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h i g h l i g h t s

• An integrated algorithm for cyclotetramethylene tetranitramine (HMX) particle detonation that incorporates equations of state, Arrhenius kinetics,
and mixing rules.

• A stabilized Taylor–Galerkin finite element simulation algorithm with pressure and temperature equilibrium enforced across phases.
• The scheme captures the distinct features of detonation waves: rarefaction wave, contact discontinuity, shock wave, and the von Neumann spike.
• Computed detonation velocity compares well with experiments reported in literature.
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a b s t r a c t

Design of energetic materials is an exciting area in mechanics and materials science. Energetic composite
materials are used as propellants, explosives, and fuel cell components. Energy release in these materials
are accompanied by extreme events: shock waves travel at typical speeds of several thousand meters per
second and the peak pressures can reach hundreds of gigapascals. In this paper, we develop a reactive
dynamics code for modeling detonation wave features in one such material. The key contribution in this
paper is an integrated algorithm to incorporate equations of state, Arrhenius kinetics, and mixing rules
for particle detonation in a Taylor–Galerkin finite element simulation.We show that the scheme captures
the distinct features of detonation waves, and the detonation velocity compares well with experiments
reported in literature.

© 2016 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Energetic composite materials are used as propellants, explo-
sives, and fuel cell components. During the detonation of these
materials a shock wave is sustained by the rapid chemical en-
ergy heat release involving tightly coupled nonlinear interactions
between chemistry and mechanics. These waves have extreme
features which laboratory experiments are seldom equipped to
handle; they travel at typical speeds of several thousand meters
per second and the peak pressures can reach about 100 GPa [1].
Currently, there is significant interest in engineering the mi-
crostructures of these energetic composites for targeted shock
sensitivity and energy output. Literature in this area indicate the
importance of composite features, for example, smaller energetic
particles have lesser run time to detonation [2] and the time to
detonation increases with the strength and content of the matrix
(binder) material [3]. The first step in understanding these effects
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is the development of a reliable computational model of the ener-
getic particle, typically the energetic crystal cyclotetramethylene
tetranitramine (HMX), in these composites.

Modeling reactive burn of extreme detonation events is a sig-
nificant challenge. The model is highly dependent on experimen-
tal data for each explosive composition. Unreacted material is
converted to detonation products by a finite reaction rate where
intermediate reactive species only exist for a few nanoseconds
and are extremely difficult to measure experimentally. Reactive
burn models are typically pressure (e.g. Ref. [4]) or tempera-
ture dependent (e.g. Arrhenius model). Arrhenius reaction kinet-
ics are often approximated in a single step [5] and are tuned
to experiments and chemical data such as heats of formation
[6–8]. Equations of state are defined for each of the reaction states
and mixing rules are needed for partially reacted states. Typically
for the pressure dependent models, pressure equilibrium is as-
sumed [9] or an analytic mixture is used [10] for partially burned
mixture of reactants and products. For temperature based Arrhe-
nius models, it is assumed that the unreacted explosive and reac-
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tion products are in both temperature and pressure equilibrium.
Although timescales of interest suggest that pressure equilibrium
is reached long before temperature equilibrium, both temperature
and pressure equilibrium is used in this work. This assumption is
widely used [5,11] and will affect partially reacted pressures and
temperatures.

Shock strength of HMX is typically an order of magnitude
higher than its yield strength. The material response of HMX
under shock conditions is described by an isotropic equation of
state (EOS) relating pressure, volume, and energy. A variety of
equations of states have been proposed, the popular ones being
the Jones–Wilkins–Lee (JWL) form [4], the Murnaghan form [10],
and the Grüneisen form. The Grüneisen form, with a linear shock
velocity versus particle velocity Hugoniot, has been employed in
several studies [12–14]. For the gaseous reaction products, by
far the most popular equation of state is the JWL form that was
developed by measuring the expansion velocity of metal casings
surrounding HMX [15].

Shockwave propagation through reactivematerials is governed
by the reactive Euler equations, a nonlinear set of hyperbolic
conservation laws. Classical formulations in the fluid dynamics
community use Riemann solvers in the context of finite volume
methods [16,17]. In the context of standard finite element
methods, various methods such as Petrov Galerkin (PG) methods,
Galerkin/least-squares (GLS) methods, and the Taylor–Galerkin
(TG) methods have been developed. In the PG and GLS methods,
a stabilization termwith a coefficient is added to the weak form to
act as an artificial diffusion, however, the choice of the coefficient
is semi-empirical [18,19]. The basic TG algorithm was proposed
by Donea [20] in which Taylor expansion in time precedes the
Galerkin space discretization. TG finite element schemes are
especially attractive since the diffusion arises from an improved
Taylor approximation (second-order) to the time derivative of
the fields while increasing computational efficiency [21]. While
TG algorithms have been successfully applied in areas such as
pollutant transport and fluid dynamics [22–24], there does not
exist a prior study of the technique for detonation of energetic
particles. In this paper we present a one-step second-order
TG finite element scheme for modeling detonation of HMX via
benchmark cases. The integrated algorithm incorporates a high
resolution shock capturing scheme, multiple equations of state,
Arrhenius kinetics, and mixing rules.

1. Euler equations

In detonation simulations, diffusive phenomena are neglected
since pressure transfer time scales are two to three orders of
magnitude faster than heat or species transfer time scales [25].
The 2D reactive Euler equations are then given by the following
equations

Ut + (F1)x + (F2)y = S (1)

with

U =


ρ
ρu
ρv
ρE
ρNA

 , S =


0
0
0

ρNAqZe−E1/RT

−ρNAZe−E1/RT

 ,

F1 =


ρu

ρu2
+ p

ρuv
(ρE + p)u

ρuNA

 , F2 =


ρv
ρuv

ρv2
+ p

(ρE + p)v
ρvNA

 . (2)

Here, ρ is the density, ρu and ρv are the momentum in the x
and y directions, p is the pressure and ρE is the total energy per
unit volume. The subscripts x, y, and t denote partial derivatives.
The source term S is based upon a one-step reaction scheme for
HMX described by A

1
−→ B, where NA is the mass fraction of the

unreacted explosive and NB is the mass fraction of the gaseous
reaction products. The reaction rate is given by the Arrhenius form
in S, where q is the heat release, Z is the static frequency factor,
E1 is the activation energy, and R is the molar gas constant. The
Euler equations are written in the quasi-linear form with Jacobian
matrices Ai = ∂Fi/∂U . The flux vectors are linearized as Fi = AiU
for the numerical implementation.

2. Computational model

Thematerial behavior is given in the formof an equation of state
for the unreacted solid and the explosive products. These equations
arewritten as a function of specific volume ν and energy e. They are
related to the state variables as follows:

ν = 1/ρ, e = E − (1/2)(u2
+ v2). (3)

The pressure and temperature (ps, Ts) for a solid unreacted ma-
terial are given by a linear Mie–Grüneisen EOS and those for the
gaseous reaction products (pg, Tg) are taken to be the JWL form.
The EOS equations and the model parameters can be found in
Ref. [11] and is available in a more condensed form in the supple-
mentary file accompanying this letter. For modeling a mixture of
solid and gaseous states, it is assumed that the unreacted explo-
sive and reaction products are in temperature and pressure equi-
librium; i.e. T = Ts(νs, es) = Tg(νg, eg) and p = ps(νs, es) =

pg(νg, eg). Equilibrium is enforced by iterating on νs and es. The fol-
lowing system can be solved using a Newton–Raphson method.


pg − ps
Tg − Ts


=


∂ps
∂νs

−
∂pg
∂νs

∂ps
∂es

−
∂pg
∂es

∂Ts
∂νs

−
∂Tg
∂νs

∂Ts
∂es

−
∂Tg
∂es

 
δνs

δes


. (4)

To relate the unreacted solid and reaction products, a mixture rule
is used, ν = (1 − λ)νs + λνg and e = (1 − λ)es + λeg. Here, λ
is the burn fraction; the mass fraction of detonation products in
the mixture. For the one-step reaction in this work, λ = NB. Now,
the system of equations is closed and both EOS can be expressed
in terms of the solid specific volume and internal energy. Conver-
gence is achieved when 1p < 10−4 Mbar (1 bar = 105 Pa) and
1T < 10−2 K as discussed in Ref. [11].

The 2D reactive Euler equations given by Eq. (1) are solved using
a one-step TG scheme. Thiswidely used time-stepping algorithm is
second-order accurate, explicit and analogous to the Lax–Wendroff
method [20]. Taking a Taylor series expansion of U (from Eq. (2))
in time,

Un+1
= Un

+ 1tUn
t +

1
2
1t2Un

tt + O(1t3), (5)

where 1t is the time step, superscripts n + 1 denotes the current
time and n denotes the previous time. The second term of the right
hand side of Eq. (5) is found from rearranging Eq. (1) and the third
term is found by differentiating Eq. (1) with respect to time. Now
Eq. (5) is written as

Un+1
= Un

+ 1t[S − (F1)x − (F2)y]n

+
1
2
1t2[St − (A1S − A2

1Ux − A1A2Uy)x

− (A2S − A1A2Ux − A2
2Uy)y]

n. (6)

At each time step, the equations of state and themixing rule is used
to compute Ai and the source terms. The field variables are solved
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using the weak form given as follows: 
W

Un+1
− Un

1t
dA

=

 
W Sn dA +

 
(Wx F1 + Wy F2)n dA

+
1
2
1t

 
W Snt dA

+
1
2
1t

 
Wx(A1S − A2

1Ux − A1A2Uy)
ndA

+
1
2
1t

 
Wy(A2S − A2A1Ux − A2

2Uy)
ndA

−

 
W (F n

1 +
1
2
1t(F1)nt )

x2

x1

dy

−

 
W (F n

2 +
1
2
1t(F2)nt )

y2

y1

dx. (7)

To ensure stability in regions of compressionwhere ∂u/∂x < 0 and
∂v/∂y < 0, flux is computed based on a group representation. Af-
ter Galerkin spatial discretization the algebraic equationM(Un+1

−

Un) = Bn is obtained and solved for Un+1. A lumping scheme is
then used for the purpose of adding numerical dissipation and to
give non-oscillatory solutions in the presence of steep solution gra-
dients [26]. Here, the consistent mass matrix M is replaced by the
diagonal matrix ML, obtained by row sum. The mass lumping re-
duces the second order TG scheme to a first order scheme. Addition
of a small first order solution adds an artificial numerical dissipa-
tion to the system. The smoothed solution is obtained by adding
a small dissipation through parameter d, where 0 ≤ d ≤ 1; for
maximum dissipation d = 1. The smoothed solution is obtained as

ML(U smooth
− Un+1) = d(M − ML)Un+1, (8)

where d is locally constructed by considering pressure gradients as
expressed in the equations below. Here, nodes ‘‘j’’ are connected to
nodes ‘‘i’’ where p() denotes local pressure and x() denotes local po-
sition.

di =

pj − 2pi + pi−
pj + 2pi + pi−

 , dj =

pj+ − 2pj + pi
pj+ + 2pj + pi

 , (9)

where

pi− = pj − 2(xj − xi) · [∇p]i,
pj+ = pi − 2(xj − xi) · [∇p]j. (10)

Then, the artificial viscosity coefficient for segment i-j is deter-
mined by the following equation, where χ is a free parameter dis-
cussed in the following section.

dij = min[χ max(di, dj), 1]. (11)

3. Verification using SOD shock benchmark problem

To test the stability and accuracy of the schemedescribed above,
the classical fluid dynamics shock tube problem is solved [27]. The
test consists of two fluids at differing pressures separated by a
membrane. Once the membrane is removed, a rarefaction wave
contact discontinuity and shockwave is formed. The solution for an
ideal gas is obtained analytically using Riemann invariants and is
comparedwith numerical results in Fig. 1. The numerical results in
Fig. 1 showgood agreementwith the exact solution and the distinct
characteristics of the test are captured. Next, the effects of the free
parameter χ on the numerical solution are studied. Figure 2 shows
the average error per node as a function of the parameterχ for two
Fig. 1. Numerical and analytical results for SOD shock tube.

Fig. 2. Effect of parameter χ on average error per node.

different time steps. In general, error increases with increasing the
parameter χ and decreasing the time step increases the average
error per node. The optimal parameter for both time steps is χ =

0.1, the value used in Fig. 1 and in subsequent sections.

4. Reactive HMXmodels in 1D and 2D

Next, shock loading a single HMX sample is studied. Numerical
results are obtained with linear elements for a 1 cm domain with
1x = 0.01 cm and 1t = 10−3 µs. Dirichlet boundary conditions
are usedwhere velocity is specified to be zero. Discontinuous initial
conditions are given for density and total energy. For the left half
of the domain ρ = 2.2 g/cm3 and E = 0.004 Mbar resulting
in a pressure of p = 5 GPa and temperature of T = 590 K.
The right half of the domain is set to ambient conditions where
ρ = ρ0 = 1.89 g/cm3 and E = 0.00 Mbar resulting in a
pressure of p = 0 GPa and temperature of T = 295 K. Velocity
is initially zero and the sample is purely solid with a mass fraction
of unity. Numerical results are shown in Figs. 3 and 4 at time steps
of t = 0.2 µs for a duration of one microsecond. Figure 3 shows
the density of the sample. As the solution progresses a rarefaction
wave, contact discontinuity, and shockwave form. The shockwave
travels through the right side of the domain with a value of ρ =

2.07 g/cm3. Behind the shock and discontinuity, the initial density
drops to a value of ρ = 2.04 g/cm3 as the solution evolves. At time
t = 1 µs, the rarefaction wave is located at 0.1 cm, the contact
discontinuity is located at 0.53 cm and the shockwave is located at
0.85 cm. Velocity reaches a maximum of u = 0.03 cm/µs during
the simulation. Figure 4 shows the pressure of the HMX sample.
The initial pressure drops from p = 5 GPa to p = 2.13 GPa and
is maintained through the shock front. The initial shock conditions
are not drastic enough to initiate detonation of the sample within
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Fig. 3. Numerical results of density for HMX sample at t = 0.2 µs time steps.

Fig. 4. Numerical results of pressure for HMX sample at t = 0.2 µs time steps.

the simulated duration of t = 1 µs. The mass fraction never falls
below NA = 0.99 and the material remains inert. The computed
shock velocity of the system is 0.36 cm/µs (p = 5 GPa) and
agrees with values reported in literature for experiments with
HMX particle composites. Shot # 1120 in Ref. [28] reports a shock
velocity of 0.39 cm/µs for an input pressure of p = 4.91 GPa.

Next, detonation of 1 cm by 1 cm HMX sample is studied. A
uniform mesh with a 1x = 1y = 0.01 cm and 1t = 10−4 µs is
used for a duration of t = 0.45µs. No-slip boundary conditions are
considered; i.e. u = 0 at x = [0, 1] cm and v = 0 at y = [0, 1] cm.
A circular detonation front was used with the initial discontinuity
located at r = 0.1 cm. The combustion front is represented as a
quarter of a circle that expands as the detonation proceeds. Within
the quarter circle the material is shocked to a pressure of p =

55 GPa and temperature of T = 2100 K. Outside, the domain is
set to ambient conditions. Figure 5 shows the temperature profile
at t = 0.4 µs. The temperature wave reaches a maximum value of
T = 3300 K and is sufficient enough to prompt detonation. Along
the 45◦ plane shown in Fig. 5 the burn fraction of the material
λ is plotted at time intervals of t = 0.045 µs in Fig. 6. Within
t = 0.045µs the solidwithin the quarter circle is fully burnt. As the
solution progresses the shock wave travels through the solid HMX
sample and becomes fully gaseous. The calculated shock speed of
1.53 cm/µs is much higher than the previous inert case due to
detonation.

This paper presented the one-step second-order Taylor–
Galerkin finite element scheme for modeling detonation of HMX
via benchmark cases. The integrated algorithm incorporates a
high resolution shock capturing scheme, multiple equations of
state, Arrhenius kinetics, and mixing rules for HMX detonation
simulations. In the detonation model, a one-step reaction scheme
was used and temperature and pressure equilibrium between
Fig. 5. Numerical results of temperature at t = 0.4 µs.

Fig. 6. Numerical results of burn fraction along 45◦ plane at t = 0.045 µs time
steps.

partially reacted states was enforced with a Newton–Raphson
method and rule of mixtures. The numerical scheme was tested
and agreed with exact solutions for SOD shock tube problem. The
test was repeated for a single HMX sample and we showed that
the shock velocity compared well with the experimental range
reported in literature. Future work will include adding equations
for a polymeric binder to simulate detonation in particulate
composite microstructures.
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