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This paper addresses a two-step linear solution scheme to find an optimum metallic microstructure satisfying

performance needs and manufacturability constraints. The microstructure is quantified using the orientation

distribution function, which determines the volume densities of crystals thatmake up the polycrystal microstructure.

The orientation distribution function of polycrystalline alloys is represented in a discrete form using finite elements,

and the volume-averaged properties are computed. The first step of the solution approach identifies the orientation

distribution functions that lead to the set of optimal engineering properties using linear programming. This step leads

tomultiple solutions, of which only a few can bemanufactured using traditional processing routes such as rolling and

forging. In the second step, textures froma given process are represented in a space of reduced basis coefficients called

the process plane. This step involves generation of orthogonal basis functions for representing spatial variations of the

orientation distribution functions during a given process using proper orthogonal decomposition. Multiple

orientationdistribution function solutions in step one are then projected onto these basis functions to identifywhich of

the optimal textures are feasible through a given manufacturing process. This feasibility is determined with two

approaches. The first approach finds the closest match to the orientation distribution function solutions in the

material plane, whereas the second approach finds the closest match to a desired set of properties instead of the

orientationdistribution functions. Themethod is explained throughan example of vibration tuning of a galfenol alloy,

with the primary objective of maximizing the yield strength.

Nomenclature

A = orientation distribution function
A1 = one orientation distribution function solution for linear

solver
a = reduced-order model coefficients
C = spatial correlation matrix
Ceff = effective stiffness tensor
d = vector of desired material properties
E1 = Young’s modulus along axis-1
e = error vector for desired property matching
G12 = shear modulus in 1–2 plane
Ip = polar inertia moment
I1 = moment of inertia along axis-1
J = torsion constant
L = beam length
L = macrovelocity gradient
m = unit mass
N = number of independent nodes
N = number of snapshots
q = volume fraction
r = orientation
r = error vector for orientation distribution function

matching
S = compliance
t = time
V = null-space vector
ϵ = volume-averaged strain
ρ = density

σ = volume-averaged stress
σy = yield stress
ϕ = basis function
χ = orientation dependent property
ω1b = first bending natural frequency
ω1t = first torsion natural frequency

I. Introduction

R EALIZATION of optimal material properties is important for
hardware components in aerospace applicationswhere there is a

continuous need to reduce material utilization for reduced process
cost, fuel consumption, and higher mobility. Critical components
involve performance indices that are directly related to micro-
structures obtained during processing. This calls for direct control of
microstructure evolution using well-designed processes. Property
cross plots, which are a standard approach for materials selection, as
generalized by Ashby [1], have allowed graphical quantification of
property–performance relations. Recent developments in materials
by design have allowed a more advanced systems approach that
integrates processing, structure, and property through multiscale
computational material models [2]. In the area of composites,
techniques that enable tailoring of microstructure topology have
allowed the design of structures with interesting extremal properties
such as negative thermal expansion [3] and a negative Poisson’s ratio
[4]. In contrast to composites, techniques that allow tailoring of
properties of polycrystalline alloys involve tailoring of preferred
orientation of crystals manifested as the crystallographic texture.
During forming processes, mechanisms such as crystallographic slip
and lattice rotation drive the formation of texture and variability in
property distributions in such materials. A useful method for
designing materials is through control of deformation processes
leading to the formation of textures that yield desired property
distributions.
The microstructure modeling of the present work is based on the

quantification of the microstructure using the orientation distribution
function (ODF). The ODF represents the volume fractions of the
crystals of different orientations in the microstructure. The ODF is
defined based on a parameterization of the crystal lattice rotation.
Popular representations include Euler angles [5,6] and classes of
angle-axis representations, with the most popular being the
Rodrigues parameterization [7]. Conversion of continuous
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orientation space to finite degrees of freedom for material property
optimization requires discretization techniques. Discretization
schemes either focus on a global basis (e.g., Fourier space or
spherical harmonics [8,9]) or a local basis using a finite element
discretizedRodrigues spacewith polynomial shape functions defined
locally over each element [10,11]. Step one of the microstructure
optimization problem involves computation of the discretized ODF
values that satisfy a given set of desired properties. Liu et al. [12]
achieved this by directly sampling the ODF space using a data-
mining methodology. However, the space of all possible ODFs is
high-dimensional and sampling in the property space is favorable
because the number of design variables is significantly lesser. Adams
et al. [8], Kalidindi et al. [9], and Fast et al. [13] employed sampling
within the property hull similar to this work, but they employed a
Fourier basis for discretizing the ODF. In a previous paper [14], we
demonstrated the use of the finite element representation of the ODF
to compute optimal ODF solutions to an engineering problem. The
approach presented in that work led to multiple ODF solutions.
The motivation of the present work is to find out which of the

multiple ODFs identified from this optimization step can be
manufactured using a set of deformation processes. Li et al. [15]
addressed this problem by representing processing paths as
streamline functions in the space of spectral coefficients. This
allowed inversion of processing paths by tracking streamlines
connecting the initial and optimal textures. The complexity of the
model depended on the number of spectral coefficients used to
represent texture. Since a large number of spectral terms were needed
to capture sharp textural features, the complexity of the models used
to describe processing paths increased accordingly. In this work,
textures from a given process are represented by using basis functions
that are derived using proper orthogonal decomposition (POD) [16].
The multiple optimum ODFs from step one are projected onto the
basis functions of various deformation processes, and the optimal
process is identified as the one that minimizes the distance between
any one of the optimalODFs and theODF that can be achieved from a
process. A second approach where the optimal property values are
projected into the process basis is also presented. The remainder of
this paper is organized as follows. Section II addresses the
computation of microstructure properties and reduced-order models
of the ODF. In Sec. III, we discuss the features of the galfenol beam
vibration tuning problem and the optimization results. Section IV
includes identification of the optimal processes using linear solution
methodologies. A summary of the paper and potential extensions are
finally discussed in Sec. V.

II. Modeling Properties of Microstructures

The alloy microstructure consists of multiple crystals, with each
crystal having an orientation. The generalized Hooke’s law for the
aggregate of crystals may be written in the form

< σij >� Ceff
ijkl < ϵkl > (1)

where < ϵkl > and < σij > are the volume-averaged strain and stress,
respectively, in the aggregate; andCeff is the effective stiffness tensor
in sample coordinate system. Assuming homogeneity of the
deformation in a macroscale elementary volume, the effective elastic
properties may be found through averaging using the Taylor
approximation [17]:

Ceff �< C > (2)

where C is the stiffness tensor for each crystal in the sample
coordinate frame and the average is done over the aggregate of
crystals. If the effect of factors (e.g., crystal size and shape) is ignored,
averaging (denoted by <·> in the preceding equation) can be
performed over the orientation distribution function (represented by
A). The ODF gives the volume density of each orientation in the
microstructure. If the orientation-dependent property for single
crystals χ�r� is known, any polycrystal property can be expressed as
an expected value, or average, in the orientation space given by

< χ >�
Z
R
χ�r�A�r; t� dv (3)

where the ODF (A ≥ 0) is a function of orientation r and time t
(during processing), and it satisfies the normalization constraintZ

R
A�r; t� dv � 1

A. Property Representation in Rodrigues Space

The present work employs the axis-angle parameterization
of the orientation space proposed by Rodrigues as discussed in
Kumar and Dawson [10]. Angle-axis representations define an
alternate way of representing orientations compared to Euler angles
[5,18]. The Rodrigues parameterization is created by scaling the axis
of rotation n as r � n tan�θ∕2�, where θ is the rotation angle. Finite
element discretization of the orientation space (as shown in Fig. 1)
and associated integration schemes using Gauss quadrature allow a
matrix representation of Eq. (3). The ODF is discretized into N
independent nodes with Nelem finite elements and Nint integration
points per element. Using this parametrization, any polycrystal
property can be expressed in a linear form as follows [16]:

< χ > �
Z
R
χ�r�A�r; t� dv

�
XNelem

n�1

XNint

m�1

Z
R
χ�rm�A�rm�wmjJnj

1

�1� rm · rm�2
(4)

where A�rm� is the value of the ODF at themth integration point with
global coordinate rm of the nth element, jJnj is the Jacobian
determinant of the nth element, wm is the integration weight
associated with the mth integration point, and

1

�1� rm · rm�2

represents the metric of Rodrigues parameterization. This is
equivalent to an equation linear in the ODF: < χ >� pintTAint, where

pint
l � χ�ri�wijJij

1

�1� ri · ri�2

and Aint � A�ri�, i � 1; : : : ; Nint × Nelem. Using a smoothing
operation, the equation can be written in terms of the independent
nodes of the ODF (considering the crystallographic symmetry) as
< χ >� pTA. Similarly, the normalization constraint

Fig. 1 Finite element discretization of the orientation space.
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Z
R
A�r; t� dv � 1

leads to a linear equation qTA � 1. The space of all possible
ODFs is in the form of a hyperplane satisfying the normalization
(qTA � 1) and positiveness (A ≥ 0) constraints and is called the
“material plane.”
The polycrystal stiffness �C is computed through a weighted

average (overA) of the stiffnesses of individual crystals expressed in
the sample reference frame. In a general case, use of Eq. (2) to
compute the effective stiffness tensor results in an anisotropic
stiffness tensor. The yield stress is computed using a crystal plasticity
model from recent work [12].

B. Reduced-Order Model of the ODF

The discussion here follows the work in [19–21], where
model reduction of crystal plasticity was first introduced using the
technique of POD. Model reduction involves generation of basis
functions optimal for representing ODFs obtained from a process
path. Using such basis functions, any ODF [A�r; t�] from the time
history of ODF evolution in a given process can be approximated as
follows:

A�r; t� �
Xb
m�1

am�t�ϕm�r� (5)

In the preceding equation, ϕm represents “b” basis functions
(independent of time) and am�t� denotes the corresponding
time-dependent coefficients. Once such basis functions ϕm are
computed, time-dependent coefficients can be used to reconstruct the
textures arising from the process path. Readers are referred to [19],
where texture evolution is computed by using Eq. (5). Texture
evolution can also be computed across a set of extrapolatory regimes
of the process (i.e., conditions deviating from those used to generate
the basis functions) using the same set of basis functions.
The “method of snapshots” is an efficient technique of

obtaining basis functions from an ensemble of ODF data
[A�r; t�Ni�1] consisting of ODFs at various times during texture
evolution over a deformation path. Here, the basis functions ϕ take
the form [19]

ϕm �
XN
i�1

umi A
i (6)

whereAi represent textures from the ensemble, andumi is determined
by solving the following linear eigenvalue problem:

CU � ΛU (7)

where C is the spatial correlation matrix defined as

Cij �
1

N

Z
R
Ai�r�Aj�r� dv (8)

Λ and U comprise the eigenvalues and the eigenvectors of the
system, respectively. To determine a suitable basis size b, one must
ensure that the eigenmodes selected capture as much “system
energy” as possible. This is possible by selecting the basis functions
that correspond to the largest eigenvalues inΛ. Once the modes have
been evaluated, the optimal basis is generated from Eq. (6). The
coefficientsa corresponding to anyODF in a deformation path can be
retrieved from

am �
Z
R
A�r�ϕm dv (9)

The space of reduced coefficients is called the process plane and
satisfies the normalization and positiveness constraints of the ODF.
The ODFs in a deformation path follow a curve in the space of

reduced coefficients a. The success of the technique for representing
texture evolution was shown in [19,21,22], where just three basis
functions were found to be sufficient for capturing most features of
the evolving ODF in any given process. Basis functions are
obtained for different processing modes using a 448-element
discretization of the fundamental region. The basis used in the
examples consists of modes generated from an ensemble
of data obtained for tension, compression and shear processes up to
time of 0.1 s when deformed with a strain rate of 1 s−1 using a time
step of Δt � 0.01 s. The basis depends upon the initial texture
A�r; t � 0� that is used in the solution of ODF evolution. However,
the strength of POD analysis used here lies in the fact that the reduced
basis works in extrapolatory modes to represent texturing under
various deviations in the initial texture. As a result, ODFs resulting
from processing to a different strain or processing a starting texture
that deviates from the one used to build the basis are well
approximated using the same set of basis functions. Different basis
functions are generated to simulate different process sequences [22].
The reduced models used to represent the deformation paths are
different, for example, whenmodeling the tension process on a rolled
specimen compared to a process of tension acting on an annealed
specimen with random texture. The basis functions for the tension,
plane-strain compression, and shear processes are shown in Fig. 2.
The process planes for these processes are shown in Fig. 3, by
property (yield stress of galfenol).

C. Range of Properties Obtainable from the Material Plane

Property closures represent a complete range of properties
obtainable from the space of ODFs. These are approximated by the
space between upper and lower bounds of the given property. The
upper-bound closure of stiffness values represents the range of
properties obtainable by the upper-bound homogenization relation in
Eq. (10). The lower-bound approach, which is based on a constant-
stress assumption, computes the properties in C−1 space. < C >
computations with upper- and lower-bound approaches are given in
Eqs. (10) and (11), respectively:

< C >�
Z
R
CA dv (10)

< C−1 >�
Z
R
C−1A dv (11)

In both cases, the extremal ODFs correspond to the single
crystals. The methodologies for developing the space of all
possible properties (called property closure) are presented in [14].
The optimization is performed by sampling in the property space
to identify the best combination of properties for a given
engineering problem. A direct linear solver then determines the
ODFs corresponding to the optimum properties in C and C−1

spaces. The solver is also capable of finding multiple/infinite
solutions using the null space Vi of the coefficient matrix of the
optimization problem. The methodology is explained in detail in
another paper [14]. The infinite solutions can be represented as
shown in the following:

Ai � A1 � λVi; where i � 1; 2; 3; 4; : : : ;n (12)

where Eq. (12) defines the infinite solutionsAi, using one solution
A1, and null-space vectors Vi; and n is the number of null-space
vectors. Even though the number of null-space vectors is finite, the
number of solutions can be infinite because λ can be any number
that satisfies the ODF positiveness and normalization constraints.

III. Vibration Tuning of a Cantilever Galfenol Beam

The microstructure design involving vibration tuning of a
cantilevered galfenol beam with a yield strength objective (Fig. 4) is
explained here. The stiffness parameters and yield stress of the
galfenol beam are represented using independent ODF values. The
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number of independent ODF values in this problem is 76 for themesh
considered here (Fig. 1). The goal of the problem is to find the ODFs
that maximize yield stress while the first bending and torsional
natural frequencies are constrained for vibration tuning.

According to the coordinate system introduced in Fig. 4, the
analytical equations of the first torsional and bending natural
frequencies for an orthotropic material can be shown, respectively, as
follows:

Fig. 2 Basis functions of different processes.
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ω1t �
π

2L

�����������
G12J

ρIp

s
(13)

ω1b � �αL�2
����������
E1I1
mL4

r
and αL � 1.87510 (14)

whereG12 � 1∕S66,E1 � 1∕S11, and S are the compliance elements
(S � C−1); E1 is the Young’s modulus along axis 1; and G12 is the
shear modulus in the 1–2 plane. In these formulations, J is the torsion
constant, ρ is density, Ip is the polar inertia moment, m is the unit
mass, L is the length of the beam, and I1 is the moment of inertia
along axis 1. The computation of the yield stress using upper- and
lower-bound approaches is given in Eqs. (15) and (16), respectively,
in terms of single crystal yield strengths along the beam axis:

< σy >�
Z

σyA dV (15)

< σ−1y >�
Z

σ−1y A dV (16)

The mathematical formulation of the optimization problem is
given as follows:

max σy (17)

subject to

Z
A dV � 1 (18)

subject to 21.5 Hz ≤ ω1t ≤ 23.5 Hz (19)

subject to 100 Hz ≤ ω1b ≤ 114 Hz (20)

A ≥ 0 (21)

The optimization problem includes the normalization constraint as

well as the constraints for the first natural frequencies to tune the

Fig. 3 Property closures for different deformation processes.

Fig. 4 Geometric representation of galfenol beam vibration problem.
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beam vibration. To solve the problem, the length of the beam is taken

asL � 0.45 m and the beam is considered to have a rectangular cross

section with dimensions of a � 20 mm and b � 3 mm. The steps

taken to optimize the microstructure are summarized in the recent

work of the authors [14].

IV. Results

The multiple solutions of this problem correspond to the designs

having the same values for microstructure dependent input

parameters (E1 and G12). The problem has 73 solution directions

(76 optimization variables and three linear equations: two of them for

computation of E1 and G12, and one of them for the unit volume

constraint), and these solutions are polycrystal designs. The property

closure graph for E1 and G12 variables (E −G space) is given in

Fig. 5. The parameters of the multiple optimum solution are given in

Table 1. Some of the optimum microstructure designs are shown in

Fig. 6. Since the linear solver was able to compute independent

solution directions for galfenol beam optimization problem, each

design in Fig. 6 is different than the others and has different ODF

values. However, they still lead to an identical maximum yield stress

value and satisfy the design constraints.

A. Identification of ODFs Closest to an Optimal ODF in the Material

Plane

Five different processes were considered in this work. The ODFs

from these processes are obtained using a specific macrovelocity

gradient L in the crystal plasticity solver [22] corresponding to these

deformation processes. For example, the x axis tension process is

based on the following velocity gradient [22]:

L � α1

2
4 1 0 0

0 −0.5 0

0 0 −0.5

3
5 (22)

The location of optimal ODFs on the material plane does not

convey information on how to realize such ODFs in practice. There

may be several processing solutions to this problem.Here, we choose

a particular processing path and check if it can closely produce one of

the optimal textures. The optimal ODF from the material plane is

assumed to be given by a perturbation r to an ODF in the process

plane.Wewish to minimize the perturbation in some sense, such that

an ODF from the process plane is as close as possible to the optimal

ODF in the material plane. In this work, the optimal ODFs on the

material plane are the optimal ODF values found for galfenol

vibration tuning problem.

The optimal ODF in the process plane is written as

Aopt �
Xb
m�1

amϕm � r > 0

where

A �
Xb
m�1

amϕm

provides the closest solution in the basis ϕ, and r is the perturbation
(or error) between the optimal ODF in the material plane
(Ai � A1 � λiVi) and the optimal ODF in the process plane. The
normalization constraint is given as qTAi � 1, and qTA � 1. The
bound in the value of the solution ODF from the given ODF (r0 ≥ 0)
is minimized. The problem is posed as

min
a

r0

such that Xb
m�1

amϕm � r −
Xn
i�1

λiVi � A1

The positivity of the optimal ODF dictates the constraintsA ≥ 0 and
Ai ≥ 0. In the solution procedure, the basis ϕm and the error r are
represented as a vector containing values at independent nodes (set of
nodes representing distinct orientations while accounting for crystal
symmetries). The ODFs in the process and material planes also
require the positivity constraints

Xb
m�1

amϕm ≥ 0

and

A1 �
Xn
i�1

λiVi ≥ 0

The additional constraint on the bound in the value of the solution
ODF from the given ODF is defined as jrij ≤ r0, which is equivalent
to pairs of linear inequalities: −ri − r0 ≤ 0 and ri − r0 ≤ 0,
i � 1; : : : ;N, where N is the number of independent nodes. This
problem uses x � �r1; : : : ; rN; λ1; : : : ; λn;a1; : : : ;ab; r0�T as the
variables to be identified. The error ri from the nodal values of the
optimal ODF is allowed to be of either sign. The implementation of
the augmented system to the linear programming (LP) problem is
given in detail in the following:

1. Equality Constraints

Xb
m�1

amϕm � r −
Xn
i�1

λiVi � A1 qT
�Xb
m�1

amϕm

�
� 1

qT
�Xn

i�1

λiVi

�
� 1 − qTA1 (23)

Three basis functions ϕ1, ϕ2, and ϕ3 with corresponding
coefficients a1, a2, and a3 are used to fully represent the ODFs
during a particular process.Fig. 5 Property closure for E1 and G12.

Table 1 Optimization results for

vibration tuning of the galfenol beam

Parameters Optimum polycrystal design

σy 308.4456 MPa
E1 188.8229 GPa
G12 93.6282 GPa
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2. Augmented System Combining the Equality Constraints

The unknowns in the LP tableau are then written as

x � �r1; : : : ; rN; λ1; : : : ; λn;a1;a2;a3; r0�T . Thus, the augmented

system combining the constraints in Eq. (23) can be written as

Paugx � b, where b � �AT
1 ; 1; 1 − qTA1�T and

�Paug� �
2
4IN×N −V1 : : : −Vn ϕ1 ϕ2 ϕ3 0N×1
01×N 0 : : : 0 qTϕ1 qTϕ2 qTϕ3 0

01×N qTV1 : : : qTVn 0 0 0 0

3
5

where IN×N is an N × N identity matrix. The notation of 0N×1 and

01×N indicates the row and column vectors of zeros, respectively.

3. Inequality Constraints

Similar augmentations are performed for the inequality constraints

for the problem given as

−ri − r0 ≤ 0 ri − r0 ≤ 0
Xb
m�1

amϕm ≥ 0 A1 �
Xn
i�1

λiVi ≥ 0

(24)

4. Augmented System Combining the Inequality Constraints

The augmented system combining the constraints in Eq. (24) can

be written as Maugx ≤ c, where c � �01×N; 01×N; 01×N;AT
1 �T , and

each row of Maug corresponds to the inequalities in Eq. (24) as

indicated in the following:

�Maug� �

2
666664

−IN×N 0 : : : 0 0 0 0 −1N×1

IN×N 0 : : : 0 0 0 0 −1N×1

0N×1 0 : : : 0 −ϕ1 −ϕ2 −ϕ3 0

0n×N −V1 : : : −Vn 0 0 0 0

3
777775

The notation 1N×1 indicates a vector of ones. The objective is to

minimize the bound on the error r given by r0. The objective is given
as fTx, where

f � � 01×N 01×n 01×3 1 �T

5. Final LP Problem

Thus, the final LP problem reduces to the solution of the following

problem:

min
a

fTx satisfying the constraints Paugx � b Maugx ≤ c

Our objective is to identify the location fa1;a2;a3g on the process
plane that best represents the optimal ODF on the material plane

computed for the galfenol beam vibration tuning problem. Tension,

plane-strain compression and shear are selected as the particular

processes, and their basis functions were computed to represent the

ODF evolution in these processes. The augmented LP problem is

solved for each of these individual processes to identify the closest

ODFs on each process plane to the optimal ODFs on the material

plane. The values of the objective functions of the LP problems,

min r0 and max σy, are compared for each process in Table 2. It

Fig. 6 Optimal ODF examples for galfenol beam microstructure.
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should be noted that the optimal ODFof the vibration tuning problem

provides a yield stress value of 308.4456 MPa, and the ODFs on the

process plane are expected to provide a close value to the optimum

yield stress value.
The results in Table 2 indicate that the ODFs in all the process

planes provide similar values of the highest yield strength. The

objective, min r0, shows the maximum error value among the

independent nodal values in the process and material planes. Thus,

the other error values for the rest of the node points in theODFare less

than the objective function value. Since the main objective of this

section is to find the best match for the optimal ODF, the best process

that provides the closest ODF distribution is the tension process

(due to its smallest r0 value). The closest microstructure design on the

process plane with this approach (approach 1) to the optimum

microstructure on the material plane is shown in Fig. 7. The

microstructure design in Fig. 7 shows a similar ODF distribution

pattern compared to tension process basis functions in Fig. 2. Thus,

this microstructure design via a tension deformation process ensures

the possibility of manufacturing a very similar ODF to one of the

optimum solutions to the galfenol beam vibration tuning problem.

B. Identification of ODFs to Obtain Properties Closest to Desired Set

of Properties

Similar to the optimization problem described in Sec. IV.Awhere

the process planeODFs closest to optimal ODFs in thematerial plane

were identified, another optimization problem can be posed where

the objective is to identify ODFs in the process plane that closely

reproduce a desired set of properties. The optimization problem in

this case is posed so as to identify ODFs in the process plane for

which the properties are closest to a desired set of properties in some

sense. This approach is beneficial because the optimum ODFs in the

process plane will provide the closest match to the desired property

values produced by the optimumODF solution in the material plane.

Even though the problem definition does not provide any control on

the ODF values of the material plane, there is still a good possibility

of matching the textures in the material and process planes due to

matchingmultiple properties. The objective is to minimize the bound

(e0 ≥ 0) on the absolute value of error from a desired property:

min
a

e0

such that

Xb
m�1

pTϕmam � pTe � d

where d is the desired set of properties. The normalization constraint

is given as

Xb
m�1

qTϕmam � 1

Positivity of the ODF dictates the constraint

Xb
m�1

ϕmam ≥ 0

The bound on the absolute value of error is defined as jeij ≤ e0. This
is equivalent to pairs of linear inequalities: −ei − e0 ≤ 0 and

ei − e0 ≤ 0, where i � 1; : : : ;np, and where np denotes the number

of properties to be optimized. This problem uses x �
�e1; : : : ; enp ;a1; : : : ;ab; e0�T as the variable to be identified. The

error ei is allowed to be of either sign. The initial desired properties

are the design objective (yield stress) and design constraints (natural

frequencies) of the galfenol vibration tuning optimization problem.

The computation of natural frequencies is not linear, but it is

dependent on the stiffness values. Thus, the stiffness parameters,

which are calculated with averaging equations, are considered as the

representative linear quantities of the design constraints. So, the final

desired properties are selected as optimum values of the yield stress

and nine independent orthotropic stiffness elements of the vibration

tuning problem. The implementation of the augmented system to the

LP problem is given in detail in the following:

1. Equality Constraints

pT

�Xb
m�1

amϕm � e

�
� d qT

Xb
m�1

amϕm � 1 (25)

Three basis functions ϕ1, ϕ2, and ϕ3 with corresponding

coefficients a1, a2, and a3 are used to fully represent the ODFs

during a particular process.

2. Augmented System Combining the Equality Constraints

The unknowns in the LP tableau are then written as x �
�e1; : : : ; enp ;a1;a2;a3; e0�T . Thus, the augmented system combin-

ing the constraints in Eq. (25) can be written as Paugx � b, where
b � �d; 1�T and

Table 2 LP problem results

for ODF matching on material

and process planes

Process r0 σy, MPa

Tension 0.4689 300.0880
Compression 0.8811 296.6571
xy shear 0.8673 298.2191
xz shear 0.9078 301.8826
yz shear 0.9394 299.1096

Fig. 7 Optimum microstructures on process planes.
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�Paug� �
�

pT pTϕ1 pTϕ2 pTϕ3 0

0Tnp×1 qTϕ1 qTϕ2 qTϕ3 0

�

3. Inequality Constraints

Similar augmentations are performed for the inequality constraints

for the problem given as

−ei − e0 ≤ 0 ei − e0 ≤ 0
Xb
m�1

amϕm ≥ 0 (26)

4. Augmented System Combining the Inequality Constraints

The augmented system combining the constraints in Eq. (26) can

be written asMaugx ≤ 0, where each row ofMaug corresponds to the

inequalities in Eq. (26) as indicated in the following:

�Maug� �
2
4−Inp×np 0np×1 0np×1 0np×1 −1np×1

Inp×np 0np×1 0np×1 0np×1 −1np×1
0np×np −ϕ1 −ϕ2 −ϕ3 0np×1

3
5

The objective is to minimize the bound on the error e given by e0.
The objective is given as fTx, where

f � � 01×N 01×3 1 �T

5. Final LP Problem

Thus, the final LP problem reduces to the solution of the following

problem:

min
a

fTx satisfying the constraints Paugx � b Maugx ≤ 0

The problem is to identify the point on a process plane that best

represents optimal ODFs in the material plane with desired stiffness

properties (C11 � 281.5559 GPa, C12 � 137.3222 GPa, C13 �
139.5597 GPa, C22 � 296.9677 GPa, C23 � 124.1479 GPa,
C33 � 249.7302 GPa, C44 � 70.3946 GPa, C55 � 85.8063 GPa,
and C66 � 94.2138 GPa) and yield stress (σy � 308.4456 MPa) of
the optimum design. The objective function of the LP problem is a

measure of themaximumerror between the desired property values in

the material and process planes. The problem is solved for tension

plane-strain compression and shear processes particularly. The

results for the objective functions of the LP problems (min e0 and

max σy) are shown in Table 3.
The selection of the best processes that represent the closest

properties does not depend on the minimum value of e0 this time

because the sensitivity of various stiffness parameters to the problem

objective is different, and all e0 values are close to each other. The

best process chosen was the one that led to the highest yield stress.
According to this criterion, xz shear is the best process for this

problem. The ODF designs corresponding to xy- and xz-shear
processes are shown in Figs. 7b and 7c, respectively. The ODF

designs that give the closest desired property match on the process

plane are not close to the actual ODF solutions in Fig. 6 because the
objective of the this problem is to match properties directly rather

than the optimal ODFs. This also means that none of the processes

considered here are able to achieve the global optimum solutions to
the problem as identified in Fig. 6. In the future, a sequence of

processes (e.g., tension followed by shear) may be investigated

instead of using one particular deformation process. To indicate the

difference in textures, the reduced-order model coefficients of the

optimum deformation processes computed with ODF matching and

desired property matching approaches are shown in Table 4.

According to the results in Table 4, every process has a different set of
reduced-order model coefficients depending on the solution method.

There is especially a considerable difference for xy-shear and

xz-shear processes. Since the basis vectors of any process are always
the same, the differences in the reduced-order model coefficients

result in different textures for different methods. The ODF matching

approach (Sec. IV.A) includes the null-space vectors in the problem
definition. Therefore, its ODF values are the closest matches that can

be provided by any deformation process. However, the optimum

ODF solution in the material plane is not included in the property

matching approach. Therefore, each process provides a different set

of ODF values for different methods. The difference between the

problem definitions of the ODF matching and desired property

matching approaches is also the reason that different processes are
found to be the optimum solutions of these approaches. According to

the results in Secs. IV.A and IV.B, tension is the optimum process to

generate the closest texture to the optimumdesign. However, xz shear
is the optimum process to provide the closest property values that are

produced by the optimum design.

V. Conclusions

This paper develops a microstructure and process optimization

methodology for structural problems with a set of macroscale

(engineering) design objectives. A two-step approach is followed.
In step one, an optimal set of properties is obtained by sampling

the property closures, and the multiple orientation distribution

functions (ODFs) that lead to these properties are computed using a

linear solver. This approach was developed in a previous work. In

this paper, an approach is developed to identify microstructures that

can be manufactured using a known set of deformation processes.
ODFs that can be achieved from various processes are described in a

space of reduced-order coefficients (called the process plane),

which is obtained using proper orthogonal decomposition. The best

processing route is identified by minimizing the distance between

any one of the optimal ODFs and the process plane using an aug-

mented linear solver. Another approach where the optimal set of

properties is directly projected onto the process plane is also
developed. The methods are demonstrated using a vibration tuning

problem with the objective of maximizing the yield strength of a

galfenol beam. The process plane that is closest to the global

optimumODF is from a tension process. However, the properties of

the closest ODF on the process plane are suboptimal. The best set of

properties is obtained using an xz-shear process on a random
(annealed) texture; however, the global optimal ODF solutions

identified in step one are not within the set of deformation processes

considered here. In the future, a sequence of processes (e.g., tension

followed by x-z shear) may be investigated instead of using one

particular deformation process to achieve improved properties.

Table 3 LP problem results

for desired propertymatching on

material and process planes

Process e0 σy, MPa

Tension 1.9059 300.1220
Compression 1.8681 301.1314
xy shear 1.9578 305.6497
xz shear 1.9338 309.0784
yz shear 1.8343 296.7675

Table 4 Reduced-order model coefficients for different

methods

Process Method a1 a2 a3

Tension ODF matching 0.3869 −0.6403 −1.6069
Tension Property matching 0.3873 −0.6346 −1.6065
xy shear ODF matching −0.2369 0.3195 −1.5088
xy shear Property matching 0.1315 0.7459 −1.4369
xz shear ODF matching −0.0878 0.4592 −1.4882
xz shear Property matching 0.2173 −0.5158 −1.6756
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