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Abstract
We test the notion that many microstructures have an underlying stationary 
probability distribution. The stationary probability distribution is ubiquitous: 
we know that different windows taken from a polycrystalline microstructure 
are generally ‘statistically similar’. To enable computation of such a probability 
distribution, microstructures are represented in the form of undirected 
probabilistic graphs called Markov Random Fields (MRFs). In the model, 
pixels take up integer or vector states and interact with multiple neighbors 
over a window. Using this lattice structure, algorithms are developed to sample 
the conditional probability density for the state of each pixel given the known 
states of its neighboring pixels. The sampling is performed using reference 
experimental images. 2D microstructures are artificially synthesized using 
the sampled probabilities. Statistical features such as grain size distribution 
and autocorrelation functions closely match with those of the experimental 
images. The mechanical properties of the synthesized microstructures were 
computed using the finite element method and were also found to match the 
experimental values.

Keywords: reconstruction, microstructure, finite element analysis, 
simulation, probability

(Some figures may appear in colour only in the online journal)

1.  Introduction

Microstructures are stochastic in nature and a single snapshot of the microstructure does not 
give its complete variability. However, we know that different windows taken from a polycrys-
talline microstructure generally ‘look alike’. In mathematical terms, this amounts to the pres-
ence of a stationary probability distribution from which various microstructural snapshots are 
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sampled. There are various ways of modeling this probability distribution indirectly. Feature-
based algorithms have long been used that categorize various microstructural snapshots based 
on a common set of underlying features, and generate new synthetic images with similar fea-
tures [1–3]. These features could include marginal histograms [1], multiresolution filter out-
puts (Gaussian [2] and wavelet [3] filters) and point probability functions (e.g. autocorrelation 
function) [4]. These methods are good at capturing the global features (volume averaged) of 
the image, however local geometric geometric features are not reconstructed correctly. Thus, 
features such as grain boundaries are smeared out when reconstructing polycrystalline struc-
tures [3]. Reconstruction of heterogeneous material such as geological materials [5], and par-
ticulate materials [6] are also performed using techniques similar to polycrystalline materials.

Alternatively, one could start with sampling the conditional probability density for the 
state of a pixel given the known states of its neighboring pixels [7–10] using reference 2D or 
3D experimental images. If only the nearest neighbors are chosen, this amounts to sampling 
from a Ising-type model [11, 12]. For general microstructures, the correlation lengths can 
span several pixels and a larger neighbor window may be needed [4]. In this work, we employ 
generalized Ising models called Markov Random Fields (MRFs) to model the probability dis-
tribution. While in Ising models, a lattice is constructed with pixels (with binary states) inter-
acting with its nearest neighbors, in MRFs, pixels take up integer or vector states and interact 
with multiple neighbors over a window. The sampling of conditional probability of a pixel 
given the states of its known neighbors is based on Claude Shannon’s generalized Markov 
chain [13]. In the one dimensional problem, a set of consecutive pixels is used as a template 
to determine the probability distribution function (PDF) of the next pixel. Sundararaghavan 
[14] used this approach for synthesizing 3D microstructures from 2D micrographs. Here, 
pixel variables in a 3D microstructure were optimized so as to match the conditional prob-
ability densities on orthogonal 2D sections with the reference images. In this work, an alter-
nate approach is employed where microstructures are grown layer-by-layer from a small seed 
image ( ×3 3 pixels) taken randomly from the experimental micrograph. The algorithm first 
finds all windows in an experimental micrograph that are similar to an unknown pixel’s neigh-
borhood window. One of these matching windows is chosen and its center pixel is taken to be 
the newly synthesized pixel.

We use this method to generate polycrystalline microstructures. Voronoi construction has 
been typically used for the synthesis of such microstructures [15–18]. However, Voronoi con-
structions are largely an idealization and do not account for the complexity of real micro-
structures (e.g. non-convex grain shapes). A MRF algorithm can be an attractive replacement 
for these models as it captures fine scale structure such as grain boundaries realistically.  
In this paper, we test the synthetic microstructures generated by this method by comparing its  
statistical measures including lower order statistics (e.g. grain size distribution, orientation 
distribution function) and finer features (e.g. shape moment invariants, autocorrelation func-
tion) with those of experimental images. In addition, physical properties such as elastic mod-
uli and stress distribution are also calculated using image-based finite element models and 
compared against experiments. The results are discussed in section 3.

2.  Mathematical modeling of microstructures as Markov random fields

Some of early attempts at microstructure modeling were based on Ising models [11]. In the 
Ising model, a ×N N lattice (L) is constructed with values Xi assigned for each particle i on 
the lattice, [ ]∈i N1, .., 2 . In an Ising model, Xi is a binary variable equal to either  +1 or  −1 (e.g. 
magnetic moment [11]). In this work, the values Xi may contain any one of G color levels in 
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the range {0, 1, .., G  −  1} (following the integer range extension of the Ising model by Besag 
[19]). A coloring of L denoted by X maps each particle in the lattice L to a particular value 
in the set {0, 1, .., G  −  1}. Ising models fall under the umbrella of undirected graph models 
in probability theory. In order to rewrite the Ising model as a graph, we assign neighbors to 
particles and link pairs of neighbors using a bond as shown in figure 1(a). The rule to assign 
neighbors is based on a pairwise Markov property. A particle j is said to be a neighbor of par-
ticle i only if the conditional probability of the value Xi given all other particles (except (i, j), 
i.e. ( )| − + − +p X X X X X X X X, , .., , , .., , , ..,i i i j j N1 2 1 1 1 1 2 ) depends on the value Xj.

Note that the above definition does not warrant the neighbor particles to be close in dis-
tance, although this is widely employed for physical reasons. For example, in the classical 
Ising model, each particle is bonded to the next nearest neighbor as shown in figure 1(a).  
In this work, we assume that a microstructure is a higher order Ising model (figure 1(b)). The 
particles of the microstructure correspond to pixels of the 2D image. The neighborhood of 
a pixel is modeled using a square window around that pixel and bonding the center pixel to 
every other pixel within the window. Using this graph structure, a Markov random field can be 
defined as the joint probability density ( )XP  on the set of all possible colorings X, subject to a 
local Markov property. The local Markov property states that the probability of value Xi, given 
its neighbors, is conditionally independent of the values at all other particles. In other words, 

(       ) (       )| = |P X i p X iall particles except neighbors of particlei i . Next, we describe a method based 
on [10] to sample from the conditional probability density (       )|p X ineighbors of voxeli .

2.1.  Sampling algorithm

In the following discussion, the color (Xi) of a pixel i is represented using G color levels in the 
range {0, 1, .., G  −  1} each of which maps to an RGB triplet. The number of color levels is 

Figure 1.  Markov random field as an undirected graph model, circles are pixels in the 
image and bonds are used to connect neighbors: (a) Ising model with nearest neighbor 
interactions (b) microstructure modeled by including higher order interactions in the 
Ising model.
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chosen based on the microstructure to be reconstructed, e.g. for binary images G  =  2. Let E 
and S denote the experimental and synthesized microstructure, respectively. Let v be a pixel 
in S whose color needs to inferred using the sampling procedure. Let Sv denote the colors in a 
neighborhood window around pixel v. Let Ew denote the colors of pixels in a window of the 
same size in the input 2D micrograph.

In order to find the coloring of pixel v, one needs to compute the conditional probability 
density ( )|Sp Xv v . Explicit construction of such a probability density is often computationally 
intractable. Instead, the most likely value of v is identified by first finding a window ∗Ew  in 
the input 2D micrograph that is most similar to Sv (see figure 1). This is done by solving the 
following problem (where Sv u,  denotes the color of pixel u in Sv and Eu

w denotes the color of 
pixel u in Ew):

E

S E

D

D

arg min

where,
E

w
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u v u u
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In the above equation, D is a distance measure defined as the normalized sum of weighted 
squared differences of pixel colors. The weights for nearby pixels are taken to be greater than 
for pixels farther away based on a Gaussian weighting function (ω). If the pixel u is located at 
position (x, y) (in lattice units) with respect to the center pixel (located at (0, 0)), ωu is given as:
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Here, the summation in the denominator is taken over all the known pixels in Sv. The weights 
ωu for the unknown pixels in Sv are taken to be zero. This ensures that the distance measure is 
computed only using the known values and is normalized by the total number of known pixels. 
The standard deviation (σ) is taken to be 0.16.

The problem in equation  (1) is solved using an exhaustive search by comparing all the 
windows in the input 2D micrograph to the corresponding neighborhood of pixel v. In our 
approach, a measure of stochasticity is introduced by storing all matches with a distance 
measure that is within 1.3 times that of the best matching window [10]. The center pixel colors 
of all these matches give a histogram for the color of the unknown pixel (Xv), which is then 
sampled using a uniform random number.

The microstructure is grown layer-by-layer starting from a small seed image ( ×3 3 pixels) 
taken randomly from the experimental micrograph (figure 2). In this way, for any pixel the  
values of only some of its neighborhood pixels will be known. The fundamental approx
imation in this numerical implementation is that the probability distribution function (PDF) of 
an unfilled pixel is assumed to be independent of the PDF of its unfilled neighbors. Each itera-
tion in the algorithm involves coloring the unfilled pixels along the boundary of filled pixels in 
the synthesized image as shown in figure 2. An upper limit of 0.1 is enforced for the distance 
measure initially. If the matching window for a unfilled pixel has a larger distance measure, 
then the pixel is temporarily skipped while the other pixels on the boundary are filled. If none 
of the pixels on the boundary can be filled during an iteration, then the threshold is increased 
by 10% for the next iteration.

Although there are several free parameters in this model, we choose the window size to 
be the only adjustable parameter for different microstructures for simplicity. Window size 
plays an important role in the MRF model. At window sizes much smaller than the correlation 
lengths, false matches lead to high noise in the reconstructions. At very high window sizes, not 
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enough matching windows can be identified. Hence, there is an ideal window size that needs 
to be found through numerical trial. In figure 3 we have demonstrated the effect of window 
size on quality of synthesized image. Note that only odd values were allowed for the window 
size so that the window is symmetric around the center pixel. This example is of a two phase 
W-Ag composite from [21].

Figure 2.  The Markov random field approach [10, 20]: The image is grown from a 
3 3×  seed image (center). As the algorithm progresses along the path shown (right), 
the unknown output pixel (shown in blue) is computed by searching for a pixel with a 
similar neighborhood in the input image (left).

Figure 3.  Effect of Window size, none of the image looks similar to sample image but 
image generated with window size of 11 has statistical correlation function very much 
similar to that of sample image.
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3.  Examples

In order to test the physical features and properties of the synthesized microstructure, we are 
interested in the following criteria:

	 •	The synthetic microstructure must ‘look like’ the seed image. The similarity measures 
in this work come from the field of metallography/crystallography including lower order 
statistics (e.g. grain size distribution, orientation distribution function) and finer statistical 
features (e.g. grain boundary connectivity descriptors, higher order orientation correla-
tions).

	 •	Physical properties of the synthetic microstructure such as elastic moduli must be within 
reasonable bounds to the properties of the original microstructure. The properties were 
tested using finite element models and compared to experiments and bounding theories.

3.1.  Example 1. Polycrystal

A polycrystalline structure with grayscale data from [22] was chosen for reconstruction. 
The free parameter in the reconstruction is the sampling window size which is taken to be 
= ×w 13 13 pixels. To compare the sample image with reconstructed image, two global fea-

ture vectors were extracted from the input microstructure.

	(1)	Heyn’s intercept histogram [23, 24] is employed for assessing the grain sizes. Histograms 
of the intercept length distribution (mean intercept length versus number of test lines 
possessing the mean intercept length) is used as the feature vector.

	(2)	Rose of intersections [25] is used as the feature vector for assessing grain shapes. To 
obtain the rose of intersections, a network of parallel equidistant lines is placed over the 
microstructure image at several angles and the number of grain boundary intersections 
with each test line is measured. The histogram of intersections with the angle of orienta-
tion of the lines is called the rose of intersection.

These features were compared with similar features from a few snapshots (with the same 
size as the input image) extracted from the reconstructed microstructure. Our results for case 
(1) (figure 4) look quite impressive. The MRF model is not only able to reconstruct the local 
features such as grain boundaries and connectivities, the global feature vectors (intercept his-
togram and rose of intersections) compare favorably with the input image.

3.1.1.  Comparison of moment invariants.  In this section, we compare descriptors that 
describe the shape distribution of individual grains in the experimental and synthesized grains 
in example 1, rather than the global (average) feature represented in the histograms of figure 4. 
Moment invariants (MIs) are non-linear combinations of moments of an object shape that are 
invariant with respect to a class of coordinate transformations [29]. For 1D distribution of 
data, the second order moment is analogous to standard deviation while the 4th order moment 
invariant is similar to kurtosis. For 2D shapes, DeGraef and coworkers [26–28] have identified 
2 MI’s (ω ω,1 2) of second order, details about their values for various possible 2D shapes are 
given in [26]. Graphical representation for these two second order moment invariants in a x-y 
plot is known as second order moment invariant map (SOMIM). The SOMIM for the image 
in figure 5 and its reconstruction using MRFs is shown in figure 6. To compare the SOMIMs, 
we need to introduce an appropriate similarity metric. The modified Bhattacharya coefficient 
H( p, q), also known as Hellinger distance, provides a metric to distinguish between two  
different density maps p and q. The regular Bhattacharya coefficient ( )β p q,  is a measure of the 
similarity between two normalized distributions and can be written in discrete form as [30, 31]
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7

Figure 4.  Statistics of synthesized images are compared with the seed image. The mean 
intercept length and rose of intersections are shown. Note that none of the synthesized 
images are identical to the seed image, yet global statistics of the seed image are well 
captured.
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Figure 5.  Initial microstructure (left) and the synthesized microstructure (right) from 
our Markov random field code. Note that local features such as grain boundaries are 
effectively captured.
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where the summation runs over the N bins of the SOMIM. The larger the value of β, more 
similar the two distributions are. The Hellinger distance H( p, q) is defined by [32] as

( ) ( )β= −H p q p q, 1 ,� (4)

Value of H for SOMIM is 0.47 for the polycrystalline case in example 1. This value indicates 
good reproduction of polycrystalline shapes using the MRF synthesis approach.

Alternately, a shape descriptor called projected moment invariant maps(PMIM) can also 
be plotted for the individual grains [26]. In this plot, averaged MIs of second through fourth 
order are plotted graphically in 2D or 3D plots. To make a comparison of synthesized with 

Figure 6.  SOMIM density map original (left) and synthetic (right) microstructure.

Figure 7.  PMIM density map original (left) and synthetic (right).
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original image, we used combination of second and fourth order moments in a 2D PMIM. The 
density maps for PMIM for the original and reconstructed image are compared in figure 6. The 
Hellinger distance of PMIM is 0.37, again indicating a good reconstruction.

Figure 8.  Reconstruction of an experimentally measured AA3002 Aluminum alloy 
microstructure [33] using Markov random Field algorithm. (a) Input micrograph (b) MRF 
reconstruction Purple regions are cube/near cube grain orientations, yellow/red regions 
are non-cube orientations. The fine dark spots are the intermetallic phases. (c) The larger 
microstructure from which the input image is taken is also shown for comparison.

Input image

(a) (b) (c)

Original experimental imageReconstruction with MRF

Figure 9.  Color histograms of the input microstructure and reconstructed microstructure 
are compared. A novel color blot method is used to compare the distribution of cube/
near cube regions, and intermetallic phases in the input and synthesized images.
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3.2.  Example 2. Aluminum alloy AA3002 representing the rolling plane

In the second example, microstructure of the Aluminum alloy AA3002 measured using pola-
rised light microscopy [33] was used. The microstructure represents the rolling plane and 
reveals a fully recrystallised grain structure with randomly distributed intermetallic phases 
(dark spots in the image). The microstructure is colored based on the occurrence of near-cube 
and non-cube orientations. This analysis is based on observed contrast effects when the object 
is rotated relative to the polarised light directions. Purple regions are cube or near-cube orien-
tations, whereas the yellow/red regions are non-cube. The Markov random field reconstruc-
tion and the original microstructure are indicated in figure 8. Only a small part (in figure 8(a)) 
of the larger experimental image (in figure  8(c)) was used for the reconstruction and the 
reconstructed image of larger size (in figure 8(b)) was compared with the larger experimental 
image. The microstructure was reconstructed using a ×150 170 pixel input image shown in 
figure 8 (left) using a window size of = ×w 7 7 pixels. The fraction of cube versus non-cube 
orientations and distribution of intermetallic phases was studied using color histograms and 
color clouds. The color cloud used here is an attempt at showing the pixels in ‘color space’ 
rather than Euclidean space (‘microstructure’). Color densities are converted into scattered 

Figure 10.  ODFs of sample micrograph is compared with the two synthesized images.

Figure 11.  (left) Comparison of the equivalent stress–strain curve predicted through 
homogenization for sample and two synthesized image (right) Variation of Young’s 
Modulus with angle of rotation for sample and synthesized images.
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random dots around the spatial position assigned to the color, with the extent of the spatial 
position determined by the frequency with which that RGB triplet appears in the image.

The color blot and color histogram results shown in figure 9 show good visual correlation 
of the reconstructed image with the experimental input image. The texture components (cube 
versus non-cube orientations) are well reproduced in the larger synthesized image.

3.2.1.  Comparison of microstructure sensitive properties.  We performed finite element calcul
ations on synthesized and sample image in figure 8 and compared the Young’s Modulus with 
angle of rotation for sample and synthesized image. The calculations were based on a crystal 
plasticity model for Aluminum (from [34]) and was performed at a constant strain rate of 

× −6.667 10 4 s−1 and a temperature of 300 K. To measure the statistically similarity between 
sample and synthesized image, we calculated the orientation distribution function(ODF) by 
assigning a unique orientation to each pixel based on its color. In figure 10 we have shown 
ODF for sample and two synthesized images and we observed that ODF for synthesized 
images is very close to that of sample image. In figure 11(b), we have plotted the variation of 
Young’s Modulus (E) with sample rotation angle for the original and reconstructed images.  
In figure 11(a) we have plotted the equivalent stress-strain response for sample and synthe-
sized image for a shear test. We also compared the stress histograms for the original and 
reconstructed image. The histogram plots the number of pixels in the microstructure within 
a given stress range. The color histogram of stresses shown in figure 12 reveal that the global 
response of the synthesized image is very similar to that of sample microstructure.

4.  Conclusions

It is human intuition that different windows taken from a polycrystalline microstructure 
generally ‘look alike’. This can be quantified through an underlying stationary probability 
distribution that generates all possible microstructural windows. While quantifying this high 
dimensional joint probability distribution of all pixel colors is computationally intractable, 
we looked at sampling methods to model this distribution. For many microstructures, the 
probability of a pixel color depends only on the pixel state of its close neighbors. Thus, one 
could represent microstructures in the form of undirected probabilistic graphs called Markov 
random fields (MRFs) with pixels interacting with neighbors over a sampling window.

Figure 12.  Comparison of the distribution of the equivalent stress in a finite element 
simulation using a color histogram (left) Experimental image (right) Synthesized image 1.

A Kumar et alModelling Simul. Mater. Sci. Eng. 24 (2016) 035015
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With this lattice structure, we employed a sampling algorithm to compute the conditional 
probability density for the state of each pixel given the known states of its neighboring pixels. 
In the implementation, the microstructure is grown layer-by-layer from a small seed image 
( ×3 3 pixels) taken randomly from the sample. To synthesize a pixel, the algorithm first finds 
all windows in the sample image that are similar to the unknown pixel’s neighborhood win-
dow. One of these matching windows is chosen and its center pixel is taken to be the newly 
synthesized pixel. We have artificially synthesized 2D polycrystalline microstructures using 
the sampled probabilities. Previous methods for reconstructing polycrystals using algorithms 
based on a common set of underlying features such as marginal histograms and point prob-
ability functions have often failed to capture the local information such as sharp grain bounda-
ries. We find that the MRF approach is an attractive solution in this regard.

We show that not only are the global features such as grain size/shape distribution captured 
but the localized grain features such as shape moments also closely match with those of the 
experimental images. In addition, the texture distribution and mechanical (elastic) properties 
of the synthesized microstructures as computed using finite element method were also found 
to closely reproduce the experimental values. Finally, we plotted the stress histograms from a 
finite element test and these were also well reproduced. Our results evidence to the notion of 
a stationary probability distribution underlying microstructure formation. Future efforts will 
aim to analytically model such a distribution by using high dimensional regression to fit the 
results of the sampling algorithm. In addition, it will be of interest to use this tool to study the 
temporal evolution of such a distribution during microstructure evolution.
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