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A B S T R A C T

A continuous representation of dislocations is used to represent a mode-II crack and the associated plastic zone.
In the original formulation of dislocation theory, the friction stress that opposes the motion of the dislocations is
represented by a constant stress. In our new formulation, we embed a cohesive zone in the plastic region in front
of a crack tip by representing the friction stress as a function of the crack displacement. This allows cohesive
zone models (obtainable from a lower scale simulation, such as molecular dynamics) to be integrated into a
dislocation theory-based model, for the first time, to predict short crack growth. The details of this new for-
mulation are shown for the two cases: the crack and the associated plastic zone inside a grain, and the crack and
the associated plastic zone tip at the grain boundary. The main features of this new model are discussed along
with an experimental comparison to the case of microstructurally short fatigue crack growth across two grains in
a Ni-based CMSX-4 alloy.

Introduction

In the last couple of decades, the area of short fatigue crack growth
has generated a lot of interest. This is due to the availability of modern
experimental techniques, such as X-ray Tomography and Focused Ion
Beam (FIB), that have facilitated deeper investigation into this area and
a growing realization that the fatigue life of some materials may depend
entirely on the short fatigue crack growth regime [1]. According to
Newman et al. [2], short fatigue cracks can be classified into two ca-
tegories: microstructurally short cracks and physically short cracks
(PSC). A crack is called microstructurally short when its length is on the
order of the microstructural size, such as a grain diameter, whereas, it is
called physically short when the crack length is larger than a few grain
diameters.

Traditionally, linear elastic fracture mechanics (LEFM) has been
used to quantify the fatigue crack growth rate in materials. However, in
the short fatigue crack growth regime, LEFM suffers from several lim-
itations, such as: (1) the observed fatigue crack growth in a specimen is
much faster than that calculated from LEFM, (2) the observed fatigue
crack growth can happen at stress intensity factors much lower than the
threshold stress intensity factor predicted by LEFM, and (3) the local
microstructure of the material can negatively affect the fatigue crack
growth rate and, in some cases, arrest the crack growth. There are
various models that have been proposed in recent years to overcome

these limitations. Some models are based on a modified LEFM ap-
proach, such as Newman's crack closure model [2,3], while others are
based on the explicit incorporation of microstructural features, such as
grain boundaries and precipitates, and their interactions with the crack
tip. Christ et al. [1] have classified these later type of models into three
categories: (1) empirically-based models that are informed and driven
by experiments [4], (2) mechanism-based models, such as the Bilby-
Cottrell-Swinden (BCS) model [5], the Taira-Tanaka-Nakai model [6,7],
the Navarro-Rios model [8–11], and (3) models based on discrete dis-
locations [12]. The mechanism-based models find their origin in the
work of Bilby et al. [5]. The BCS model follows on the work of Head and
Louat [13] and approximates the crack and the associated plastic zone
by a continuous distribution of dislocations. In the BCS model, Bilby
et al. [5] derived the plastic zone length for a macroscopic crack in an
infinite domain and showed that their plastic zone expression is similar
to the expression presented by Dugdale [14]. Barenblatt [15] has also
proposed a similar expression for the plastic zone length. The models
developed by Barenblatt [15] and Dugdale [14] form the basis of co-
hesive zone models. Willis [16] has shown that if the cohesive surface
energy density is equal to the fracture toughness, then LEFM and
Barenblatt theory are equivalent. In a computational framework, Hil-
lerborg et al. [17] have utilized the cohesive zone model to describe the
damage behavior of concrete. For quasi-brittle materials, Planas et al.
[18] have shown the various generalizations, including initiation
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criteria and the extension to mixed mode failure [19] and specializa-
tions, including size effects and the asymptotic behavior of the cohesive
zone models. Cohesive zone models have also been used to study failure
process in other materials, such as ceramics [20], polymers [21,22],
and ductile metals [23]. A good overview of the application of cohesive
zone models to the materials previously mentioned is given by Elices
et al. [24]. In cohesive zone models, the fracture process is represented
as a gradual process of separation between two material surfaces [25].
Thus, the separation process is represented in a phenomenological form
by the relationship between the surface traction and the distance be-
tween the two surfaces. This process is similar to a softening process
that occurs at the front of a crack tip. On the other hand, Weertman
[26] has modified the BCS model to include the effect of work hard-
ening at the fatigue crack tip by relating the average stress in the plastic
zone in front of the crack tip to the crack tip displacement. He assumed
this relationship to be a power law with two parameters. In the Taira-
Tanaka-Nakai model, the BCS model is applied to the case of slip bands
emanating from a crack tip inside a grain; Taira et al. [6] recognized
that, when a plastic tip reaches a grain boundary, the dislocations pile
up against the grain boundary. Using Muskhelishvili's inversion formula
[27], they solved a two-dimensional dislocation density equation with
the plastic tip blocked by a grain boundary by assuming that, mathe-
matically, dislocation density becomes infinite at a grain boundary.
They refer to this as an unbounded solution; conversely, the original
BCS model employs a bounded solution. Tanaka et al. [7] have ex-
tended the Taira-Tanaka-Nakai model by including the crack closure for
stage II cracks and calculating the fatigue crack growth rates across
stage I and stage II. Later, Navarro and De Los Rios (N-R) [8–11]
combined both the bounded and unbounded solutions into a general
expression for the dislocation distribution. In addition, they applied a
critical grain boundary strength parameter that a crack needs to over-
come in order to propagate into the next grain. To examine the statistics
of the short fatigue crack growth in textured FCC polycrystals, Wilk-
inson [28,29] used the N-R model within the Monte Carlo framework.

In this paper, the new contribution is integration of a cohesive zone
model (such as [14,15]) within the BCS [5] and the Taira-Tanaka-Nakai
[6] models to simulate microstructurally short fatigue crack growth
through multiple grains. The BCS and Taira-Tanaka-Nakai models as-
sume that the friction stress opposing the dislocation motion is the local
yield stress of the material. Similarly, for a macroscopic crack, Dug-
dale's model assumes that the cohesive stress opposing the opening of a
Mode-I crack tip is the yield stress of the material. However, molecular
dynamics (MD) simulations have shown that the cohesive strength
varies with the crack opening displacement [30], and, in the shear
mode, it is closely approximated by an exponential relationship [31].
We assume that the friction stress opposing the dislocation motion is a
function of the crack displacement, as is shown by MD simulations.
Incorporating this assumption in the BCS and Taira-Tanaka-Nakai
models, we derive an expression for the bounded and unbounded so-
lutions to the dislocation density distribution equations. These expres-
sions are solved numerically to get the crack displacement and the
crack tip stress field.

The paper has been divided into four sections. Section 1 gives an
introduction of the BCS and Taira-Tanaka-Nakai formulations. Section 2
details our new formulation that combines the cohesive zone model
with first the BCS model and then the Taira-Tanaka-Nakai model. We
call this new formulation the Cohesive-BCS model. As has been done in
Taira et al. [6], this new formulation is extended to fatigue in Section 3.
In Section 4, the new features of this model are compared to those of the
BCS and Taira-Tanaka-Nakai models. Finally, the new formulation is
utilized in the prediction of microstructurally short fatigue crack
growth rates in a Ni-based CMSX-4 specimen and results are compared
to experiments [32].

1. The BCS and Taira-Tanaka-Nakai models

Based on the theory of continuously distributed dislocations [13],
Bilby et al. [5] have derived the dislocation density expression for a
uniformly stressed solid containing a notch with a plastic zone in the
front. This is called a bounded solution, since the dislocation density is
bounded at the plastic tip. Taira et al. [6] have derived the dislocation
density expression for a slip band that is blocked at a grain boundary
and is emanating from a crack tip. This solution is referred to as an
unbounded solution, since the dislocation density is unbounded at the
plastic tip due to the dislocation pile up. Both of these solutions are
employed to calculate the microstructurally short fatigue crack growth
rate across multiple grains by assuming that the crack growth rate is
proportional to the crack tip displacement [8]. Using this assumption,
the bounded solution gives the crack growth rate when the crack and
the associated plastic zone are inside a grain (Fig. 1), while the un-
bounded solution gives the crack growth rate when the plastic zone is
blocked by a grain boundary (Fig. 2).

This section is structured in two parts: Part I describes the important
expressions for the bounded solution of the dislocation density, and
Part II shows the dislocation distribution expression for the unbounded
solution and the expression for the stress distribution in front of the
plastic tip blocked by a grain boundary.

1.1. Part I: The bounded solution from the BCS model

In the BCS model, the plastic zone in front of the crack tip is sim-
plified by assuming that it is in the same plane as the crack plane
(Fig. 1). Within the plastic zone, the friction stress τ x( )f that resists the
dislocation motion is assumed to be equal to the yield stress. The crack
faces are considered to be traction free. The crack tip in this paper is
always at = ± =x a y, 0, while the plastic tip is always at

= ± =x c y, 0.
The dislocation distribution that exists on the traction free crack

plane (− < <a x a) has a stress associated with it. This stress τ x( )
should be in equilibrium with the applied stress. Thus,

+ =
= −

τ x τ
τ x τ

( ) 0
( )

A

A (1.1)

Fig. 1. Dislocation distribution under an applied shear stress τA.
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Moreover, the stress τ x( ) produced by the dislocation distribution in-
side the plastic zone ( < <a x c| | ) is resisted by the friction stress τf(x).
This resistance should be in equilibrium with the applied stress τA.
Thus,

− =
= −

τ x τ x τ
τ x τ x τ

( ) ( )
( ) ( )

f A

f A (1.2)

In Fig. 1, the shear stress at x due to the presence of a dislocation at
′x is given by

∫= ′
− ′

′ − < <
−

τ x G
πα

B x
x x

dx c x c( )
2

( ) ,
c

c

(1.3)

The above expression (Eq. (1.3)) is solved for the dislocation density B
(x) by Muskhelishvili's inversion formula [27]. The final expression is

∫= − − ′
− ′ − ′

′ − < <
−

B x α c x
πG

τ x
x x c x

dx c x c( ) 2 ( )
( )

,
c

c2 2

2 2 (1.4)

and the condition for the dislocation density B(x) to be bounded at
= ±x c is given by

∫
−

=
−

τ x
c x

dx( ) 0
c

c

2 2 (1.5)

In the above expressions (Eqs. (1.4) and (1.5)), c represents the half
length of the crack and the associated plastic zone, G is the shear
modulus, =α 1 for screw dislocation, = −α ν1 for edge dislocation,
and ν is the Poisson's ratio. In general, c must also satisfy another
condition [33], given by

∫
−

=
−

xτ x
c x

dx Gb
α

( )
2c

c T
2 2 (1.6)

Here, = +b b bT R L is the net Burgers vector of all the dislocations, bR is
the net Burgers vector of the dislocations in the positive x direction,

< < ∞x0 , and bL is the net Burgers vector of the dislocations in the
negative x direction, − ∞ < <x 0. If τ x( ) is a symmetric function of x,
then bT = 0 and Eq. (1.6) is satisfied by symmetry, regardless of the
value of c.

Eq. (1.4) contains a singular kernel and is solved in the Cauchy
principal value sense. Eq. (1.5) is called the existence condition, and it
determines the length of the plastic zone ( −c a).

1.2. Part II: The unbounded solution from the Taira-Tanaka-Nakai model

Taira et al. [6] found that the BCS model can be used in the analysis
of crystallographic slip bands emanating from the crack tip. They
showed that, when these slip bands are on the order of the grain size,
they can be influenced by a grain boundary (Fig. 2). To incorporate the
interaction of the grain boundary with the dislocations, Eq. (1.3) is
solved considering the dislocation density function to be unbounded at
the plastic tip [27]. This adds an additional term to Eq. (1.4), and the
final equation becomes

∫

∫

= − ′

− ′ − < <

−
−

′

− ′ − ′

− −
′

− ′

B x dx

dx c x c

( )

,

α c x
πG c

c τ x

x x c x
α

πG
x

c x c
c τ x

c x

2 ( )

( )
2 ( )

2 2

2 2

2 2 2 2 (1.7)

Here,

′ = − ′ <
′ = ′ − < ′ <

τ x τ x a
τ x τ x τ a x c

( ) , | |
( ) ( ) , | |

A

f A

The additional term in Eq. (1.7) is a delta-type function; a repulsive
stress field, rising suddenly from zero to infinity, locks the leading
dislocation. The integrand is the same as in the existence condition, Eq.
(1.5), while the coefficient

−

x

c x2 2
makes the dislocation density infinite

at the grain boundary, = ±x c. The length of the plastic zone is calcu-
lated from the grain size.

A stress (S r( )0 ) at a point that is at a distance r0 away from the grain
boundary on the grain 2 slip plane (Fig. 2) is given in [13] by

∫= + ′ = + ′ >− ′ −S r dx τ x c r x c( ) , , | |Gb
πα c

c B x
x x A0 2

( )
0 (1.8)

where b is the burgers vector.
For both the models, the dislocation density B(x) is related to the

crack sliding displacement D(x) by

= −B x dD x
dx

( ) ( )
(1.9)

Fig. 2. The tip of the crack and the associated plastic
zone is at the grain boundary. r0 is the distance from
the grain boundary to a slip system in grain 2.
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2. Dislocation-based cohesive model (Cohesive-BCS model)

2.1. Cohesive model

The central theme of the cohesive theory of fracture is the re-
presentation of the fracture process as a gradual separation of the
fracture surfaces. This is achieved through the use of numerous func-
tional relationships between the fracture surface traction and the sur-
face displacement. These relationships are called traction-separation
laws. In literature, most of the traction-separation laws that have been
developed are phenomenological [25]. In this paper, we also utilize an
exponential relationship (Fig. 3) between the surface traction and the
crack surface displacement [31].

= − >τ x τ h D x h( ) exp( | ( )|), 0f fail s s (2.1)

hs in the above equation is a fitting parameter with units of −L 1. For
monotonic failure, τfail is the slip system critical resolved shear stress.
For fatigue failure, the value of τfail is lower than the critical resolved
shear stress value, and this value is calibrated from experiments. Thus,
the area under this curve (Fig. 3) represents the fracture energy of the
slip system.

Putting Eq. (2.1) into Eq. (1.9) and integrating both sides from c to x
gives

∫− = < <τ τ x h B x dx a x cln( ) ln( ( )) ( ) , | |fail f s x

c

(2.2)

The assumption used in the above equation is that the value of the
stress at the plastic tip is equal to the critical resolved shear stress τfail of
that slip system.

2.2. Bounded solution with a cohesive zone

The bounded solution of Eq. (1.4) is modified using Eq. (2.2), re-
sulting in

∫ ∫

− =

⎛
⎝

− ′⎞
⎠

< <−
−

′

− ′ − ′

τ τ x

h dx dx a x c

ln( ) ln( ( ))

, | |

fail f

s x
c α c x

πG c
c τ x

x x c x

2 ( )

( )

2 2

2 2 (2.3)

This equation is a nonlinear Fredholm integro-differential equation
of the second kind with a weakly singular kernel. The above expression
is simplified using Eqs. (1.5) and (1.6). The procedure is described in
detail in Appendix A. The final forms of Eq. (2.3) and Eq. (1.5) are
shown below:

∫= ′ ′ +
< <

τ x τ x I dx τ
a x c

ln( ( )) ( ( ) ) ln( ),
| |

f
h α
πG a

c
f b fail

2 s

(2.4)

∫
−

=
τ x

c x
dx πτ( )

2a

c f A
2 2 (2.5)

Here,

= +

−

− ′ + ′ −

− ′ − ′ −

− ′ + −

− ′ − −

−

− ′

I ln ln

2

b
x c x x c x

x c x x c x

c x c x

c x c x

c x

c x

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

These coupled equations (Eqs. (2.4) and (2.5)) are numerically
solved for τ x( )f and c using the Newton-Raphson scheme with a pie-
cewise polynomial collocation method [34]. The latter method is de-
scribed in detail in Appendix C.

2.3. Unbounded solution with a cohesive zone

Putting Eq. (1.7) into Eq. (2.2) again gives a nonlinear Fredholm
integro-differential equation of the second kind. This expression is
simplified using the symmetry of the stress function (τ x( )). The final
expression becomes

∫= ′ ′ − −

+ < <

τ x τ x I dx c x

τ a x c

ln( ( )) ( ( ) )

ln( ), | |
f

h α
πG a

c
f u

h ατ
G

fail

2 2 2 2s s A

(2.6)

Here, Iu is given by

= +

− −

− ′ + ′ −

− ′ − ′ −

− ′ + −

− ′ − −

′

− ′( )
I ln ln

2 arcsin

u
x c x x c x

x c x x c x

c x c x

c x c x

π x
c

x

c x2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2

The details of the above simplification are given in Appendix B.
There is no analytical method for calculating τ x( )f from Eq. (2.5) or

S r( )0 from Eq. (1.14). Thus, we again employ a set of numerical schemes
to solve these equations. These numerical schemes are described in
Appendix C. Once τ x( )f is found, the crack sliding displacement D(x) is
calculated from Eq. (2.1) and S r( )0 is calculated from Eq. (1.14). The
crack sliding displacement at the crack tip is the crack tip sliding dis-
placement D(a).

3. Fatigue crack growth

Under cyclic loading, the applied resolved shear stress τA varies
between a maximum value τmax and a minimum value τmin. Assuming
there is no crack extension between each complete cycle and no crack
closure, the monotonic quantities in Eqs. (2.4), (2.5) and (2.6) are
converted to cyclic quantities through the following transposition
[6,26,28]:

→ = − = −
→

τ τ τ τ R τ
τ x τ x

Δ (1 )
( ) 2 ( )

A A max min max

f f (3.1)

Here, R is the load ratio. For a polycrystalline specimen under a far
field unaxial cyclic stress σΔ (shown in Fig. 4), the local resolved cyclic
shear stress τΔ A

i on a slip plane i with the Schmid factor mi is calculated
using the Schmid single slip model to be

= = −τ m σ m R σΔ Δ (1 )A
i

i i max (3.2)

where mi is the local Schmid factor of an active slip system and σmax is
the maximum value of the applied stress. The crack growth rate is
calculated by assuming that it is proportional to the crack tip sliding
displacement. Thus, an equation similar to the Paris law is obtained.

=da
dN

λD a( )n
(3.3)

This assumption has been used in numerous analytical fatigue crack
growth models [7,8,10,26,28]. The parameter λ is interpreted as a slip
irreversibility factor with values between 0 (completely reversible) and

Fig. 3. Shear exponential traction-separation law.
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1 (completely irreversible). The parameter n describes the contributions
from different crack displacement modes (I, II, III) on the crack tip
sliding displacement D(a).

4. Discussion

In this section, we highlight the differences between our Cohesive-
BCS model and the BCS and Taira-Tanaka-Nakai models. The first part
of the discussion section shows the effect of the cohesive parameter hs
on the dislocation stress and the crack sliding displacement. In the
second part of the discussion section, we calibrate our model with data
from experiments on Ni-based CMSX-4 alloy. This calibrated model is
then used to predict microstructurally short fatigue crack growth across
multiple grains in this alloy.

4.1. Comparison of the Cohesive-BCS model with the BCS and Taira-
Tanaka-Nakai models

In this subsection, we study the impact of the cohesive parameter hs
on the dislocation stress and the crack sliding displacement. Using the
values mentioned in Table 1, we solve for both the bounded and un-
bounded solutions of the Cohesive-BCS model (Section 2) for different
values of parameter hs. The BCS and Taira-Tanaka-Nakai solutions are
also plotted in each figure to highlight the differences.

In Fig. 5, we plot the normalized dislocation stress (τ x τ( )/ fail) inside
of and in front of the plastic zone. The dislocation stress at the tip of the
crack ( =x a/ 1) reduces as we increase hs. This is expected, as increasing
hs reduces the area under the traction-separation curve (Fig. 3), which
reduces the fracture energy required to create a crack. This causes a
higher number of dislocations to be emitted by the crack tip. Therefore,

increasing hs reduces the dislocation stress. The friction stress at the
crack tip (τ a( )f ) reduces as hs increases, which results in the increased
mobility of the dislocations. This increased dislocation mobility causes
the length of the plastic zone (c-a) to increase. In Fig. 5, the half length
of the crack and the associated plastic zone c is shown to increase from

a2.17 for = × −h mm1 10s
2 1 to a2.53 for = × −h mm12 10s

2 1. As we
reduce hs, the solution given by our model eventually converges to the
BCS solution, since the exponential term in Eq. (2.1) goes to zero.

In Fig. 6, we plot the normalized crack sliding displacement against
the distance from the crack tip (x=a) to the plastic tip (x=c). As pre-
viously stated, increasing hs increases the number of dislocations that
are emitted by the crack tip. This increased dislocation density at the
crack tip increases the crack tip sliding displacement (D(a)). However,
the increase in the number of dislocations also increases the length of
the plastic zone ( −c a). The overall effect of increasing hs is distributed
between the crack sliding displacement and the plastic zone length;
therefore, the change in each of these quantities appears less significant
than the increase in hs.

In Fig. 7, the normalized dislocation stress ( −S x τ τ( ( ) )/A fail) at the

grain boundary ( = =x c D
2
g ) is plotted against the distance from the

grain boundary in the adjacent grain (see Fig. 2). The dislocation stress
increases as hs increases. This is due to the increase in the number of
dislocations emitted by the crack tip. These increased dislocations pile
up at the grain boundary, causing the stress at the grain boundary to
increase. Therefore, through the cohesive parameter hs, we can also
control the interaction between the crack plane and the grain boundary.

In Fig. 8, the value of c is constant and is equal to half of the grain

Fig. 4. Applied cyclic stress σΔ resolved to a single slip shear stress τΔ A.

Table 1
Material properties for a sensitivity study.

Variable Values Units

−
G

π ν2 (1 )
3776 GPa

σ 85 GPa
τfail 55 GPa
ms 0.45

Fig. 5. The effect of hs on the dislocation stress when the crack and the associated plastic
zone are inside a grain.

Fig. 6. The effect of hs on the crack sliding displacement when the crack and the asso-
ciated plastic zone are inside a grain.
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size (D
2
g ). As previously stated, increasing hs increases the number of

dislocations emitted by the crack tip. However, as compared to the case
of the plastic zone being within the grain, the impact of increasing hs is
more prominent on the crack sliding displacement.

4.2. Microstructurally short fatigue cracks in a Ni-based CMSX-4 alloy

In this subsection, we utilize our Cohesive-BCS model to predict the
growth of microstructurally short fatigue cracks in a Ni-based CMSX-4
alloy. To achieve this, we use the experiments performed by Marx et al.
[32,35] and the equations described in Sections 2 and 3.

Marx et at. performed experiments on a single crystal and poly-
crystalline modification of a Ni-based CMSX-4 alloy [32]. The material
properties of this alloy are given in Table 2.

To predict the microstructurally short fatigue crack growth behavior
of this alloy, we calibrate the unknown slip system parameters (τfail and
hs) and the crack growth rate parameter (n) with the experiments. The

main difference between our new Cohesive-BCS model (described in
Section 2) and the BCS model utilized in Marx et al. [35] is the elim-
ination of the slip irreversibility parameter λ. The value of this para-
meter determines the reversibility of the dislocation emission process at
the crack tip [35]. By embedding a cohesive zone in front of the crack
tip we can control how many dislocations are emitted from the crack
tip. The result of this procedure can be seen in Figs. 6 and 8; at the crack
tip ( =x a/ 1), the value of the normalized crack tip sliding displacement
(D a a( )/ ) changes with different values of the cohesive parameter hs.

To calibrate the slip system parameters τfail and hs to the experi-
mental results, we use the plastic zone lengths measured from the Marx
et al. experiments [32]. The preferred slip system for this FCC alloy is

< >{111} 110 .
In Fig. 9, the half lengths of the crack and the associated plastic zone

were measured for cracks that were sufficiently far from the grain
boundary. Here, we utilize Eqs. (2.4), (2.5), (3.1), and (3.2) and the
material properties mentioned in Table 2 to calculate the values of c
corresponding to various half crack lengths (a). We minimize the error
between the experimentally calculated values and the numerically
calculated values of c to calibrate the cohesive parameters. Thus, the
calibrated values are

=
= −

τ MPa
h mm

261.4
10

fail

s
1

The τfail value is similar to the BCS model τf value ( MPa263 ) men-
tioned in Marx et al. [35].

The next step in the calibration process is to determine the micro-
structurally short fatigue crack growth parameter n. This parameter is
used to determine the relationship between the crack growth rate and
the crack tip sliding displacement. We again solve the equations dis-
cussed in Sections 2.2 and 3 to determine the values of the crack tip
sliding displacement ( =D x a( )) corresponding to each half crack length
(a). In Fig. 10, the experimental crack growth rates are plotted against
the numerically determined crack tip sliding displacements. The non-
linear least square function in MATLAB [37] is then used to determine
the value of the parameter n; n = 1.411 is the value that gives the best
fit.

All the parameters, τ h,fail s, and n, have now been determined. We
now utilize these parameters to predict the microstructurally short fa-
tigue crack growth rates across multiple grains. The effect of a grain
boundary on the crack has to be taken into account in order to un-
derstand the crack growth across multiple grains. The presence of a
grain boundary can have a significant effect on crack growth. For ex-
ample, the grain boundary can cause the crack growth rate to reduce or
the crack growth to stop, depending on its features. However, in this
paper, we have not modeled all the features of the grain boundary. As in
[32], we use just one parameter, called the grain boundary critical
stress intensity factor ( KΔ gb), the value of which is mentioned in

Fig. 7. The effect of hs on the dislocation stress when the tip of the crack and the asso-
ciated plastic zone is at the grain boundary. Dg is the grain size.

Fig. 8. The effect of hs on the crack sliding displacement when the tip of the crack and the
associated plastic zone is at the grain boundary.

Table 2
Ni-based CMSX-4 alloy material properties

Variable Value Unit Reference
G 72.27 GPa [36]
ν 0.39
α − ν1
τcrss 363 MPa [36]
σmax 545 MPa [32]
R − 0.1 [32]

Fig. 9. Calibration of the cohesive parameters τfail and hs from the experiments [32].
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Table 3, to model the effect of the grain boundary. This critical stress
intensity factor is the minimum value that the stress in front of the
plastic tip has to reach in order to initiate a crack in the adjacent grain.

According to Marx et al. [32], there is only one class of slip system
that is active in this FCC alloy ( < >{111} 110 ). Thus, the friction stress
(τfail) should be constant for this class of slip system. The applied stress
changes from one slip system to another depending on the Schmid
factor values. However, as in [32], instead of changing the applied
stress across the grains, we use a stress transformation (Eq. (4.1)) to
change the friction stress value from one grain to another.

= − − +τ σ R m m τ1
2

(1 )( )fail fail
2

1 2 (4.1)

Here, τfail
2 is the friction stress in the second grain, which is adjacent to

the notched grain.
In Fig. 11, we use the calibrated parameters (τ h,fail s, and n) and the

equations mentioned in Sections 2 and 3 to predict the micro-
structurally short fatigue crack growth across two grains. The crack

initiates at a notch that is m30 μ from the grain boundary. Initially, in
Grain 1, the equations derived in Section 2.2 are solved to calculate the
crack tip sliding displacement. When the plastic zone in front of the
crack tip reaches the grain boundary, we use the equations derived in
Section 2.3 to calculate the crack tip sliding displacement. In Grain 1,
when the crack growth rate is at a maximum, the plastic zone has
reached the grain boundary. At this point, the crack stress at the plastic
tip is lower than the critical stress required to cross the grain boundary.
This causes the crack tip sliding displacement to reduce. This is shown
in Fig. 11 by the decline in the crack growth rate as the crack ap-
proaches the grain boundary. As the crack tip approaches the grain
boundary, the crack stress in front of the plastic tip is increasing due to
the increase in the number of the dislocations that are piling up; at
some point, it becomes greater than the value of the critical stress de-
termined from the grain boundary critical stress intensity factor ( KΔ gb).
This causes the most favorable slip system in Grain 2 to activate and the
plastic zone to spread within the grain. In Fig. 11, we have plotted the
results from both the BCS and Taira-Tanaka-Nakai models as well as our
Cohesive-BCS model. The values of the parameters used in the BCS and
Taira-Tanaka-Nakai models (, and n) are mentioned in Marx et al. [32].
Thus, as seen in Fig. 11, we have replaced the slip irreversibility
parameter λ associated with the BCS and Taira-Tanaka-Nakai models
with our Cohesive-BCS model parameter hs and produced similar results
for the microstructurally short fatigue crack growth across two grains.
The parameter λ (Eq. (3.3)) cannot be determined from a lower scale
simulation; rather, it is fitted to experimental data obtained from prior
works [35]. However, the cohesive parameter hs can be found from a
lower scale simulation. Thus, it can be used to replace the fitting
parameter λ from the formulation (Fig. 11). We would like to empha-
size that the exponential cohesive law (Fig. 3) used in the present model
is fully reversible; however, our formulation can also be used in con-
junction with irreversible cohesive laws [38,39]. The addition of the
variable λ would improve our fit, but it is not pursued in order to
emphasize the effect of the cohesive parameter hs.

5. Conclusion

This paper outlines the main features of a new dislocation theory-
based cohesive model. We have combined the original Bilby-Cottrell-
Swinden theory with cohesive theory to simulate microstructurally
short fatigue crack growth. The key contribution of this paper is the
ability to incorporate cohesive parameters that are obtainable from
lower scale simulations (such as MD) into a higher length scale model
based on dislocation interaction with microstructural features. To test
the accuracy of our new formulation, we have compared our model
with the original formulation and shown that our formulation reduces
to the original formulation under a certain condition. We have also
utilized our new formulation to predict microstructurally short fatigue
crack growth across two grains in a Ni-based CMSX-4 alloy. The ad-
vantage of our method over the original formulation is that we have
replaced one of the fatigue calibration parameters used in the original
formulation with an energy-based cohesive parameter. The computa-
tional results show good correlation between the CMSX-4 experimental
data and our model. We have also compared the Bilby-Cottrell-Swinden
theory results with those of our formulation. In the near future, we plan
to adapt the capabilities of this new formulation within our recent finite
element model for fatigue failure [40].
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Fig. 10. Determining the relationship between the crack growth rate and the crack tip
sliding displacement (D(a)).

Table 3
Schmid factors of the slip planes in the first and second grains.

Variable Value Unit Reference

m1 0.485 [35]
m2 0.031 [35]

KΔ gb 3.4 MPa m [35]

Fig. 11. Microstructurally short fatigue crack growth across a grain boundary.
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Appendix A. Bounded solution with a cohesive zone

The cohesive zone equation is given by Eq. (2.2):

∫− = < <τ τ x h B x dx a x cln( ) ln( ( )) ( ) , | |fail f s x

c

(A.1)

The dislocation density equation for the bounded case is

∫= − − ′
− ′ − ′

′ − < <
−

B x α c x
πG

τ x
x x c x

dx c x c( ) 2 ( )
( )

,
c

c2 2

2 2 (A.2)

where the plastic zone size is calculated from the bounded condition for the dislocation density, which is given by Eq. (1.5):

∫
−

=
−

τ x
c x

dx( ) 0
c

c

2 2 (A.3)

The second condition on c (Eq. (1.6)) is satisfied by the symmetry of the stress field, τ x( ).
The stress function is

= ⎧
⎨⎩

− < <
− <

τ x
τ x τ a x c

τ x a
( )

( ) , | |
, | |

f A

A (A.4)

Putting the above stress function, τ x( ), into Eq. (A.3) gives

∫
−

=τ x
c x

dx πτ( )
2a

c A
2 2 (A.5)

Eq. (A.2) is put into the cohesive equation, Eq. (A.1), and the result is

  
∫ ∫⎜ ⎟− = ′

− ′
⎛

⎝

−
− ′

⎞

⎠
′ < <

−

′

τ x τ αh
πG

τ x
c x

c x
x x

dx dx a x cln( ( )) ln( ) 2 ( )
( )

, | |f fail
s

c

c

x

c

I x x

2 2

2 2

( , )1 (A.6)

′I x x( , )1 in the above equation can be simplified as

∫

∫

′ = −
− ′

= ′ + − ′ −
− ′ −

= − ′ − ′ + ′ −
− ′ − ′ −

+ − ′ − ′ + −
− ′ − −

− − − ′⎛
⎝

− ⎞
⎠

I x x c x
x x

dx

c x c x x x x
x x c x

dx

c x x c x x c x
x c x x c x

c x c x c x
c x c x

c x x π x
c

( , )
( )

( )

2
ln

2
ln

2
arcsin

x
c

x
c

1
2 2

2 2 3

2 2 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

2 2 2 2

2 2
(A.7)

Putting the simplified expression for ′I x x( , )1 back into Eq. (A.6) gives

∫− = ⎡

⎣
⎢

− ′ + ′ −
− ′ − ′ −

+ − ′ − ′ + −
− ′ − −

− − − ′⎛
⎝

− ⎞
⎠

⎤
⎦⎥

′ ′
−

τ x τ αh
πG

x c x x c x
x c x x c x

c x c x c x
c x c x

c x x π x
c

τ x dxln( ( )) ln( ) 2 ln
2

ln
2

arcsin ( )f fail
s

c

c 2 2 2 2

2 2 2 2

2 2 2 2 2 2

2 2 2 2
2 2

(A.8)

Utilizing the symmetry of the stress field (Eq. (1.6)) and Eqs. (A.4) and (A.5) in the above equation simplifies the above expression to

∫⎜ ⎟= ⎛
⎝

′ ′ ′⎞
⎠

+ < <τ x h α
πG

τ x I x x dx τ a x cln( ( )) 2 ( ) ( , ) ln( ), | |f
s

a

c
f b fail

(A.9)

Here,

′ = − ′ + ′ −
− ′ − ′ −

+ − ′ + −
− ′ − −

− −
− ′

I x x x c x x c x
x c x x c x

c x c x
c x c x

c x
c x

( , ) ln ln 2b
2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

Appendix B. Unbounded solution with a cohesive zone

Again, the cohesive zone equation is given by Eq. (2.2):

∫− = < <τ τ x h B x dx a x cln( ) ln( ( )) ( ) , | |fail f s x

c

(B.1)

The dislocation density equation for the unbounded case is
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∫ ∫= − − ′
− ′ − ′

′ −
−

′
− ′

′ − < <
− −

B x α c x
πG

τ x
x x c x

dx α
πG

x
c x

τ x
c x

dx c x c( ) 2 ( )
( )

2 ( ) ,
c

c

c

c2 2

2 2 2 2 2 2 (B.2)

The stress function is

= ⎧
⎨⎩

− < <
− <

τ x
τ x τ a x c

τ x a
( )

( ) , | |
, | |

f A

A (B.3)

The dislocation density equation (Eq. (B.2)) is put into the cohesive zone equation (Eq. (B.1)), resulting in

  
∫ ∫ ∫⎜ ⎟− = ′

− ′
⎛

⎝

−
− ′

⎞

⎠
′ + − ′

− ′
′ < <

−

′

−
τ x τ αh

πG
τ x

c x
c x
x x

dx dx αh
πG

c x τ x
c x

dx a x cln( ( )) ln( ) 2 ( )
( )

2 ( ) , | |f fail
s

c

c

x

c

I x x

s
c

c

2 2

2 2

( , )

2 2
2 2

1 (B.4)

We can use ′I x x( , )1 (Eq. (A.7)) from Appendix A in Eq. (B.4) to get

∫ ∫− = ′ ⎡

⎣
⎢

− ′ + ′ −
− ′ − ′ −

+ − ′ + −
− ′ − −

⎤

⎦
⎥ ′ − ⎛
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− ⎞

⎠
′ ′

− ′
′
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c x c x
c x c x
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c
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2

arcsin ( ) ,
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s

c
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c
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2 2 2 2

2 2 2 2

2 2 2 2 2 2

(B.5)

Finally, we can use the stress function (Eq. (B.3)) in the above expression to get

∫= ′ ′ ′ − − + < <( )τ x h α
πG

τ x I x x dx h ατ
G

c x τ a x cln( ( )) 2 ( ) ( , ) 2 ln( ) , | |f
s

a

c
f u

s A
fail

2 2
(B.6)

Here, ′I x x( , )u is given by

′ = − ′ + ′ −
− ′ − ′ −

+ − ′ + −
− ′ − −

− ⎛
⎝

− ⎞
⎠

′
− ′

I x x x c x x c x
x c x x c x

c x c x
c x c x

π x
c

x
c x

( , ) ln ln 2
2
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2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2 2 2

Appendix C. A piecewise polynomial collocation method

The kernels of the integrands of Eqs. (A.6) and (B.6) are singular when = ′x x as well as at the domain boundaries ( ′ =x x a c, , ). Thus, to solve
these types of weakly singular Fredholm equations, we make use of polynomial splines with a graded mesh [34].

Using the method described in Brunner et al. [34], we split our domain ( < <a x c| | ) in half. Let = < < … < = +a x x x. N
c a

0 1 2 be the partition
points for the first half of the domain. The partition points for the second half of the domain ( …+x x, ..,N N1 2 ) are obtained by reflecting the partition
points of the first half about = +xN

c a
2 . The mesh nodes for the first half of the domain are determined by

= + ⎛
⎝

⎞
⎠

⎛
⎝

− ⎞
⎠

= …x a
j

N
c a j N

2
, 0, 1, 2, .,j

r

and the points of the second half are calculated by

= + − = …+ −x c a x j N, 1, 2, 3, .,j N N j

For every subinterval ( = …+x x j N[ , ], 1, 2, ., 2j j 1 ), we choose m=2 collocation points, which are given by

= +
+

− =+ξ x
η

x x i
1

2
( ), 1, 2ji j

i
j j1 (C.1)

Here, η1 and η2 are the gauss quadrature points that satisfy the following condition:

− ≤ ≤ ≤ +η η1 11 2

In this paper, we use = −η1
1
3
and =η2

1
3
.

We assume that the piecewise polynomial interpolation τ a c: [ , ]fN can be used instead of a continuous function τf in the weakly singular equations.
On every subinterval = …−x x j N[ , ], ( 1, ,2 )j j1 , τfN is a polynomial of degree 1 and interpolates τf at the points ξj1 and ξj2.

= = = …τ ξ τ ξ i j N( ) ( ), 1, 2; 1, ., 2fN ji f ji

Thus, this interpolation function is independently defined on each subinterval = …−x x j N[ , ], ( 1, ,2 )j j1 and may be discontinuous at the interior
grid points = = … −x x j N, ( 1, , 2 1)j . The interpolation function τfN in the interval = …−x x j N[ , ], ( 1, ,2 )j j1 is represented as

∑= ∈
=

−τ x s ϕ x x x x( ) ( ), [ , ]fN
i

ji ji j j
1

2

1

where ∈ −ϕ x x x x( ), [ , ]ji j j1 is a polynomial of degree −m 1, such that

= ⎧
⎨⎩

=
≠

= …ϕ ξ
if k i
if k i

k m( )
1,
0,

, 1, .,ji jk

In this paper, the approximate solution τfN within the interval = …−x x j N[ , ], ( 1, ,2 )j j1 is represented as

=
−
−

+
−
−

≤ ≤−τ x s
ξ x
ξ ξ

s
x ξ
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x x x( ) ,fN j

j
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j

j
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2

2 1
2
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2 1
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(C.2)
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Here, ξj1 and ξj2 are determined from Eq. (C.1), and the coefficients sj1 and sj2 are the unknown variables.
Thus, for the condition in which the crack and the associated plastic zone are completely inside a grain, Eqs. (A.5) and (A.9) are discretized as

∫∑ ∑ ∑ ⎜ ⎟
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∫∑ ⎜ ⎟
⎛
⎝

− ′
−

+
′ −

−
⎞
⎠ −

=
=

′

′

−
s

ξ x
ξ ξ

s
x ξ
ξ ξ c x

dx πτ1
2l

N

x

x
l

l

l l
l

l

l l

A

1

2

1
2

2 1
2

1

2 1
2 2l

l

1 (C.4)

These are coupled nonlinear equations with unknown variables = … =s j N i, 1, , 2 , 1, 2ji and c.
Similarly, for the condition in which the plastic zone in front of the crack tip has reached a grain boundary, Eq. (B.6) is discretized as
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1 (C.5)

These equations (Eqs. (C.3) and (C.5)) are solved for the unknown variables using the Newton-Raphson numerical scheme.
After solving Eq. (C.5), the unbounded dislocation density is determined from Eq. (B.2). The unbounded dislocation density is then used in Eq.

(1.14) to find the stress in the adjacent grain at a distance r0 from the grain boundary (S r( )0 ), which is produced by the dislocations piling up at the
grain boundary.
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