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a b s t r a c t 

A peridynamic (PD) implementation of crystal plasticity with an adaptive dynamic relaxation method is 

presented. Non-ordinary state-based peridynamics and the Newmark’s dynamic method with artificial 

damping are employed to capture strain localizations in polycrystalline microstructures based on a rate- 

independent crystal plasticity model. Numerical simulations for planar polycrystals are conducted under 

plane strain pure shear and compression, respectively. The computational efficiency of the explicit PD 

model is demonstrated to be superior to an implicit PD model for modeling crystal plasticity. The stress 

field distribution, texture formation, and homogenized stress-strain response predicted by the finite ele- 

ment method and the new dynamic PD model are compared. Finer localization bands are observed in the 

latter model. The origin and evolution of these shear bands are studied by PD simulations during defor- 

mation of three polycrystals with different orientation distributions. Emphasis is placed on the accuracy 

and efficiency of the adaptive dynamic relaxation method working with crystal plasticity PD models. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Modeling mechanical behaviors of advanced alloys applied

in industrial applications is a persistent and active challenge

( Ramazani et al., 2016; Abuzaid et al., 2013; Sun and Sundararagha-

van, 2014 ). One popular numerical model for polycrystalline ma-

terials is the crystal plasticity finite element (CPFE) model ( Sun

and Sundararaghavan, 2014; Roters et al., 2010; Anand and Kothari,

1996 ) which provides a link between the dislocation-level physics

and macro-scale continuum response ( Lim et al., 2015 ). In CPFE

models, grains are discretized into finite elements where the crys-

tal plasticity formulations are applied to compute mechanical re-

sponses (e.g., stress and strain), crystallographic slip, and reorien-

tation of grains (texturing) at the grain scale ( Lim et al., 2015; Rot-

ers et al., 2011 ). However, it is difficult for CPFE models to properly

predict strain localizations, in the form of fine shear bands, which

have been observed by number of recent experiments ( Chen et al.,

2017; Khadyko et al., 2016; Pokharel et al., 2014; Kammers and

Daly, 2013; Guery et al., 2016 ). An example of shear band forma-

tion in a polycrystal is shown in Fig. 1 . The size of shear bands and

magnitude of shear computed by standard finite element methods
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re highly determined by the element size used in the discretiza-

ion ( Pokharel et al., 2014; Kuroda, 2011; Borst et al., 1993 ). 

Considering this disadvantage of CPFE models, different ap-

roaches such as non-local constitutive models Evers et al. (2004) ,

igher-gradient models ( Menzel and Steinmann, 20 0 0 ), meshfree

ethods ( Li et al., 20 0 0 ) have been proposed. Peridynamics, in-

roduced as an alternative integral formulation for continuum me-

hanics ( Silling, 20 0 0 ), is a particle-based approach capable of han-

ling the formation and propagation of discontinuities. This non-

ocal method, represented by a set of interacting particles, cal-

ulates strain at a particle by tracking the motion of surround-

ng particles. A generalized state-based PD model was later pro-

osed by Silling et al. (2007) , in which forces between particles

re found using stress tensors obtained from classical constitutive

ormulations, such as crystal plasticity theory. Recent results based

n a crystal plasticity peridynamic (CPPD) model with an im-

licit Newton–Raphson solver have shown advantages of capturing

ner shear bands in planar polycrystals ( Sun and Sundararagha-

an, 2014 ). 

Implicit methods are traditionally favored compared to ex-

licit dynamic methods for their accuracy at larger time steps

 Harewood and McHugh, 2007 ). However, for crystal plasticity, the

omputation cost of calculating the tangent modulus matrix is high

 Roters et al., 2010 ). Hence, the new contribution of this paper is a

ully explicit implementation of state-based peridynamics for mod-

ling quasi-static deformation of polycrystals. An adaptive dynamic

https://doi.org/10.1016/j.ijsolstr.2017.10.019
http://www.ScienceDirect.com
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Fig. 1. Tensile strain maps of a magnesium alloy microstructure for two different heat treatments. Experiment data is obtained using the micro-scale digital image correlation 

technique ( Kammers and Daly, 2013 ). Fine shear bands due to strain localizations are observed in (a). 
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Fig. 2. Kinematics of peridynamics: Particle x is bonded to all particles ( x ′ , x ′ ′ , and 

x ′ ′ ′ ) within a region H x . After deformation, particle x maps to particle y and the 

process can be described by an averaged deformation gradient F . T [ x ] = T [ x , t] 〈 x ′ −
x 〉 and T [ x ′ ] = T [ x ′ , t] 〈 x − x ′ 〉 are force vector states in the reference configuration 

at particle x and x ′ , respectively. In the non-ordinary state-based PD theory, these 

two force vector states are not necessarily parallel and can be obtained from the 

classical stress tensor. 

l  

e

2

2

 

2  

c  

c  

x  

p  

y  

B
 

Y  

b  

m

F

w  

w  

c  

l  

x

elaxation method for quasi-static PD simulations as proposed by

ilic and Madenci (2010) is introduced, where an artificial damping

atio estimated from Rayleigh’s quotient is selected to dampen the

ystem leading to a steady-state solution. The critical time step is

pproximated by a numerical analysis of hyperbolic partial differ-

ntial equations. Accuracy and effectiveness of this new dynamic

PPD model will be demonstrated with numerical examples. 

Although peridynamics has been proven powerful in predict-

ng discontinuities and damages ( Madenci and Oterkus, 2014; Ger-

tle, 2015 ), it still has some intrinsic numerical issues, among

hich are zero-energy modes and non-trivial treatment of bound-

ry conditions ( Breitenfeld et al., 2014; Tupek and Radovitzky,

014; Wu and Ben, 2015 ). Recently, different techniques have

een applied. For instance, artificial forces are introduced to re-

uce spurious modes ( Breitenfeld et al., 2014 ); a stabilized PD

ormulation with mixed local and nonlocal gradient approxima-

ions by Wu and Ben (2015) to enhance essential boundary con-

itions. Moreover, a peridynamic differential operator extending

igh-order derivatives to their nonlocal forms has been lately pro-

osed by Madenci et al. (2016) . Nevertheless, no uniform and stan-

ard scheme is employed coefficients or formulations are chosen

n a case-by-case basis. With respect to the PD stability issues,

imulations in this paper will mostly adopt the smallest horizon

adius to better compare with a continuum local CPFE formulation.

ne special case with an increased horizon length is conducted

n a compression test to better analyze the effect of horizon size

n characteristic microstructural length scales. Besides, quantities

uch as deformation gradients are adjusted for smaller horizons at

oundary particles in our model. 

In the current work, we conduct simulations for planar poly-

rystalline microstructures under plane strain pure shear and com-

ression, respectively. The numerical efficiency of the explicit

ethod is compared against the previously proposed implicit CPPD

ethod ( Sun and Sundararaghavan, 2014 ) in the case of pure

hear. The stress field distribution, texture formation, and ho-

ogenized stress-strain response predicted by the classical CPFE

odel and the new dynamic CPPD model are compared after-

ards. In addition, we perform compression tests of three poly-

rystals with different orientation distributions to study the nature

f localization bands identified from the dynamic CPPD method.

ection 2 of this paper provides formulations of state-based peri-

ynamics, the adaptive dynamic relaxation method, and their nu-

erical discretization schemes. The crystal plasticity constitutive

odel and its numerical implementations are given in Section 3 .

ection 4 compares planar simulations obtained by the explicit dy-

amic CPPD model with CPFE results, to demonstrate the capability

f the new model for capturing finer shear bands in grains. In the
K

ast section, a brief summary and some expectations for the future

xplicit dynamic CPPD model are discussed. 

. Peridynamics with an explicit dynamic solver 

.1. State-based peridynamics 

The state-based PD model is first presented by ( Silling et al.,

007 ) in 2007, which is a nonlocal integral reformulation of the

ontinuum theory. Consider a material point x in the reference

onfiguration which can only interact with its neighboring points

 

′ in a self-center horizon H x with a finite radius δ. Given a dis-

lacement field u , the current configuration is then represented by

 = x + u . Let the initial physical domain be B 0 at time t = 0 while

 1 is the deformed domain (shown in Fig. 2 ). 

With the introduction of the deformation vector state Y =
 [ x , t] 〈 x ′ − x 〉 = y ′ − y , which denotes the deformed state of the

ond ξ = x ′ − x , the deformation gradient F at particle x is refor-

ulated as a nonlocal integration over the horizon: 

 = 

(∫ 
H x 

ω( Y � ξ ) dV x ′ 
)

K 

−1 , (1) 

here ω is an influence function defined at particle x in H x . It

eights the influence of each neighbor x ′ on the particle x and

an be selected as a spherical function based on the initial bond

ength, i.e., ω = ω(| ξ | ) . K is a symmetric shape tensor at particle

 , defined as 

 = 

∫ 
H 

ω(ξ � ξ ) dV x ′ . (2) 

x 
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Finally, the equation of motion of state-based peridynamics at

time t is 

ρü (x , t) = L (x , t) + b (x , t) , 

L (x , t) = 

∫ 
H 

{ T [ x , t] 〈 x 

′ − x 〉 − T [ x 

′ , t] 〈 x − x 

′ 〉} dV x ′ , (3)

where T [ x , t] 〈 x ′ − x 〉 is the force vector state operating on the bond

ξ = x ′ − x at particle x at time t and b ( x , t ) is the body force. In

connection to the classical continuum theory, the force state T can

be obtained from the first Piola–Kirchhoff stress, P , at particle x as

follows ( Silling et al., 2007 ): 

T [ x , t] 〈 x 

′ − x 〉 = ωPK 

−1 ξ . (4)

The constitutive model, P = F(F ) , applied in this paper

is a rate-independent crystal plasticity model ( Anand and

Kothari, 1996 ), which will be elaborated in Section 3 . It is worth

noting that the balance of angular momentum is ensured with

(4) and derivation details can be seen in Silling et al. (2007) . 

2.2. The adaptive dynamic relaxation method 

Since there are no large-matrix operations in the explicit

method (e.g., computing the tangent modulus ∂ P / ∂ F ), less com-

putation cost compared to implicit solvers is foreseeable. In this

paper, an explicit dynamic relaxation method with the quasi-static

assumption is adopted, in which every time step is selected care-

fully. 

In dynamic methods, a nonlinear problem can be solved

through artificial damping leading to a stable solution after a large

number of iterations. With the body force ignored, the equation of

motion (3) can be rewritten in a vector form as 

ü (x , t) + c ̇ u (x , t) = f (u , x , t) , (5)

where c is the damping ratio coefficient and the force vector f

on the right side is defined as f (u , x , t) = �−1 L (x , t) , in which �
is the fictitious diagonal density matrix . Based on the adaptive dy-

namic relaxation method, the most desired diagonal density matrix

and damping coefficient can be determined by Greschgorin’s theo-

rem and Rayleigh’s quotient, respectively ( Kilic and Madenci, 2010 ).

Let u 

n , ˙ u 

n , ü 

n , and f n denote the displacement, velocity, accel-

eration, and force vector field at t = n, respectively, and �t be the

time step size assumed constant. In the central difference scheme,

the velocity and acceleration vectors are approximated as 

˙ u 

n ≈ 1 

2�t 
(u 

n +1 − u 

n −1 ) , (6)

ü 

n ≈ 1 

�t 2 
(u 

n +1 − 2 u 

n + u 

n −1 ) . (7)

Then, substitute (6) and (7) into (5) , and rearrange terms for u 

n +1 :

u 

n +1 = 

[
2 �t 2 f n + 4 u 

n + (c�t − 2) u 

n −1 
]/

(2 + c�t) (8)

which is the update scheme for the displacement field. Equation

(9) is employed to approximate u 

−1 to initialize the displacement

iteration: 

u 

−1 = u 

0 − �t ̇ u 

0 + 

�t 2 

2 

ü 

0 , (9)

where u 

0 , ˙ u 

0 , and ü 

0 are the initial displacement, velocity, and ac-

celeration vector, respectively. The velocity and acceleration vectors

can be updated afterwards by (6) and (7) , though not necessary. 

With the assumption of a unit diagonal matrix �, the time

step size needs to be selected based on Greschgorin’s theorem

( Kilic and Madenci, 2010 ), which can be written as 

�t ≤
√ 

4�ii 

/∑ 

j 
| K i j | , (10)
here �ii is the diagonal coefficients of the density matrix and K ij 

s the stiffness matrix of the equation system. Since this stiffness

atrix K ij is not explicitly obtained in computing the force vector f

see (3) and (5) ), another approximation scheme is applied for the

ime step size. 

An appropriate time step for the one-dimensional explicit

eridynamic problem is based on the wave speed c s using the

ourant–Friedrichs–Lewy (CFL) condition ( LeVeque, 2007 ): 

t ≤ 2�x/c s , (11)

n two-dimensional cases, the CFL condition is more stringent. As-

uming that the wave speeds along x and y directions are the same

nd the use of a uniform grid where �x = �y, the critical time

tep size becomes 

t ≤ �x ·
√ 

�ii /E max , (12)

n which E max is the maximum component of the elastic stiffness

atrix is used to approximate the maximum possible wave speed.

q. (12) is the time step size employed in this paper. 

The damping ratio c is then selected carefully by the low-

st frequency of the system using Rayleigh’s quotient ( Kilic and

adenci, 2010 ): 

 

n = 2 

√ 

(u 

n ) 
T 
k 

n u 

n 

(u 

n ) 
T 
u 

n 
, (13)

here k 

n is the diagonal local stiffness matrix , which is given as 

 

n 
ii = −( f n i / �ii − f n −1 

i 
/ �ii ) / (u 

n 
i − u 

n −1 
i 

) , (14)

here f n 
i 

is the i th component of the force vector f at time

 = n and �ii is set to be 1. Since the local stiffness matrix cal-

ulation involves division by the difference between current and

ld displacement components, it is highly possible to encounter a

ero-component in the displacement field where the criteria fails

 Kilic and Madenci, 2010 ). Therefore, the local stiffness k n 
ii 

is set to

e zero when the difference between displacement fields vanishes.

inally, an initial guess of damping ratio c 0 is given to start com-

utation. 

.3. Numerical discretization scheme and algorithm 

Assume there are N neighbor particles of the material point x ,

hen (3) can be discretized as (neglecting the body force b and

nly considering properties at current time t): 

 (x ) = 

N ∑ 

i =1 

{ T [ x ] 〈 x 

′ 
i − x 〉 − T [ x 

′ 
i ] 〈 x − x 

′ 
i 〉} V x ′ 

i 
= 0 , (15)

here x ′ 
i 

is the i th particle in x ’s horizon and its corresponding

olume is V x ′ 
i 
. Next, the deformation gradient F ( x ) and shape tensor

 ( x ) at particle x are discretized as the following: 

 (x ) = 

[ N ∑ 

i =1 

ω(y ′ i − y ) � (x 

′ 
i − x ) V x ′ 

i 

] 
K (x ) 

−1 
, 

 (x ) = 

N ∑ 

i =1 

ω(x 

′ 
i − x ) � (x 

′ 
i − x ) V x ′ 

i 
, (16)

here y ′ and y are the images of x ′ and x , respectively. Given the

onstitutive model, represented by an operator F , the force state

 [ x ] 〈 x ′ 
i 
− x 〉 at particle x can be obtained from 

 [ x ] 〈 x 

′ 
i − x 〉 = ωF 

(
F (x ) 

)
K (x ) 

−1 
(x 

′ 
i − x ) . (17)

s for the rest half terms in (15) , T [ x ′ 
i 
] 〈 x − x ′ 

i 
〉 can be obtained in

 similar way, which is 

 [ x 

′ 
i ] 〈 x − x 

′ 
i 〉 = ωF 

(
F (x 

′ 
i ) 
)
K (x 

′ 
i ) 

−1 
(x − x 

′ 
i ) . (18)
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Fig. 3. Particle interactions with closest neighbors in the PD model. Particles i = 

2, 3, 4, 5 are nearest neighbors of particle 1 (denoted as x ); particles i = 1, 9, 10, 

11 are nearest neighbors of particle 4 (denoted as x ′ 
i 
). In this case, all 13 particles 

shown above should be included in order to obtain L ( x ) at particle x in (15) . 
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p  
owever, in order to acquire F (x ′ 
i 
) and K (x ′ 

i 
) at particle x ′ 

i 
, infor-

ation about the i th particle’s horizon needs to be known. Fig. 3 is

n illustration of interactions of one particle with its nearest neigh-

ors. 

With all force vector states obtained, the adaptive relaxation

ynamic method, elaborated in Section 2.2 , is applied to solve

he equation L (x ) = 0 . For a two-dimensional problem, the global

quation of motion can be organized as a vector system with a

ize of 2 × N total , where N total is the total number of particles in

he simulation. Since L ( x ) is completely dependent on the current

eld, the system can be explicitly started with initial guesses of

isplacement, velocity, and acceleration fields. 

During dynamic iterations in one loading step, two absolute er-

ors ε1 and ε2 are calculated at each iteration step with the defi-

itions as 

 1 = 

‖ L (x ) ‖ 2 

N 

and ε 2 = 

‖ δu ‖ 2 

N 

, (19)

here l 2 -norm is employed and N is the total number of parti-

les. The first error ε1 describes the degree to which the vector

ystem approaches to zero while the second one ε2 denotes the

agnitude of displacement increments between two adjacent it-

ration steps. In order to normalize the error from initial guesses,

wo corresponding relative errors e 1 and e 2 are then computed and

onitored, which are 

 1 = 

ε 1 
ε 0 

1 

and e 2 = 

ε 2 
ε 0 

2 

, (20)

here ε0 is the initial absolute error in each loading step. Itera-

ions stop only when both criteria, e 1, 2 < e l , are satisfied, where

 l = 10 −6 . All quantities are then updated into the next loading

tep. 

To improve the computation performance, a parallel library,

penMP, is adopted in the codes. Given that kinematic proper-

ies, such as the displacement u and deformation gradient F , are

nown before hand due to the explicit method, the constitutive

odel can be applied on different particles in parallel. In other

ords, the computation involved in acquiring P (x ) = F 

(
P (x ) 

)
at

article x and P (x ′ ) = F 

(
P (x ′ ) 

)
at particle x ′ are completely in-

ependent. The computation domain is therefore partitioned into

everal groups with each group calculating its own stress tensor.

inally, all information is gathered in the assembly of the vec-

or system L ( x ). Compared to implicit solvers, there is no matrix-

nversion operation in explicit methods. Besides, this new adaptive

ynamic method allows flexibility in applying different constitutive

odels and extending to three-dimensional cases. 
. Crystal plasticity constitutive model 

The rate-independent crystal plasticity theory in Anand and

othari (1996) is applied to model the deformation response of

articles within each crystal. In the crystal lattice coordinate frame,

he deformation gradient F can be expressed into a multiplication

f the elastic F e part and plastic F p part, written as F = F e F p with

et (F p ) = 1 . 

In the crystal plasticity theory, the plastic flow is attributed to

islocation gliding on prescribed slip systems. Assume there are

 slip systems and the Schmid tensor of the αth slip system is

 

α
0 

= m 

α
0 

� n 

α
0 
, where m 

α
0 

and n 

α
0 

are the slip direction and nor-

al vector at time t = 0 , respectively. Then the plastic flow can

e expressed as a summation of shearing rates on all slip systems,

hich is 

˙ 
 

p (F p ) −1 = 

∑ 

α

˙ γ αS α0 sign (τ α) , (21)

here ˙ γ α and τα are the plastic shearing rate and resolved stress

n the αth slip system, respectively. 

The conjugate stress defined as T̄ = det F e (F e ) −1 σ(F e ) −T , in

erms of the Cauchy stress σ , is used to compute the resolved

tress τα = T̄ · S α
0 

on the αth slip plane. Based on the constitu-

ive relation, this conjugate stress can be obtained by T̄ = L 

e [ ̄E 

e ] ,

n which L 

e is the fourth-order anisotropic elasticity tensor and Ē 

e 

s the Green elastic strain, defined as Ē 

e = 

1 
2 ( F 

e T F e − I ) . 

To solve this elasto-plasticity crystal model, firstly, assume the

lip system resistance on the αth slip system is s α which works as

 threshold of the resolved shear stress on the system. Only active

lip systems, or those slip systems whose resolved shear stress ex-

eed the resistance ( τα > s α), have positive shearing rate ( ̇ γ β (t) >

 ); otherwise, there is no plastic shearing rate ( ̇ γ β (t) = 0 ). Sec-

ndly, the slip system resistance evolves as: 

˙ 
 

α(t) = 

∑ 

β

h 

αβ ˙ γ β(t) , with s α(0) = τα
0 , (22)

here h αβ is the hardening-coefficient matrix, ˙ γ β (t) > 0 is the

lastic shearing rate on the βth slip system, and τα
0 

is the initial

lip system resistance on the αth slip system. 

Consequently, the plastic shear increment �γ β can be solved

rom a matrix form (See Appendix). The plastic part of deforma-

ion gradient F p is afterwards updated using (21) while the elas-

ic part computed from F e = F (F p ) −1 
. In order to convert the con-

ugate stress T̄ into the first Piola–Kirchhoff stress P , the relation

 = ( det F ) σF −T , or P = F e T̄ (F p ) −T 
, should be employed with the

onjugate stress computed from T̄ = L 

e [ ̄E 

e ] . Finally, the slip resis-

ance are updated at the end of each loading step using (22) . 

Since the equation of motion is solved by an explicit dynamic

lgorithm, the tangent modulus ∂ P / ∂ F is not needed, which is,

owever, a necessary process in implicit methods, such as the

ewton–Raphson’s method ( Sun and Sundararaghavan, 2014 ). 

. Numerical examples 

In planar polycrystals, each grain can be characterized by a two-

imensional rotation tensor R which relates the local crystal lattice

rame to the reference sample frame. Given an orientation θ , or the

ngle between crystal and sample axes, the associated rotation ma-

rix supports parametrization as R = cos (θ ) I − sin (θ ) E , where E is

he two-dimensional alternator ( E 11 = E 22 = 0 , E 12 = −E 21 = 1 ) and

 is the two-dimensional identity tensor. Due to planar symmetry,

rystal orientations can be identified by parameters from a fun-

amental region [ −π/ 2 , π/ 2) , in which crystals with orientation

= π/ 2 are identical to those with θ = −π/ 2 . 

The rotation tensor R = R 

e is evaluated through a polar decom-

osition of the elastic deformation gradient as F e = R 

e U 

e , the spin
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Fig. 4. Particle grids with three different mesh sizes. Orientation θ is the angle between the crystal and x axis. Particles are located at the center of elements in pixel-based 

grids (a) 225 particles (b) 625 particles (c) 2500 particles. 
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tensor � is then defined as � = 

˙ R 

e R 

e T = − ˙ θE , where ˙ θ = 

∂θ
∂t 

is the

crystal reorientation velocity. In the component form, the crystal

reorientation velocity can be expressed as ˙ θ = (�21 − �12 ) / 2 . Us-

ing the reorientation velocity, the crystal texturing is tracked by

�θ = 

˙ θ�t at each time step. 

A 1 × 1 mm 

2 polycrystalline microstructure with 21 grains,

computationally generated by Voronoi construction, is considered

here. The discretized computational domain is based on a pixel

mesh (four-node square elements) and PD particles are located at

the center of these elements. Each particle occupies a constant vol-

ume in the reference configuration equal to the area of the cor-

responding enclosed finite element. Twelve different orientations

within the interval [ −π/ 2 , π/ 2) are distributed with a constant

step size π /12 among grains. Three particle grids based on differ-

ent mesh sizes are generated and shown in Fig. 4 . Two slip systems

at orientations −π/ 6 and + π/ 6 are considered. 

The particular hardening law in (22) is chosen as follows

( Anand and Kothari, 1996 ): 

h 

αβ = h 

β
0 
(q + (1 − q ) δαβ ) 

(
1 − s β (t) 

s 
β
s 

)a 

(no sum on β) , (23)

where h 
β
0 
, s β ( t ), and s 

β
s are the hardening coefficient, the current

resistance, and the saturation resistance of slip system β , respec-
ively; δαβ is the Kronecker delta function; a and q are constant

erms. These hardening parameters are taken to be identical for

oth slip systems and are listed below: 

 0 = 10 MPa , s (0) = 10 MPa , s s = 200 MPa , a = 2 , q = 1 . 4 , (24)

here s (0) is the initial slip resistance. 

A displacement boundary condition is enforced on bound-

ry particles, which is u = 

(
exp (L vg t ) − I 

)
x , where L vg = 

˙ F F −1 is

 macroscopic velocity gradient, t is time, and I is the two-

imensional identity tensor. In the following examples, two dif-

erent velocity gradients with the plane strain assumption are ap-

lied on microstructure boundaries to simulate the process of X-

xis shear and Y-axis compression, respectively. They are 

 = η

[
0 1 

1 0 

]
(shear) and L = η

[
1 0 

0 −1 

]
(compression), 

(25)

here η = 0 . 0020 is a constant strain rate. Each simulation are

erformed over 30 steps with the corresponding velocity gradi-

nt leading to a final strain around 0.06. The two-dimensional

lastic stiffness matrix is taken as D 11 = 2 GPa, D 12 = 1 GPa, and

 = 2 GPa. 
33 
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Fig. 5. Comparison of σ xy from CPPD and CPFE models in the pure shear test with a 225 particles/elements mesh in (a,b), a 625 particles/elements mesh in (c,d), and a 

2500 particles/elements mesh in (e,f) at total strain of 0.06. 
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Fig. 6. The convergence plot of the dynamic CPPD model in the pure shear test with 2500 elements. Two relative errors, e 1, 2 , and artificial damping ratios are monitored 

during iterations in (a), (b), and (c), respectively, during iterations at t = 10 , t = 20 , and t = 30 (or at strain of 0.02, 0.04, and 0.06). A comparative test with a constant 

damping rate c = 500 is plotted in dashed lines. 
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4.1. Convergence and numerical efficiency tests in pure shear 

The first test is to demonstrate the accuracy and mesh conver-

gence of the new dynamic CPPD model. In order to compare with

the CPFE model, the horizon radius in the PD model is kept min-

imum merely including the nearest neighbor particles and the in-

fluential function ω is set to be constant 1. With a constant influ-

ence function, the deformation gradient definition is identical to

that proposed by Zimmerman et al. (2009) for modeling atomistic

deformation. Although not considered in this work, one may note

that the influence function can be used to play much the same role

as the non-local kernel in Eringen–type ( Eringen, 1983 ) theories.

For example, the dispersion curves of the material can be modu-

lated using different forms of ω, going from a linear dispersion in

continuum limit to non–linear dispersion curves when using dif-

ferent influence parameters as shown in Seleson and Parks (2011) .

Secondly, by limiting to the nearest neighbor interactions, our for-

mulation ensures both compatibility and traction continuity similar

to the finite element problem. 

Particles in the PD model are located at the center of elements

in CPFE with the number of particles same as the number of el-

ements. Linear basis functions and traditional implicit solver are

employed in the CPFE model. Though different solvers are applied
n CPPD and CPFE models, the same constraint on errors is set to

e e l = 10 −6 . Particles in the PD simulation are colored with field

alues to compare with finite element contours obtained from the

PFE model. In Fig. 5 , the shear stress σ xy obtained from CPPD and

PFE models are compared at the final strain of 0.06 in 225, 625,

nd 2500 elements, respectively. The overall stress distribution and

ocations of maximum and minimum stresses are similar between

hese two models at the same degree of mesh refinement. Features

f the stress response, such as the regions of stress concentration,

re improved in the CPPD method as the mesh is refined. 

In the case of CPPD with 2500 elements, two relative errors,

 1, 2 , and artificial damping ratios are monitored. Fig. 6 is the

onvergence plot of the dynamic CPPD model at different load-

ng steps. Both criteria e 1 < 10 −6 and e 2 < 10 −6 are satisfied. The

amping ratio oscillates dramatically in a range from 10 0 to 10 4 

t the start and becomes stable towards the end. A comparative

est with a constant damping ratio c = 500 is carried out and the

daptive dynamic relaxation method is demonstrated as converg-

ng faster and stably with the CPPD model during different loading

teps in both elastic and plastic regions. 

Finally, a comparison is conducted between the explicit CPPD

odel and implicit CPPD model from Sun and Sundararagha-

an (2014) . Three different mesh sizes are tested and both explicit
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Fig. 7. Comparison of numerical efficiency between explicit and implicit CPPD mod- 

els. The computation time is plotted in a log scale and normalized with the case of 

implicit model with 225 particles. 
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δ  

F

o

l

nd implicit simulations were run in the same single-core work-

tation without parallelization. The absolute error ε1 in (19) and

elative error e 1 in (20) are monitored in both models consider-

ng that these two errors indicate the extent to which convergence

s achieved. ε 1 < 10 −6 and e 1 < 10 −6 are employed to be the con-

ergence criteria. The computation time is divided into two parts,

here the first includes the first 7 loading steps when material is

ainly in the elastic region and the second one contains the last

3 loading steps in the plastic region. The computational time for

oth models are illustrated in Fig. 7 in log-scale. 
ig. 8. Orientation changes for 2500 particles under a y-axis compression test from (a) CP

f arrows, sharper and more number of shear bands can be seen in CPPD results with th

ower reorientation intensity. 
For implicit methods, computation cost is mainly spent in com-

uting the tangent modulus and inverting the global stiffness ma-

rix ( Sun and Sundararaghavan, 2014 ). In contrast, the explicit

ethod is matrix free and the speed primarily depends on the

umber of constitutive function calls. This explains why the im-

licit model is faster in the elastic region where tangent computa-

ion is avoided and it can converge in one iteration. Explicit meth-

ds are more stable and efficient in the plastic region where most

f the simulation is carried out. As the particle number increases,

he implicit model becomes more expensive because of repeated

atrix inversion needed during convergence. In the plastic region,

he explicit CPPD model’s computational speed surpasses the im-

licit model. 

.2. Reorientation of grains and microstructural study of shear bands 

n a Y-axis compression test 

Following is a Y-axis compression test based on the same mi-

rostructure in the previous pure shear test. Reorientation of grains

redicted by CPFE and CPPD models are compared in Fig. 8 at

train of 0.06. Significant reorientation is seen within shear bands

n both models. In particular, a comparison case with a horizon

adius δ increased to 
√ 

2 l e and ω = 1 in the CPPD model is pre-

ented to investigate the effect of horizon size on localization

ands, where l e is the minimum distance between particles. For

> 

√ 

2 l e , the influence function needs to be modified to correctly
FE (b) CPPD with δ = l e (c) CPPD with δ = 

√ 

2 l e at strain of 0.06. Along the direction 

e smaller horizon. Use of a larger horizon radius leads to thicker shear bands, with 
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Fig. 9. Microstructures 2 and 3 represented by 21 planar grains for CPPD simulations. Initial orientations are represented by a group of two arrows. The microstructure in 

the pure test in Fig. 4 is employed as microstructure 1. 

Fig. 10. Microstructure 1. (a) is the plot of the maximum Schmid factor in each grain with Grain 1 labeled. The equivalent plastic strain increment is shown in (b) at strain 

of 0.02, (c) at strain of 0.04, and (d) at strain of 0.06. The red arrow in (c) indicates a track of shear bands transmission across grains. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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apply boundary conditions ( Wu and Ben, 2015; Madenci et al.,

2016 ), so the comparison is not applied in this paper. 

Even though the overall contours such as the locations and ori-

entations of shear bands of the three simulations are similar, the

localization bands seen from CPFE simulations are comparatively

more diffuse due to lack of an internal length scale. Along the di-

rection of arrows in Fig. 8 , the widths of shear bands obtained by
PPD simulations are smaller and their boundaries are more con-

picuous for the case of the smallest horizon size. We find that

ncreasing the horizon leads to correspondingly larger shear bands,

ith lower reorientation intensity. The lower intensity is due to

moothing of intense strains on a particle with lower strains from

he farther particles due to non-local averaging. This example illus-
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Fig. 11. Microstructure 2. (a) is the plot of the maximum Schmid factor in each grain with Grain 2 and 3 labeled. The equivalent plastic strain increment is shown in (b) 

at strain of 0.02, (c) at strain of 0.04, and (d) at strain of 0.06. The red arrow in (c) indicates a track of shear bands transmission across grains. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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1 The equivalent plastic strain increment is defined as Anand and Ka- 

lidindi (1994) dεp = 

∑ 

α τα�γ α

, where σ eff is the von Mises stress. 
rates how the horizon size controls the characteristic microstruc-

ural length scale. 

.3. Study of the dependence of shear bands on initial orientation 

istributions 

The dynamic CPPD model is used to study the origin and evo-

ution of shear bands on three different microstructures. The first

icrostructure applied is identical to that of the pure test while

he other two are shown in Fig. 9 . The structures and positions of

rains in these three microstructures stay the same, however, the

rientations of grains are assigned differently. The Y-axis compres-

ion boundary condition in (25) is applied. 

First off, potential active slip systems are identified using a

udimentary Schmid factor analysis. Let l c and l s be the loading

xis in the current crystal frame and sample reference frame, re-

pectively, and l s = [1 , 0] T (or l s = [0 , −1] T , since their Schmid fac-

ors are the same). Then the loading axis in the current frame can

e represented as l c = R 

T l s where R is the rotation tensor in one

rystal. Next, the Schmid factor for αth slip system is obtained

y S α = | (m 

α
0 

· l c )(n 

α
0 

· l c ) | . Finally, the maximum Schmid factor is

arked as the active system. Fig. 10 (a), 11 (a), and 12 (a) are plots of

he maximum Schmid factor in each grain for three different mi-

rostructures. Each grain is marked with the slip system number
 α = 1 , 2 ) that gives the maximum Schmid factor. If the Schmid

actor for both slip systems are equal, both systems are marked

n one grain. In that case, to distinguish the slip system numbers,

ravel clockwise. Since the angle between two slip directions is al-

ays an acute angle of π /3, the first slip line encountered before

he acute angle is the 2nd slip system. 

Evolutions of the equivalent plastic strain increment 1 are shown

s a function of the effective strain in Figs. 10–12 for three mi-

rostructures. At low strain or strain of 0.02, deformation processes

rimarily occur in grains with high Schmid factors while little plas-

icity, if any, is seen in grains with the lowest Schmid factor. As

he loading is increased, strain localization emerges in the form

f a laminated pattern. Consequently, a new lamellar structure is

enerated with plentiful fine shear bands, as shown in Figs. 10 (d),

1 (d), and 12 (d). 

During this process, shear bands are transmitted from grains

ith higher Schmid factors to those with lower Schmid factors and

erge into larger ones. This is a possible deformation mechanism

n grains not favorably oriented for slip activity ( Sun and Sun-

araraghavan, 2014 ). Red arrows show the track of transmission

n Figs. 10 (c), 11 (c), and 12 (c). One particular case of slip trans-
σeff 
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Fig. 12. Microstructure 3. (a) is the plot of the maximum Schmid factor in each grain with Grain 4 labeled. The equivalent plastic strain increment is shown in (b) at strain 

of 0.02, (c) at strain of 0.04, and (d) at strain of 0.06. The red arrow in (c) indicates a track of shear bands transmission across grains. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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mission can be found in Fig. 11 (c). Grain 2 in microstructure 2

and the grain to its left are grains with slip system 2 active. At

higher strain, shear bands travel through grain 2 and merge into

the grains to its left. 

Intensified plastic strain arises across grain boundaries that sep-

arate low and high Schmid factor grains. This is due to the inabil-

ity of high-Schmid-factor grains to transmit slip activity across to

those grains with low Schmid factor. One example can be found at

the grain boundary of Grain 3 in Fig. 11 (b, c). Grain 3 is a grain

with a high Schmid factor between two low-Schmid-factor grains.

Another example is Grain 4 in Fig. 12 (b, c, d), which is a low-

Schmid-factor grain surrounded with high-Schmid-factor grains.

Strong plastic strain is generated at the boundaries of these two

grains, however, Grain 4 has localized strain around it rather than

inside it. These grain boundaries may trigger cracks. 

In order to identify the active slip systems within shear bands,

maps of plastic shearing increments ( �γ 1 and �γ 2 ) on slip sys-

tems 1 and 2 for Grain 1 in microstructure 1 at final strain of 0.06

are plotted in Fig. 13 . Low strain is found in slip system 1 while

shear bands are formed in slip system 2 as expected from the

Schmid factor analysis. Particle alignments around the shear band

are drawn with green lines in Fig. 13 (b). The direction of alignment

is the slip direction of slip system 2 in Grain 1 in Fig. 10 (a), which

is nearly perpendicular to the direction of the shear band. This is

because dislocations are grouped along slip directions. 

a  

s  

u  
.4. Stress-strain response 

The homogenized stress-strain response of CPPD and CPFE

odels are compared in Fig. 14 for microstructures 1 and 2. The

lastic responses for both models are very close, however, diver-

ence occurs in the elasto-plastic region. The CPPD model shows

n overall softer response in plastic regions, i.e., at the same strain

evel, the averaged stresses are lower. This is mainly due to sharper

tress localizations or smaller regions with high stress in the CPPD

odel compared to the CPFE model. 

. Conclusions and future work 

A CPPD model with an explicit adaptive dynamic relaxation

ethod is presented in this study. A non-ordinary state-based the-

ry of peridynamics is applied where bond forces are computed by

rystal plasticity. CPPD results are compared with the CPFE analysis

n plane strain problems under pure shear and compression. The

echanical properties, texturing, and stress-strain response pre-

icted by two models are found to be largely similar. One highlight

f the new dynamic CPPD model is its simplicity and numerical ef-

ciency compared to implicit methods in the plastic regime. 

In the numerical results, shear bands show inhomogeneity in

he plastic deformation and reorientation. Shear bands can merge

nd spread into grains, which are originally unfavorable to slip at

mall effective strain. In the future work, three-dimensional sim-

lations and damage models will be developed. However, a direct
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Fig. 13. Plastic shear increments in grain 1 of microstructure 1 at strain of 0.06 for (a) slip system 1 and (b) slip system 2. Blue lines denote slip directions; red lines indicate 

shear bands; the green line shows the particle alignment across the shear band. The direction of the particle alignment is parallel to the slip direction of slip system 2 while 

nearly perpendicular to the shear band. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. Homogenized stress-strain responses from CPPD and CPFE models for mi- 

crostructures 1 and 2 under Y-axis compression. CPPD stress is always lower than 

CPFE stress due to finer shear bands in CPPD results during plastic loadings. 
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mplementation of damage model within the state-based peridy-

amics will lead to instabilities associated with unphysical diffu-

ion of the damage zone ( Tupek et al., 2013 ). Therefore, more so-

histicated controls of instability in peridynamics needs to be em-

loyed. Finally, a parametric study with comparison to the experi-

ental observations ( Kammers and Daly, 2013; Guery et al., 2016;

mitrieva et al., 2009 ) will be performed in order to understand

he effect of crystal structure and deformation on the activation

nd propagation of shear bands more accurately. 
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ppendix 

onstitutive update scheme 

All quantities below are described in the local crystal frame.

uantities at the current time step are denoted by subscript (n +
) . The deformation gradient F n +1 at the current time step is

nown before hand. The update procedure below is applied on nu-

erically computing the PK-I stress P = F(F n +1 ) , where the oper-

tor function F is the constitutive model. 

An Euler-backward time integration scheme for (21) leads to

he following approximation with the assumption that �γ is

mall: 

 

p = exp 

(
�t 

∑ 

α

˙ γ αS α0 sign (τ α) 
)

F p n 

≈
(

I + 

∑ 

α

�γ αS α0 sign (τ α) 
)

F p n . (26) 

ubstitute (26) into the multiplicative decomposition F = F e F p and

eform the equation: 

 

e = F e trial 

(
I −

∑ 

α

�γ αS α0 sign (τ α) 
)
, (27)

here F e 
trial 

= F n +1 (F 
p 
n ) 

−1 is the trial elastic deformation gradient.

t the first time step, F 
p 
0 

is initialized as the identity tensor I . The

reen elastic strain measure is computed using (27) as 

¯
 

e = 

1 

2 

(
F e 

T 
F e − I 

)
= Ē 

e 
trial −

1 

2 

∑ 

α

�γ αB 

αsign (τ α) , (28)

here Ē 

e 
trial 

and B 

α are defined as 

¯
 

e 
trial = 

1 

2 

(
(F e trial ) 

T F e trial − I 

)
, (29) 

 

α = (S α0 ) 
T (F e trial ) 

T F e trial + (F e trial ) 
T F e trial S 

α
0 . (30) 

sing (28) in the constitutive relation for conjugate stress T̄ =
 

e [ ̄E 

e ] leads to the following: 

¯
 = T̄ trial −

1 

2 

∑ 

α

�γ αL 

e [ B 

α] sign (τ α
trial ) , (31) 

here T̄ trial = L 

e [ ̄E 

e 
trial 

] . 

A trial resolved shear stress τα
trial 

= T̄ trial : S 
α
0 

is then computed.

 potentially active set PA of slip systems can be identified based

n the trial resolved stress as the systems with | τα
trial 

| − s α > 0 . 

https://doi.org/10.13039/100000006
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During plastic flow, the active systems are assumed to follow

the consistency condition: | τα| = s α . Increment in shearing rates

�γ β at each time step is obtained by solving the following equa-

tion obtained by resolving (31) along slip directions: 

| τα| = s α

= | τα
trial | − 1 

2 

sign (τ α
trial ) 

(∑ 

β

�γ βL 

e [ B 

β ] sign (τ β
trial 

) 

)
: S α0 , 

(32)

where α, β ∈ PA . 

A system of equations is obtained of the following form: ∑ 

β∈ PA 
A 

αβ�γ β = b α, (33)

where 

A 

αβ = h 

αβ + 

1 

2 

sign (τ α
trial ) sign (τ β

trial 
) L 

e [ B 

β ] : S α0 , 

b α = | τα
trial | − s α. (34)

If for any system �γ β ≤ 0, then this system is removed from the

set of potentially active systems. The system is repeatedly solved

until for all systems �γ β > 0. 
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