence of zero-energy

odes, which is described in detail in several recent references

 Silling, 2017; Breitenfeld et al., 2014; Tupek and Radovitzky, 2014;

aghoobi and Chorzepa, 2017 ). For example, in 1D problems with

earest neighbor interactions, the correspondence principle relates

hree displacements to one deformation gradient. This results in

 null space where some deformations do not play a role in the

omputed gradient. Recent papers have attempted to resolve the

nstability numerically by adding fictitious springs between parti-

les and hourglass force terms ( Breitenfeld et al., 2014; Littlewood,

011 ). However, these methods have failed to completely remove

he instability and, in addition, employed coefficients or formula-

ions that are sensitive to the mesh size and chosen on a case-by-

ase basis. Another branch of methods modifies the influence func-

ions, either to provide an average-weighted displacement ( Wu and

en, 2015 ) or to use higher-order approximations to solve non-

ocal peridynamic equations( Madenci et al., 2016; Yaghoobi and

horzepa, 2017 ). These methods are effective in increasing the ac-
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curacy with enlarged horizons, nevertheless, zero-energy modes

still remain in the deformation gradient due to the absence of the

center particle. Recently Silling (2017) has provided a careful ex-

amination of zero-energy modes in the context of a material model

instability. 

In the current work, we propose the stress-point approach, as

a numerical means to mitigate zero-energy modes with nearest-

particle-horizon discretizations. The use of stress points has been

proposed in the past for other integral methods such as smoothed

particle hydrodynamics to address tensile instability issues ( Dyka

et al., 1997; Vignjevi et al., 20 0 0 ). The idea is straightforward. Ad-

dition of even one more independent stress point in 1D problems

leads to two gradients and three displacements which significantly

reduces the null space. This stress-point peridynamic model is first

demonstrated in a simple 1D problem and then applied to higher-

dimensional problems. Using these numerical examples, we show

that zero-energy-mode oscillations in all solutions are completely

damped. Beyond zero-energy modes, the error in the stresses due

to the affine mapping enforced in the correspondence formula is

improved as well. 

This paper will start Section 2 with a review of the NOSB peri-

dynamics theory. Brief explanations on the origin of zero-energy

modes and previous solutions by using supplementary particle

forces are followed. The numerical stress-point peridynamic ap-

proach is then proposed in Section 3 . Section 4 introduces an adap-

tive dynamic relaxation algorithm. This dynamic solver has been

demonstrated effective and efficient in solving peridynamic equa-

tions ( Luo et al., 2017 ). Numerical examples are shown and dis-

cussed in Section 5 . In the 1D example, the stress-point results

are compared with the analytical solution and other control meth-

ods with artificial force terms. The effect of zero-energy modes in

higher-dimensional stress-point solutions are calculated and ana-

lyzed with a reference of smooth finite-element method results.

A numerical efficiency test of the stress-point model is conducted

based on different dimensional examples before the final section

where conclusions and future work are discussed. 

2. Peridynamic model and zero-energy modes 

2.1. Non-ordinary state-based peridynamics 

NOSB peridynamics is first presented by Silling et al. (2007) in

2007, which is a nonlocal integral reformulation of the continuum

theory. Consider a material point x in the reference configuration

which can only interact with its neighboring points x ′ in a self-

center horizon H x with a finite radius δ. Given a displacement field

u , the current configuration is then represented by y = x + u . Let

the initial physical domain be B 0 at time t = 0 while B 1 is the de-

formed domain (shown in Fig. 1 ). 

With the introduction of the deformation vector state Y =
Y [ x , t] 〈 x ′ − x 〉 = y ′ − y , which denotes the deformed state of the

bond ξ = x ′ − x , the deformation gradient F at particle x is refor-

mulated as a nonlocal integration over the horizon: 

F = 

(∫ 
H x 

ω( Y � ξ) dV x ′ 
)

K 

−1 , (1)

where ω is an influence function defined at particle x in H x . It

weights the influence of each neighbor x ′ on the particle x and

can be selected as a spherical function based on the initial bond

length, i.e., ω = ω(| ξ| ) . K is a symmetric shape tensor at particle

x , defined as 

K = 

∫ 
H x 

ω( ξ � ξ) dV x ′ . (2)

Finally, the equation of motion of state-based peridynamics at

time t is 

ρü (x , t) = L (x , t) + b (x , t) , 
 (x , t) = 

∫ 
H 

{ T [ x , t] 〈 x 

′ − x 〉 − T [ x 

′ , t] 〈 x − x 

′ 〉} dV x ′ , (3)

here T [ x , t] 〈 x ′ − x 〉 is the force vector state operating on the bond

= x ′ − x at particle x at time t and b ( x , t ) is the body force

ensity. In connection to the classical continuum theory, the force

tate T can be obtained from the first Piola–Kirchhoff stress, P , at

article x as follows ( Silling et al., 2007 ): 

 [ x , t] 〈 x 

′ − x 〉 = ωPK 

−1 ξ, (4)

here P could be found from a classical stress-strain constitutive

odel using kinematics derived from the deformation gradient F .

his NOSB peridynamic correspondence material model will be ap-

lied in the following examples in this paper. 

.2. Zero-energy modes and control methods with supplementary 

article forces 

This inherent stability issue is a result of weak couplings be-

ween particles ( Breitenfeld et al., 2014; Tupek and Radovitzky,

014; Wu and Ben, 2015; Yaghoobi and Chorzepa, 2017 ). A simple

xample is discussed below to help understanding its origin. 

Consider a 2D regular lattice shown in Fig. 2 . The deformation

radient at the beginning is calculated as F old . After a small dis-

lacement disturbance u d is given at the center particle x , the new

eformation gradient F new 

is then calculated based on (1) as 

 new 

= 

(∫ 
H x 

ω( Y new 

� ξ) dV x ′ 
)

K 

−1 

= 

(∫ 
H x 

ω 

[
( Y old − u d ) � ξ

]
dV x ′ 

)
K 

−1 

= F old − u d �

(∫ 
H x 

ω ξdV x ′ 
)

K 

−1 . (5)

With the assumption of a regular lattice mesh and a spherically

ymmetric influence function ω, the integration term on the right

and side will vanish. The missing role of the center particle is one

f the causes of zero-energy modes, or hourglass modes, which is

 common stability issue in mesh-free methods, FEM, and numer-

cal schemes with central difference discretization ( Bower, 2009;

erstle, 2015; LeVeque, 2007; Flanagan and Belytschko, 1981 ). 

Some previous ideas to address this issue include introduction

f artificial force state, T a [ x ] 〈 x ′ − x 〉 , at particle x on the bond x ′ −
 , which is 

 [ x , t] 〈 x 

′ − x 〉 = ωPK 

−1 ξ + T a [ x ] 〈 x 

′ − x 〉 . (6)

his artificial force can be generated by either interconnected

prings or average displacement states ( Breitenfeld et al., 2014 ).

inear springs are introduced between particles in the first

ethod: 

 a [ x ] 〈 x 

′ − x 〉 = C 1 ω[ u (x 

′ ) − u (x )] , (7)

here C 1 is a spring constant. The second method computes the

dded force based on an average of all displacement states over

ne horizon, which is 

 a [ x ] 〈 x 

′ − x 〉 = C 2 

∫ 
H x 

ω[ u (x 

′ ) − u (x )] dV x ′ . (8)

These supplementary forces have a suppression effect on zero-

nergy modes. However, this effect highly depends on the mesh

ize and the problem itself. In addition, to determine the opti-

um values of the artificial coefficients, i.e., C 1 and C 2 , calcula-

ions need to be performed beforehand ( Breitenfeld et al., 2014;

aghoobi and Chorzepa, 2017 ). None of these methods completely

uppresses zero energy modes. The stress-point approach is pre-

ented next. 
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Fig. 1. Kinematics of peridynamics: Particle x is bonded to all particles ( x ′ , x ′ ′ , and x ′ ′ ′ ) within a region H x . After deformation, particle x maps to particle y and the 

process can be described by an averaged deformation gradient F . T [ x , t] 〈 x ′ − x 〉 and T [ x ′ , t] 〈 x − x ′ 〉 are force vector states in the reference configuration at particle x and x ′ , 
respectively. The notation of these two force states are shorten as T [ x ] and T [ x ′ ] in this figure only for the sake of brevity. In the NOSB peridynamics theory, these two force 

vector states are not necessarily parallel and can be obtained from the classical stress tensor. 

Fig. 2. An illustration of zero-energy modes in a 2D regular lattice. Small distur- 

bance is given at the center particle, which, however, has no impact on calculating 

the deformation gradient. 

Fig. 3. An illustration of the stress-point peridynamic scheme on a 1D elastic bar. 

The bar is fixed at left with a displacement loading at right and discretized into 

four peridynamic particles. The total length and cross-sectional area are 3 L and A , 

respectively. Assume particles only interact with nearest neighbors. 
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. Stress-point approach for NOSB peridynamics with a 

orrespondence material model 

.1. 1D stress-point peridynamic scheme 

Based on the stress-point approach addressing tension insta-

ility in smoothed-particle hydrodynamics methods ( Dyka et al.,

997 ), and its relevance to particle-based model of peridynamics

 Ganzenmüller et al., 2015 ), a new stress-point scheme is proposed

nd explained below. In order to enhance particle connections, a

ew quantities related to stress are calculated twice in the horizon

f particles. Take the 1D bar in Fig. 3 as an example. Two stresses,

l and σ r , are calculated at left and right of each particle by split-

ing the neighborhood and using the corresponding bond, respec-

ively. For instance, σ 2, l and σ 2, r are calculated on the two sides

f particle 2 while only σ 1, r is calculated at the right side of par-

icle 1. Overall, the shape tensor, deformation gradient, strain, and

tress are computed at stress points located at the middle of adja-
ent particles, in contrast with field variables such as displacement

nd material properties which are calculated at particles. 

Note that, even at the same location, σ 1, r is not always equal

o σ 2, l . They are distributed in the horizons of particle 1 and 2,

espectively. Quantities are visible only in a shared horizon to pro-

ect the completeness and closure of horizons. 

Take particle 2 for example and assume particles only interact

ith nearest neighbors. Deformation gradients F 2, l and F 2, r only

onsider the corresponding bond on the left and right of particle

, respectively (using Eq. (1) , and ω = 1 ): 

 2 , l = [ −(u 1 − u 2 − L )] AL 2 /K 2 , l = 

u 2 − u 1 

L 
+ 1 , 

 2 , r = (u 3 − u 2 + L ) AL 2 /K 2 , r = 

u 3 − u 2 

L 
+ 1 , (9) 

here the shape tensors K 2, l and K 2, r are calculated as 

 2 , l = (−L )(−L ) AL = AL 3 , 

 2 , r = L · L · AL = AL 3 . (10) 

s for the equation of motion at particle 2, it turns into 

(−σ1 , r K 

−1 
1 , r L − σ2 , l K 

−1 
2 , l 

L ) V + (σ2 , r K 

−1 
2 , r L + σ3 , l K 

−1 
3 , l 

L ) V = 0 

�⇒ −σ1 , r − σ2 , l + σ2 , r + σ3 , l = 0 . (11) 

f we make a further step to assume the material is elastic with

 constant Young’s modulus E and under small deformation (see

ppendix A.2 ), Eq. (11) then becomes 

 1 − 2 u 2 + u 3 = 0 . (12)

ompared to the original peridynamic scheme ( Appendix A.1 ), the

ifference is that all particle displacements are involved in (12) .

his treatment will prevent the zero-energy mode occurring from

he source. 

.2. Higher-dimensional stress-point peridynamic schemes 

Two guidelines are used when we extend the stress-point ap-

roach to higher dimensions. The first is to enhance connections

etween particles by using all particle displacements in the defor-

ation measures. The second is to keep the completeness and clo-

ure of horizons, by modeling stress interactions similar to the 1D

cheme. 

Assume particles can only interact with nearest neighbors.

tarting from 2D problems, a scheme with two stress points is

dopted. More stress points can be employed to increase the accu-

acy, however, higher computation cost is expected. As illustrated
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Fig. 4. A 2D scheme with two stress points. Blue and red stress points only take 

charge of bonds with the same color at the same side. There are two choices based 

on the location of stress points. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 5. A 3D scheme with two stress points. Blue and red stress points only take 

charge of bonds with the same color at the same side. There are four choices (a)–

(d) based on the location of stress points. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

i  

a

 

b  

(

�  

w  

p

 

g  

u  

t

�  

i  

t  

p

 

i

�  

A  

l  

i  

j

 

w

ε  

w  

c  

a  

t  

s  

r  

t

e  

w  

t  

e

5

 

t  

ε  

σ  

(  

δ  

a  

5

 

t  

i  

C  

t  
in Fig. 4 , the two stress points are located at two sides of the cen-

ter particle and each one only takes charge of the two bonds on

the same side. For example, blue stress points (SP2) only consider

blue bonds and the same with red stress points (SP1). Hence there

are two cases in 2D problems. 

Similar to the 2D scheme above, only two stress points are em-

ployed in our 3D model. However, there are totally four cases in

3D problems, as shown in Fig. 5 , and each stress point owns three

bonds in the horizon. To avoid directional bias, we randomly se-

lect the location of stress-points at each particle in the following

2D and 3D examples, using a random number generator to choose

one case from Figs. 4 and 5 when assigning stress points to each

particle. 

When it comes to the equation of motion, we compute the

force states based on stresses sharing the common bond, as we

showed (11) in the 1D stress-point model. In other words, the

stress term in (4) are calculated at the stress point owing the same

bond ξ. During postprocessing, the stress is recalculated as the av-

erage of stress-point values in one horizon once we find the dis-

placement fields. Another case to consider are the boundary par-

ticles because their horizons are defective. We allocate only one

stress point to include all the bonds in the boundary particle to

solve this problem. 

4. Adaptive dynamic relaxation method 

In this paper, we use an explicit dynamic relaxation method

with the quasi-static assumption previously described in our work

in Luo et al. (2017) and not reproduced for brevity. This ex-

plicit method introduces an adaptive artificial damping to obtain

a steady-state solution with a large number of iterations. Its com-

putation efficiency can be strongly enhanced with an optimum

damping coefficient which is determined by Rayleigh’s quotient
 Kilic and Madenci, 2010 ). Here we primarily discuss the change

n time stepping scheme that is needed when using the method

longside the new stress point approach. 

An appropriate time step �t for the 1D peridynamic model is

ased on the wave speed c s using the Courant–Friedrichs–Lewy

CFL) condition ( LeVeque, 2007 ): 

t ≤ 2�x/c s , (13)

here �x is the minimal grid size, or the minimal bond length in

eridynamics. 

In higher-dimensional cases, the CFL condition is more strin-

ent. Assuming that we are dealing with n -dimensional problems

sing a uniform grid and the wave speeds along different direc-

ions are the same, the critical time step size becomes 

t ≤ 2 

n 

�x ·
√ 

ρ/E max , (14)

n which ρ is the density and E max is the maximum component of

he elastic stiffness matrix is used to approximate the maximum

ossible wave speed. 

However, the stability condition of the new stress-point model

s more restricted and changes to a half of (14) : 

t ≤ 1 

n 

�x ·
√ 

ρ/E max . (15)

 detailed derivation of the time step size from a 1D elastic prob-

em is described in Appendix A . Note that the CFL limit condition

n (14) could be quite conservative since the derivation is based on

ust the closest neighbors. 

Two absolute errors ε 1 and ε 2 are calculated during iterations

ith the definitions as 

 1 = 

‖ L (x ) ‖ 2 

N 

and ε 2 = 

‖ δu ‖ 2 

N 

, (16)

here l 2 -norm is employed and N is the total number of parti-

les. The first error ε1 describes the degree to which the residual

pproaches to zero while the second one ε2 denotes the magni-

ude of displacement increments between two adjacent iteration

teps. In order to normalize the error from initial guesses, two cor-

esponding relative errors e 1 and e 2 are then computed and moni-

ored, which are 

 1 = 

ε 1 
ε 0 

1 

and e 2 = 

ε 2 
ε 0 

2 

, (17)

here ε0 is the initial absolute error at the first iteration. Itera-

ions stop only when both criteria, e 1, 2 < e l , are satisfied, where

 l = 10 −6 . 

. Examples and discussions 

We assume materials are elastic under small deformation in

he following numerical examples. Strain tensor is computed as

= 1 / 2(F T + F ) − I , where I is the identity tensor. Cauchy stress

= D : ε, is used in lieu of P (assuming small deformations) in

4) and D is an isotropic elastic modulus tensor. The horizon radius

is kept minimum merely including the nearest neighbor particles

nd the influential function ω is set to be constant 1 for simplicity.

.1. 1D bar test 

In order to compare with the analytical solution and con-

rol methods with adding supplementary particles forces, a sim-

lar 1D elastic bar test in Breitenfeld et al. (2014) ; Yaghoobi and

horzepa (2017) is conducted, as shown in Fig. 6 . The bar with a

otal length L tot is discretized as n peridynamic particles. Dirichlet
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Fig. 6. A 1D elastic bar under tension with a Young’s modulus varied along the x 

axis. 
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oundary conditions, u 1 = 0 and u n = u end , are applied on the two

ides of the truss. A variable Young’s modulus is adopted as 

(x ) = 

{ 

E 0 0 ≤ x ≤ L tot / 2 

E 0 

(
1 + 

β
2 α

1 √ 

x/L tot −1 / 2 

)−1 

L tot / 2 < x ≤ L tot 
, (18) 
ig. 7. Effect of zero-energy modes on displacement and strain fields of 1D bar based o

espectively, while (b) and (d) are corresponding local amplitudes. Local zoomed-in view

articles. 
nd the analytical displacement u ( x ) and strain ε( x ) solutions are

 (x ) = 

{
αx 0 ≤ x ≤ L tot / 2 

αx + βL tot 

√ 

x/L tot − 1 / 2 L tot / 2 < x ≤ L tot 
, (19)

(x ) = 

{ 

α 0 ≤ x ≤ L tot / 2 

α + β
(

2 

√ 

x/L tot − 1 / 2 

)−1 

L tot / 2 < x ≤ L tot 

, (20) 

here parameters are selected as L tot = 1 , E 0 = 1 , u end = 0 . 005 ,

= 0 . 001 , and β = 0 . 004 
√ 

2 . Note that the expression of Young’s

odulus is slightly different from the references ( Breitenfeld et al.,

014; Yaghoobi and Chorzepa, 2017 ). This is because parameters α
nd β adopted in this paper are dimensionless. 

We define two local amplitudes of oscillation, a u, i and a e, i , at

article i to quantitatively measure the effect of zero-energy modes

n displacement and strain fields, respectively: 

 u,i = | u 

num 

i 
− u 

exact 
i 

u 

exact 
i 

| , and a e,i = | ε
num 

i 
− εexact 

i 

εexact 
i 

| (21)

here εnum 

i 
and εexact 

i 
the numerical and analytical strain at parti-

le i , respectively. The L 2 norm and amplitude is set to be zero if

he analytical solution is zero. 

The old peridynamic scheme without any control of zero-

nergy modes (No control), two control methods adding artificial

orce states by linear springs (Springs) and average displacement
x/Ltot

A
m

p
lit

u
d

e 
a e
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A
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n four control methods. (a) and (c) are the displacement and strain distribution, 

s are provided to distinguish symbols. All Results are based on a mesh with 500 
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Fig. 8. A quarter of 2D elastic plate with a squared opening under uniform stretch. 

Symmetric displacement boundary conditions are applied at the border. 

 

 

 

 

 

 

 

 

 

Table 1 

Optimum values of C 1 and C 2 in (7) and (8) for adding artificial springs and average 

displacement states. n is the number of particles. 

n 100 200 500 10 0 0 

C 1 
a 0.8 1.28 2 3 

C 2 
a 60 150 500 1750 

a C 1 and C 2 are not dimensionless. 

 

w  

A  

t  

c  

n  

t  

g  

m  

b  

c

 

t  

i  

a  

s  

s  

u  

i  

c  

m  

m  
force states (ADS), and the new stress-point approach (Stress-

point) are applied to solve the 1D numerical problem, respectively.

Another penalty approach, which is the third control method in

Breitenfeld et al. (2014) ; Yaghoobi and Chorzepa (2017) , is not dis-

cussed, since it is conceptually similar to the method of applying

supplemental forces along each bond. Four different mesh sizes are

employed. Optimum values of C 1 and C 2 are obtained by multi-

ple attempts beforehand, as elaborated in Breitenfeld et al. (2014) ;

Yaghoobi and Chorzepa (2017) . These values change with the mesh

size and are listed in Table 1 . 
Fig. 9. Contours of the u-displacement obtained from the peridynamic model w
Numerical results of the displacement and strain distribution, as

ell as their relative amplitudes of oscillation are plotted in Fig. 7 .

ll results are based on a mesh size with 500 peridynamic par-

icles. Even though all numerical results are close to the analyti-

al results, as shown in Fig. 7 (a) and (c), zero-energy modes are

ot alleviated in any method other than stress-point approach. In

he amplitude plots, only stress-point approach has a smooth sin-

le line. Two or more separate lines are observed in other control

ethods and this is because the numerical solutions are oscillating

etween a range, the oscillations are not shown to improve plot

larity. 

We find that adding force states can indeed suppress oscilla-

ions in the nonlinear region, i.e., L tot /2 < x ≤ L tot , however, it fails

n the linear region, L tot /2 < x ≤ L tot . Another disadvantage of adding

rtificial force states, as we mentioned previously, is that their con-

tants, C 1 and C 2 , are supposed to be carefully selected before

atisfactory results are obtained. Even worse, their optimum val-

es are changing with mesh sizes, as shown in Table 1 . Hence,

n higher-dimensional examples we will be only be focused on

omparisons between the stress-point model and the peridynamic

odel with no control of zero-energy modes. The stress-point

ethod is demonstrated to be effective on suppressing zero-energy
ith no control of zero-energy modes and the new stress-point approach. 
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Fig. 10. Distributions of u-displacement, stress σ xx , and their relative amplitudes along the axis-1 obtained from the peridynamic model with no control of zero-energy 

modes (No control), the new stress-point approach (Stress-point), and finite-element method (FEM). 

Fig. 11. A 3D elastic brick example with dimension d = 40 mm. Displacement boundary conditions are applied on four sides while the top and bottom are left traction-free. 

The small displacement increment is � = 0 . 4 mm. 
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e  
odes in the 1D bar example. Note that higher jumps are observed

n Fig. 7 (b) and (d) compared to analytical solution. This is because

e average the stress based on stress-point values on the two sides

t the point of discontinuity. 

.2. 2D plate test 

An example of 2D elastic plate with a square hole at center un-

er uniform stretch is modelled. We only consider a quarter of the

late due to symmetry with dimensions shown in Fig. 8 . Displace-

ent loading is applied at the four borders. The material is as-

umed to be isotropic elastic with Young’s modulus E = 10 0 0 MPa

nd Poisson’s ratio ν = 0 . 3 . As seen here, compared to the variable

oung’s modulus E ( x ) in the previous 1D example, a constant E can

till bring in zero-energy modes in higher-dimensional problems. 
Fig. 9 is a comparison of u-displacement contours based on

he peridynamic model without any control of zero-energy modes

No control) and the stress-point approach (Stress-point, see

ection 3.2 ). The particle spacing is h = 2 mm. Conspicuous oscil-

ations can be observed around the squared opening in the results

ith no control of zero-energy modes, in contrast with smooth re-

ults using the stress-point method. 

Next, we defined two local amplitudes of oscillation, a u, i and

 σ , i , at particle i to quantitatively measure the effect of zero-

nergy modes in the displacement and stress fields, respectively:

 u,i = | u 

PD 
i 

− u 

FEM 

i 

u 

FEM 

i 

| , and a σ,i = | (σxx ) PD 
i 

− (σxx ) FEM 

i 

(σxx ) FEM 

i 

| (22)

here superscripts PD and FEM denote the peridynamic and finite-

lement analysis results, respectively. We applied a quasi-static



204 J. Luo, V. Sundararaghavan / International Journal of Solids and Structures 150 (2018) 197–207 

Fig. 12. Contours of z-displacement obtained from the peridynamic model with no control of zero-energy modes and the new stress-point approach. (a) and (b) are 3D 

contours while (c) and (d) are 2D contours of the bottom surface. 

Fig. 13. Contours of z-displacement on a selected line located at x = 40 mm and z = 0 mm varied along y-direction. The peridynamic model with no control of zero-energy 

modes, the new stress-point approach, and finite-element method (FEM) are applied, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

i  

r  

t

5

 

l  

4  

s  

f  

1  

l

FEM formulation using four noded quadrilateral elements in the

2D problem and eight noded hexahedral elements in 3D. Finite-

element nodes are assigned right at the place of peridynamic parti-

cles in order to quantitatively compare with peridynamic solutions

with a vanishing horizon. Note that finite-element solutions (which

are of local nature) are utilized as a reference rather than bench-

mark when we compare peridynamic results between the stress-

point and no-control approaches. 

The u-displacement, horizontal stress σ xx , and their amplitudes

of oscillations along the horizontal axis–1 ( y = 0 mm, see Fig. 8 )

are plotted in Fig. 10 . The disagreement between PD and FEM so-

lutions mainly lies near the squared opening on the left. This is

because PD is based on a non-local integral formulation wherein

stress singularity at the sharp corner is avoided ( Bower, 2009 ). If
e pay closer attention to the region away from the left corner,

.e., x > 20 mm, the stress-point approach produces very smooth

esults, in both displacement and stress field, compared to oscilla-

ions in the old PD model without control of zero-energy modes. 

.3. 3D brick test 

A 3D elastic brick example is considered in this section. The

ength-width-height ratio of the brick is 2 d : 2 d : d , where d =
0 mm. Displacement loadings are applied on its four sides, as

hown in Fig. 11 , while the top and bottom faces are left traction-

ree. The material is assumed isotropic with Young’s modulus E =
0 0 0 MPa and Poisson’s ratio ν = 0 . 3 . The particle spacing is se-

ected as h = d/ 16 = 2 . 5 mm. 
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Fig. 14. Performance tests between the peridynamic model with no control of zero-energy modes and the stress-point approach. The computation time is normalized by 

the stress-point case with least particle numbers in each test. 
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A comparison of z-displacement contours, computed by the old

eridynamic model without any control of zero-energy modes (No

ontrol) and the stress-point approach (Stress-point), are plotted in

ig. 12 . The overall contours are similar while disagreements ex-

st. Serrated contours are observed if no control method is applied.

oreover, zero-energy modes are eliminated not only on the sur-

ace but also inside the brick, as shown in Fig. 12 (b). 

Next, we recomputed the 3D brick problem with the finite-

lement method and assigned element nodes right at the lo-

ation of the peridynamic particles. The z-displacement and its

elative amplitudes a w 

, defined similar to (22) but based on z-

isplacement, on a selected line located at x = 40 mm and z =
 mm varied along y-direction are shown in Fig. 13 . The overall

ontours of the three methods are similar. Disagreements between

eridynamics and finite-element method solutions come up near

he boundaries due to the non-local integral formulation. As we

ove away from the boundary, zero-energy modes are more evi-

ent if no control method is applied. By contrast, the stress-point

pproach has a strong suppression effect on the oscillations. 

.4. Numerical efficiency test 

Finally, a computation efficiency test on the new stress-point

eridynamic model is conducted. We performed computational

peed tests on three numerical examples including the 1D bar

n Section 5.1 , the 2D plate in Section 5.2 , and the 3D brick in

ection 5.3 . Parallel computation was disabled and examples are

un in serial on a single processor. Three different number of par-

icles are employed in each example and the convergence criteria

re the same with (17) as e l = 10 −6 . Results are shown in Fig. 14 .

heoretically, the stress-point approach will take double the time

ompared to the old scheme because a smaller (halved) time step

eeded to strictly satisfy the stability condition (see Section 3.1 ).

urthermore, the stress-point peridynamic model has to compute

ore stress terms in one horizon based on the number of stress
oints. However, this higher computation cost is balanced by the

bility to fully control zero-energy modes. 

. Conclusions and future work 

A stress-point approach is proposed for the non-ordinary state-

ased peridynamic correspondence model to fully control zero-

nergy modes in a nearest neightbor model. We show that by com-

uting two deformation gradients for each particle via splitting its

eighborhood, zero-energy-mode oscillations in solutions can be

ompletely damped. The method is first demonstrated in a sim-

le 1D problem and then applied to 2D and 3D examples. In the

D example, the stress-point approach is compared with analytical

olutions and with finite element approach in higher dimensions.

he method is demonstrated to be superior to other control meth-

ds with introduced supplementary force states. Future work will

nclude extension of this approach to larger horizon sizes and non-

inear problems involving plasticity. 
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ppendix A. Stability analysis on 1D elastic problems with 

earest-particle discretizations 

Typically, wave motions in solid mechanics are modeled by

yperbolic partial differential equations ( Bower, 2009; LeVeque,

007 ). Assume a 1D bar is elastic under small deformation, and

https://doi.org/10.13039/100000015
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ignore the body force and damping ratio, the equation of motion

can be expressed by displacement u as 

∂ 2 u 

∂t 2 
= 

1 

ρ

∂σ

∂x 
= c 2 s 

∂ 2 u 

∂x 2 
, (A.1)

where c s = 

√ 

E/ρ is the speed of sound, E and ρ are the Young’s

modulus and density, respectively. 

In a discrete system with totally N particles, let u n 
j 

indicate

the displacement component of particle j at time t = n �t, where

�t is the time step assumed constant, and u 

n = [ u n 
1 
, u n 

2 
, . . . , u n 

N 
] be

the displacement vector at t = n �t . With a central difference dis-

cretization at time and a peridynamic discrete operator A at space,

(A.1) turns into 

u 

n +1 − 2 u 

n + u 

n −1 

(�t) 2 
= A (u 

n ) . (A.2)

A1. The peridynamic scheme with no control of zero-energy modes 

Based on a discretization scheme in Luo et al. (2017) , without

any treatment of zero-energy modes, the peridynamic operator can

be rewritten as an explicit matrix form, i.e., A (u 

n ) = A 1 u 

n , with 

A 1 = 

c 2 s 

4(�x ) 2 

⎡ 

⎢ ⎢ ⎣ 

. . . . . . . . . 

. . . 1 0 −2 0 1 . . . 

. . . 1 0 −2 0 1 . . . 

. . . 1 0 −2 0 1 . . . 

. . . . . . . . . 

⎤ 

⎥ ⎥ ⎦ 

. 

(A.3)

It becomes a standard initial value problem for hyperbolic sys-

tems. Modified equations analysis is an approach to reveal stability

behavior of the numerical solution ( LeVeque, 2007 ). The main idea

of modified equations analysis is to find another partial differen-

tial equation which is approximated by the current discretization

scheme. By doing Taylor series expansions, the modified equation

of (A.2) is calculated as 

∂ 2 u 

∂t 2 
− c 2 s 

∂ 2 u 

∂x 2 
= − 1 

12 

c 2 s (�x ) 2 
[ 
μ2 

c − 4 

] 
∂ 4 u 

∂x 4 
+ · · · (A.4)

where μc = c s 
�t 
�x 

is the CFL number. (A.4) is the partial differ-

ential equation better approximated by the peridynamic scheme

(A.3) . The derivative terms on the right hand side are not in the

original partial differential equation and constitute truncation er-

ror introduced by finite-differencing. As the mesh is refined, these

terms will become smaller and smaller and we end up solving

the original differential equation. The order of accuracy of a finite-

difference scheme is defined by the lowest-order powers of the in-

crements �t and �x appearing in the fourth order terms of the

modified equation. Based on the right side of (A.4) , we have a sec-

ond order accurate scheme for (A.1) . 

The necessary condition for stability is obtained from Von Neu-

mann analysis ( Warming and Hyett, 1974 ). The important result

is that the necessary condition for stability depends on the sign

of the coefficient of the lowest even-order derivative on the right

hand side. The stability condition is thus, 

μ2 
c − 4 ≤ 0 �⇒ �t ≤ 2�x/c s . (A.5)

Therefore, the critical time step for 1D elastic problems is �t c =
2�x/c s . 

The structure of matrix A 1 in (A.3) shows a weak coupling

between neighbor particles, as five particles are involved in one

equation while roles of the second and fourth particles are miss-

ing. 
2. The new peridynamic scheme with stress-point approach 

Assume the material is elastic and under small deformation,

tresses in (11) are calculated as 

1 , r = E 1 ε1 , r = E 1 
u 2 − u 1 

L 
, σ2 , l = E 2 ε2 , l = E 2 

u 2 − u 1 

L 
, 

σ2 , r = E 2 ε2 , r = E 2 
u 3 − u 2 

L 
, σ3 , l = E 3 ε3 , l = E 3 

u 3 − u 2 

L 
. (A.6)

ased on (11) and (A.6) , the peridynamic space operator in

A.2) can be expressed as a new explicit matrix production, i.e.,

 (u 

n ) = A 2 u 

n , with 

 2 = 

c 2 s 

(�x ) 2 

⎡ 

⎢ ⎢ ⎣ 

. . . . . . . . . 

. . . 1 −2 1 . . . 

. . . 1 −2 1 . . . 

. . . 1 −2 1 . . . 

. . . . . . . . . 

⎤ 

⎥ ⎥ ⎦ 

, (A.7)

hich is more compact than A 1 in (A.3) . The modified equation for

he new scheme becomes 

∂ 2 u 

∂t 2 
− c 2 s 

∂ 2 u 

∂x 2 
= − 1 

12 

c 2 s (�x ) 2 
[ 
μ2 

c − 1 

] 
∂ 4 u 

∂x 4 
+ · · · (A.8)

lthough the equation above is structurally similar to (A.4) , the

ecessary stability condition is different due to the differences in

he leading coefficients in the fourth order term. The stress point

ethod has the stability condition: 

2 
c − 1 ≤ 0 �⇒ �t ≤ �x/c s . (A.9)

ence, the critical time step is reduced to a half of the old

cheme. Note that this analysis is restricted to the nearest neigh-

or discretization used in this work. As shown in Silling and

skari (2005) , the maximum stable time step for peridynamics is,

n general, also a function of the peridynamic horizon for higher

rder interactions. 
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