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Automated fiber placement technologyhaspushed for the need to explorenonconventional fiber paths in laminated

composites. This paper investigates optimal spatially varying fiber paths in a symmetric linear orthotropic laminate,

which could increase the critical buckling temperature under uniform applied thermal loads. The key idea here is to

achieve gains in buckling performance yet focus onmanufacturability of the obtained optimal fiber path. The subject

of this study is a four-layer symmetric orthotropic laminated plate, with a central circular cutout that is clamped on all

the edges. A novel finite element algorithm is proposed, which imposes a condition on the definition of discrete fiber

angleswithin each element. Themain objectives of the proposed finite element approach are tomaintain continuity of

the fiber paths and to use a computationally efficient model by reducing the number of optimization variables.

Nomenclature

B1, B2 = first- and second-order derivatives of shape
(interpolation) functions

C = upper-bound averages along thickness, of the
constitutive matrices in the fiber axis

D = finite element material matrix
dθ = variation in the fiber angle across finite elements
h = thickness of the lamina
Kb, Kg = elastic and geometric stiffnesses
n = number of elements in cycloidal direction
Q, �Q = constitutive matrices in the global and fiber axes,

respectively
T�m� = fiber angle within any finite element m
Tq
i;p = initial fiber angle for the pth quadrant in the qth layer

u, v, w = displacements in the x, y, and z directions
zq = lamina thickness for the qth layer
α = coefficients of thermal expansion
ΔTcr = critical buckling temperature

I. Introduction

C OMPOSITE platelike components with cutouts are very
common in aerospace structures due to their high strength-to-

weight and high stiffness-to-weight properties. They are used as
access ports for mechanical and electrical systems, lightening holes
to reduce the totalmass of structural parts, and even aswindows in the
fuselage. For example, cutouts are used in wing spars and ribs as well
as the interior hull of the fuselage, as both accesses to control lines

and structural inspections, as well as reducing the mass of these
members. Their use as backing structures for space mirrors is made
possible with the advent of advanced fiber placement machines [1],
which are currently being used in the manufacturing of large
aerospace structures. The structures with cutouts usually experience
elevated compressivemechanical and thermal loads, which can result
in buckling. Therefore, the design phase of these structures requires
consideration of buckling performance.
Effects of cutouts on strength and buckling of thin plates and thin-

walled cylindrical shells have been presented by various researchers.
Kirsch [2], in 1898, first proposed the exact closed-form analytical
solutions for the stress concentrations around cutouts in an infinite
isotropic lamina under uniaxial tension. Mansfield [3] proposed
methods to restore the stress state of an isotropic platewith a cutout to
that of one without, thereby reducing any stress concentrations that
could cause fracture. Pipes et al. [4] presented a study on notched
strength of composite materials, whereas Tang [5] proposed studies
on interlaminar stresses in orthotropic plates with a cutout, under
tension. Ahn andWaas [6] provided experimental results and a novel
mechanism-based modeling approach to predict the compressive
notched strength of laminates under uniaxial and biaxial loading.
Senocak and Waas [7,8] revisited the problem of a uniaxial tensile
loaded plate with a cutout in the case of an orthotropic laminate and
proposed methods to essentially nullify the stress concentrations
around the cutouts, by duly considering the bending–stretching
coupling and using stiffeners modeled as one-dimensional four-
degree-of-freedom beams. Acar et al. [9] presented an algorithm for
optimal steered fiber paths to reduce stress concentrations around
cutouts in a symmetric laminate. Lin et al. [10] presented buckling
models for laminated plates with holes, and Topal and Uzman [11]
studied the maximization of buckling loads for laminated plates with
cutouts. Ounis et al. [12] performed a finite-element-based study to
analyze thermal buckling of laminated composites. A method to
minimize the thermal expansion of laminates is presented by
Rangarajan et al. [13]. Hyer and Lee [14] studied a problem on the
buckling resistance of composite plates with central circular holes in
the case of curvilinear fibers and proposed a solution based on
modeling individual fiber orientations within each finite element
(FE), where the fiber orientations are allowed to vary spatially within
the lamina. Gurdal and Olmedo [15] presented an optimization of
spatially varying fiber paths for a solution to a plane elasticity
problem using a variable-stiffness concept.
The subject of interest in this paper is to derive optimal spatially

varying fiber paths and layer thicknesses for a four-layer symmetric
orthotropic composite laminate with the central circular cutout to
improve the thermal buckling performance. The square plate is
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clamped on all the edges and is under uniform thermal loads. A novel
finite element algorithm is proposed, which ensures that the
variations in fiber angles across adjacent finite elements pick discrete
values and thus maintain a constant fiber angle within each element,
making it easy to obtain a smooth fiber path. This model can easily be
reproduced for a laminate with as many layers following the same
procedure. The problem formulation accounts for this fiber path
definition to solve the critical buckling temperature. The multi-
objective optimization is performed to identify the fiber path that
maximizes the critical buckling temperature and minimizes the mass
of the laminate.
This work aims to increase the buckling performance of a

composite plate structure with a cutout by optimizing the fiber angle
paths. The structures with these optimal steered fiber paths provide
better resistance to thermal buckling even in elevated temperatures.
The organization of the paper is as follows. Section II introduces the
composite plate thermal buckling problem. In Sec. III, the proposed
meshing algorithm for fiber continuity and finite element
methodology for the solution are discussed. The finite element
solution is verified in Sec. IV. Section V provides information about
the optimization problem and optimum results. Section VI concludes
the paper with a discussion of future extensions of this study.

II. Problem Definition

The present work comprises thermal buckling of a clamped plate
under the effect of thermal axial loads. The plate is modeled as a
symmetric four-layer composite laminate. The problem is separated
into two parts; the first part explains the algorithm and the finite
element procedure, whereas the second explains the optimization

problem setup. The loading and geometry are symmetric because the

entire plate is under a uniform thermal load, inducing axial

compressive and shear loads on the plate, described as Nx, Ny, and

Nxy in Fig. 1. Even though the symmetry of the loading and geometry

suggests the use of symmetry boundary conditions to obtain the

prebuckling stresses by analyzing only one quarter of the plate, it

needs to be noted that the buckling modes need not be symmetric. By

using symmetry boundary conditions, only the symmetric modes can

be obtained. Therefore, the full plate model is modeled to obtain all

the buckling modes. The critical buckling temperature is then solved

for the first buckling mode.

III. Meshing Algorithm

The proposed finite element meshing method has multiple

features. First, it always ensures continuity of the fiber paths across

element boundaries. Second, it is computationally efficient because

only four optimization variables per layer of the laminate are used to

define the fiber path. Moreover, it could easily be scaled for any

number of plies in any symmetric or asymmetric laminate. The

algorithm explains how discrete fiber angles are computed for each

finite element, ensuring interelement continuity of the fiber angle.

This is essential to end up with a manufacturable design using

automated fiber placement (AFP) technology.

A. Algorithm for Discrete Fiber Angles

This section discusses the algorithm to compute a discrete fiber

angle T�m� for each finite element under prescribed conditions of

fiber path continuity. The direction of m (where 0 < m ≤ n, with n
being the total number of elements in cycloidal direction) represents

the count of the finite element along each row. The plate is divided

into four subdomains (quadrants) to ensure fiber path continuity

(Fig. 2). In the context of spatially varying fiber paths, symmetry in

the laminate is described by the same spatial variation of fiber paths in

the layers symmetric with respect to the center plane. In this specific

case, layer 1 is the same as layer 4, and layer 2 is the same as layer 3.

Detailed later is the formulation of the algorithm for the plate.

For the elements located in the pth quadrant and in the qth layer,

Tq
i;p andT

q
f;p represent initial and final fiber angles, respectively (e.g.,

T1
i;1 and T

1
f;1 are initial and final fiber angles for the first quadrant in

layer 1). Hence, the change in fiber angle is defined across each finite

element along the direction 0m 0 for layer 1, dθ11, as follows:Fig. 1 Clamped plate with a cutout under uniform heating.

Fig. 2 Finite element mesh for quarter plate (2888 plate elements).
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dθ11 �
T1
f;1 − T1

i;1

n − 1
(1)

To elaborate, for any qth layer, Tq
i;1, T

q
i;2, T

q
i;3, and Tq

i;4 are the
“initial” fiber angles of quadrants 1, 2, 3, and 4. Then, the final fiber
angles for these quadrants are noted as Tq

f;1 � Tq
i;2, T

q
f;2 � Tq

i;3,
Tq
f;3 � Tq

i;4, and T
q
f;4 � Tq

i;1, which merely means that the final fiber
angle of each quadrant becomes the initial fiber angle of the next
quadrant to ensure continuity of fiber angles. Hence, the discrete
variation in angle in each quadrant dθqp for each pth quadrant for the
qth layer is obtained as

dθqp � Tq
f;p − Tq

i;p

n − 1
(2)

This would mean that the only condition imposed on each Tq
i;p

during optimization on its range is (0 ≤ Tq
i;1, Tq

i;2, Tq
i;3,

Tq
i;4 < 180 deg), which constrains the fiber angle inside each

element, T�m�. By means of constraining the value of dθqp and
thereby imposing a specific T�m� for each elementm, the essence of
the solution is captured, viz., to enforce continuity of the fiber angle,
making it easily adaptable for manufacturing. The fiber angle in each
element in the pth quadrant for the qth layer as it moves along
direction 0m 0 in Fig. 2 is given by the expression

Tp�m�q � Tq
i;p � �m − 1�dθqp (3)

where m (0 < m ≤ n) represents the element number in the chosen
cycloidal direction in Fig. 2, and n is the maximum number of
elements in this direction. Aswill be discussed in the next section, the
fiber angle T�m� specified for each element under restrictions arising
from dθ would be used in the finite element formulation by
effectively computing the finite element material matrix D using the
plane stress constitutive matrix �Q averaged over the thickness to
obtain an upper bound matrix C. �Q is obtained by rotating the
constitutive matrix Q by a fiber angle T�m� for each element.

B. Finite Element Model

When heated uniformly, the thermal expansion of the restricted
plates will result in uniformly distributed in-plane normal and shear
forces (Fig. 1). The constitutive matrix Q of each finite element
depends on the particular fiber angle within that finite element. The
regular finite element procedure starts with the computation of the
constitutive matrix in the global frameQij (where i, j � 1, 2, 3, 4, 5,
6). However, the problem needs to be assembled and solved in the
material frame. This means that the material matrix in the material
frame �Qij can be computed for each finite element with the
transformation through an angleT�m�. The stress–strain relation in the
global frame for a general three-dimensional orthotropic material is

2
6666664

σxx
σyy
σzz
σzx
σyz
τxy

3
7777775

�

2
6666664

Q11 Q12 Q13 0 0 0

Q12 Q22 Q23 0 0 0

Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

3
7777775

2
6666664

ϵxx
ϵyy
ϵzz
γzx
γyz
γxy

3
7777775

where the stiffness coefficients are functions of the orthotropicmaterial

properties E11, E22, ν12, ν23, and G23. The material and thermal

properties used in this work correspond to that of IM7/8551-7 [16,17]

and are detailed in Table 1. Note that extension and shear are

uncoupled.
To assemble the global stiffness matrices �Kb� and �Kg�, the

stiffness of each finite element is to be calculated in the respective

material coordinate systems and then assembled. For each finite

element, a transformation matrix �L� � f�T�m�� is calculated as

�L� �

2
6666664

1 0 0 0 0 0

0 c2p s2p 2cpsp 0 0

0 s2p c2p −2cpsp 0 0

0 −cpsp cpsp c2p − s2p 0 0

0 0 0 0 cp −sp
0 0 0 0 sp cp

3
7777775

where cp � cos�T�m�� and sp � sin�T�m�� for each element 0m 0.
The rotated constitutivematrix in thematerial frame for each element
0m 0, �Qij�m�, is obtained as

�Qij � �L�T �Q��L�

Because the finite element formulation is basically dealing with a

multilayer structure in this case, and each finite element was

previously defined through the thickness of the whole structure, the

material matrix should be averaged along the thickness of each

particular element (Fig. 3) to obtain an upper-bound averaged

material matrix C. This averaging along the thickness indicates the

upper-bound approach to compute �Qij with the assumption of strain

continuity through the thickness of the element. If z1 and z2 are the
thicknesses of the first (and fourth) layers and the second (and third)

layers, respectively, then �Qij elements of the multilayer structure can

be obtained as an upper bound average [18]:

�Qij;avg �
z1 �Q1

ij � z2 �Q2
ij

z1 � z2

where i, j � 1, 2, 3, 4, 5, 6, for any element of the averaged �Qavg

matrix:

Table 1 Material and
thermal properties of IM7/8551-7

Parameter Value

Exx 162.0 GPa
Eyy 8.34 GPa
Gxy 2.07 GPa
Gyz 2.07 GPa
νxy 0.339
νyz 0.509
αxx −0.48 μm∕m ∕°C
αyy 22.3 μm∕m ∕°C

Fig. 3 Problem definition for fringe contour comparison.
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�C � � � �Qavg�

�

2
6666666666664

�Q11;avg
�Q12;avg

�Q13;avg 0 0 0

�Q12;avg
�Q22;avg

�Q23;avg 0 0 0

�Q13;avg
�Q23;avg

�Q33;avg 0 0 0

0 0 0 �Q44;avg 0 0

0 0 0 0 �Q55;avg 0

0 0 0 0 0 �Q66;avg

3
7777777777775

whereC is the elastic stiffness matrix of each particular element. The

flexural rigiditiesD can be obtained from the elastic stiffness matrix,

using plane stress assumptions, by the following relation [19]:

2
664
D11 D12 D13

D21 D22 D23

D31 D32 D33

3
775�h3

12
×

0
BB@
2
664
C11 C12 C16

C21 C22 C26

C61 C62 C66

3
775−

2
664
C13 C14 C15

C23 C24 C25

C63 C64 C65

3
775

×

0
BB@
2
664
C33 C34 C35

C43 C44 C45

C53 C54 C55

3
775
1
CCA

−1

×

2
664
C31 C32 C36

C41 C42 C46

C51 C52 C56

3
775
1
CCA (4)

The general classical buckling equations for a rectangular

laminated plate with dimensions a × b × h (length in the x
direction × length in the y direction × height) subjected to uniform

temperature rise are

A11

∂2u0
∂x2

� 2A16

∂2u0
∂x∂y

� A66

∂2u0
∂y2

� A16

∂2v0
∂x2

� �A12 � A66�
∂2v0
∂x∂y

� A26

∂2v0
∂y2

� 0 (5)

A16

∂2u0
∂x2

� �A12 � A66�
∂2u0
∂x∂y

� A26

∂2u0
∂y2

� A66

∂2v0
∂x2

� 2A26

∂2v0
∂x∂y

� A22

∂2v0
∂y2

� 0 (6)

D11

∂4w
∂x4

� 4D16

∂4w
∂x3∂y

� 2�D12 � 2D66�
∂4w

∂x2∂y2
� 4D26

∂4w
∂x∂y3

�D22

∂4w
∂y4

� Nx

∂2w
∂x2

� 2Nxy

∂2w
∂x∂y

� Ny

∂2w
∂y2

� 0 (7)

where the first two equations govern the in-plane resultant loads (u0
and v0 are the in-plane displacements at midplane), and the last

equation governs the out-of-plane buckling deflection,w � w�x; y�.
Nx and Ny are the in-plane resultant normal loads in the x and y
directions, respectively, and Nxy is the in-plane shear resultant. D11,

D12,D16,D22,D26, andD66 are the flexural rigidities of the plate. The

flexural rigidities are obtained from the material constitutive law for

each particular finite element.
The boundary conditions for the case of a square plate (side lengths

a × a) with clamped sides are

w � 0;
∂w
∂x

� 0 at x � −
a

2
;

a

2

w � 0;
∂w
∂y

� 0 at y � −
a

2
;

a

2
(8)

u0; v0 � 0; at x; y � −
a

2
;

a

2
(9)

The critical increase in temperature at buckling,ΔTcr, is related to
the in-plane resultant loads and homogenized (thickness-averaged)
values of thermal expansion, �αxx, �αyy, and �αxy by the following
equation:

2
4 Nx

Ny

Nxy

3
5 � 12ΔTcr

h2

2
4D11 D12 D13

D21 D22 D23

D31 D32 D33

3
5
2
4 �αxx
�αyy
�αxy

3
5 (10)

A quarter-plate was first analyzed using the finite element
algorithm with the assumption of symmetric buckling modes. The
platewasmodeled using 2888 plate elements. Each plate element has
four nodes and five degrees of freedom: u, v,w, dw∕dx, and dw∕dy.
The general finite element formulation for this buckling problem is
based on both the conventional element flexural stiffness matrix �kb�
and geometric element stiffness matrix �kg� that takes account of the
in-plane load resultants. The formulations for �kb� and �kg� are given in
Eq. (11):

�kb� �
Z Z Z

V
BT
2DB2 dV; �kg� �

Z Z Z
V
BT
1PB1 dV (11)

where B1 and B2 are the matrices consisting of the first and second
derivatives of the shape functions of the plate element, respectively.
The flexural rigidity D is defined in Eq. (4). The matrix P
incorporates the in-plane load resultants Nx, Ny, and Nxy. Based on
this formulation, the element stiffness matrix for the buckling
problem is given next:

�k� � �kb� � �kg� (12)

where the sign of the geometric stiffness matrix �kg� depends on the
type of in-plane loads. It is positive if the in-plane loads are tensile,
and it is negative if the in-plane loads are compressive. At buckling,
the condition given next is satisfied:

det��Kb� � λ�Kg�� � 0 (13)

where �Kb� and �Kg� are global flexural and geometric stiffness
matrices, respectively. Equation (13) shows that the solution finally
leads to an eigenvalue problem. The ΔTcr value that satisfies the
critical buckling condition is the critical increase in temperature.

IV. Verification of Finite Element Methodology

Verification of the finite element approach of this work consists of
three steps: fringe contour comparison for an isotropic plate problem,
stress distribution verification for a unidirectional orthotropic
composite laminate, and buckling solution for a benchmark
orthotropic plate problem.

A. Fringe Contour Comparison

The developed finite element methodology is initially verified by
comparing the fringe contours for a tension problem where an
isotropic plate with a central cutout is subjected to remote tensile
loading in the y direction (Fig. 3). This case has been selected because
the fringe contours of the theoretical solution are available in the
literature [20], and the problem geometry is similar to the buckling
problem of interest in this work. The fringe contours plotted for the
finite element solutionmatchwell with the theoretical result as shown
in Fig. 4, providing a degree of confidence in mesh selection.

B. Stress Distribution Verification for a Unidirectional Orthotropic
Laminate

The second check on the finite elementmesh quality is to verify the
predicted stress concentration factor (SCF) of a four-layer
unidirectional orthotropic laminate, with a stacking sequence of
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�45∕0� s, to the theoretical solution. This problem has the same

geometry as the problem of interest in this work, a platewith a central

cutout, but in this case, the plate is under the effect of tensile loads

acting on the horizontal direction. A detailed explanation about the

problem and solution methodology can be found in the earlier work

of the authors [9]. The maximum SCF value of the finite element

solution was found to be at the cutout boundary, and it is 6.27. This

value is close to the theoretical value, 5.96 [21].

C. Benchmark Problem for Thermal Buckling of an Orthotropic Plate

Using the finite element method, the critical increase in

temperature was computed for symmetric buckling of a clamped

symmetrically laminated plate under uniform heating. However, no

analytical solution exists for the corresponding buckling problem. To

verify the obtained buckling solution, a similar but simpler case of a

specially orthotropic plate, which has a known analytical solution

[19], was employed. A rectangular orthotropic plate with principal

directions parallel to the sides is compressed by a uniformly

distributed edge axial load Px (Fig. 5).
The buckling problem for such a plate with four simply supported

sides is given by Lekhnistkii [19]. The buckling equation is

D11

∂4w
∂x4

� 2D33

∂4w
∂x2∂y2

�D22

∂4w
∂y4

� Nx

∂2w
∂x2

� Ny

∂2w
∂y2

� 0

(14)

The solution of the form

w � Amn sin

�
mπx

a

�
sin

�
nπy

b

�
(15)

is sought, where Amn are constant coefficients, and m and n are

integers. The following boundary conditions are used:

w � 0;
∂w2

∂x2
� νy

∂w2

∂y2
� 0 at x � 0; a

w � 0;
∂w2

∂y2
� νx

∂w2

∂x2
� 0 at y � 0; b (16)

where νx and νy are Poisson’s ratios. By requiring that Eq. (15) be a
solution of Eq. (14), the following solution is obtained:

Nx

�
m

a

�
4

� Ny

�
n

b

�
4

� π2
�
D11

m

a
� 2D33

mn

ab
�D22

n

b

�
(17)

The formulation is performed for the case of proportional loading,
where forcesNx andNy may vary (general case) but must maintain a

constant ratio β:

Nx � λ; Ny � λβ (18)

The critical value of λ is found from the following formula:

λ�π2
����������������
D11D22

p
b2

·

�������������������
D11∕D22

p �m∕c�2��2D33∕
����������������
D11D22

p �n2� �������������������
D22∕D11

p �c∕m�2n4
1�β�c∕m�2n2

(19)

where c is the ratio between the lengths of the sides of the plate

(c � a∕b). The problem then consists of seeking the values ofm and
n that give the smallest λ and hence the critical buckling load λcr.
Based on the solution of the critical buckling load, the expression can
be formulated for the critical increase in temperature using the

coefficient of thermal expansion tensor α:

ΔTcr �
λ

12∕h2�D11 · αx �D12 · αy �D13 · αxy�
(20)

Bymodifying the boundary conditions in the original calculations
(from clamped to simply supported for an orthotropic plate), the

results are compared to the analytical solution and are found to be a
very close match. Sample comparisons are shown later. The default

orthotropic rectangular plate has dimensions (a × b × h) of

Fig. 4 Fringe contour comparison.

Fig. 5 Benchmarkbuckling problemdefinition for an orthotropic plate.
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0.1 × 0.4 × 0.004 m. Its flexural rigidities are D11 � 8.0 × 1010,
D12 � D21 � 2.0 × 109, D22 � 4.0 × 1010, and D33 � 1.2 × 1011,
and its coefficients of thermal expansion are αx � 9.0 × 10−6 and

αy � 1.2 × 10−6. Only one property is varied at a time, and the

average percentage error between the results is 0.0314%. The

analytical and computational critical increases in temperature are

presented in Table 2.

V. Optimization of Fiber Path

The optimization problem deals with multiple objectives

because the goals are defined to find the fiber path and layer

thicknesses that maximize the critical increase in buckling

temperature ΔTcr and minimize the mass of the structure

as well. The fiber path depends on four independent variables for

each layer: Tq
i;1, T

q
i;2, T

q
i;3, and Tq

i;4. All T
q
f;p values have Tq

i;p
equivalents, and dθqp can also be computed in terms of them.

Considering the fact that the problem of interest includes

a four-layer symmetric laminate and two independent layers, the

number of optimization parameters relevant to fiber path

distribution is eight. The remaining optimization variables are

the thicknesses of these independent two layers (z1 and z2) because
the area is constant for every layer, and therefore the total mass

varies with respect to the thicknesses. A multi-objective

optimization problem is defined because proposing only one

objective that is related to buckling may cause designs that are not

cost efficient. To eliminate this possibility, minimization of the

plate mass is defined as the second design objective. Because the

distribution constraints were already imposed to the problem

through meshing and methodology, no additional design

constraints are defined for the optimization problem. The

mathematical formulation of the optimization problem is given in

Eq. (21):

max f1 � ΔTcr; min f2 � m�z1; z2�
s � �T1

i1
; T1

i2
; T1

i3
; T1

i4
; T2

i1
; T2

i2
; T2

i3
; T2

i4
; z1; z2�

0 ≤ T1
i1
; T1

i2
; T1

i3
; T1

i4
; T2

i1
; T2

i2
; T2

i3
; T2

i4
< 180 deg

0.1 mm ≤ z1; z2 ≤ 1 mm (21)

In this formulation, the first line shows the objective functions

where m shows the mass of the plate. The set of optimization

variables is defined in the second line. The upper and lower limits

of the optimizationvariables are given in the last two lines. Because

the problem of interest here is a nonlinear multi-objective

optimization problem, a genetic algorithm that is also capable of

working with multiple objectives is implemented. Considering the

large computational time requirement for a finite element buckling

solution, an efficient optimization algorithm needs to be chosen.

For this purpose, the nondominated sorting genetic algorithm II

(NSGA-II), which is known to be one of the fastest genetic

algorithms, was implemented. The sampling was performed with

an incremental space filter (ISF) with 10 designs of experiments

(DOEs). The optimization algorithm provided 150 total designs

because it used 15 function evaluations for each DOE. The

summary of the optimization workflow is illustrated in Fig. 6.
The parameters of the optimum design are shown in Table 3. The

optimum design performance is compared to selected random

designs in Table 4. These random designs have the same layer

thickness values as the optimum design. However, their layers are

defined as unidirectional laminas. The comparison indicates that the

optimum design has provided a significant increase in the thermal

buckling performance of the composite structure having the same

mass. The fiber path distributions of the optimum design for layers 1

and 2 are illustrated in Figs. 7 and 8, respectively.

Table 2 Comparison of results for a simply supported rectangular orthotropic
plate

D11, N · m D12, N · m αx, K
−1 b, m Analytical ΔTcr, K Computed ΔTcr, K

7.0 × 1010 — — — — — — 192.9 193.2
8.0 × 1010 — — — — — — 187.4 187.4
9.0 × 1010 — — — — — — 183.2 183.2
— — 1.5 × 109 — — — — 188.9 188.9
— — 2.0 × 109 — — — — 187.4 187.4
— — 2.5 × 109 — — — — 186.0 185.9
— — — — 8.0 × 10−6 — — 209.0 209.0
— — — — 9.0 × 10−6 — — 187.4 187.4
— — — — 10 × 10−6 — — 169.9 169.8
— — — — — — 0.3 211.1 211.2
— — — — — — 0.4 187.4 187.4
— — — — — — 0.5 171.3 171.2

Fig. 6 Optimization workflow.

Table 3 Optimum
design parameters

Parameter Optimum value

T1
i1

5.5571 deg

T1
i2

179.99 deg

T1
i3

2.7640 deg

T1
i4

1.9010 deg

T2
i1

2.2260 deg

T2
i2

6.0188 deg

T2
i3

89.9840 deg

T2
i4

1.9855 deg

z1 0.10085 mm
z2 0.10120 mm
ΔTcr 205.75°C
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VI. Conclusions

A computationally efficient and novel finite element approach to
identify optimum steered fiber paths that can be manufactured using
AFP technology is presented in this work. The meshing algorithm

using discrete fiber angle values within each element as control
variables for each independent layer is developed so as to obtain

continuous fiber paths as well as to reduce the computational time.
The specific problem discussed here addresses investigating optimal
steered fiber paths for an orthotropic symmetric laminate under

uniform thermal loads to maximize the critical buckling temperature.
The plate has a cutout at its center and is clamped on all sides. A full

plate model is developed to include symmetric and asymmetric
buckling modes. The laminate is modeled in four separate quadrants,

using finite elements, ensuring continuity of displacements and fiber
angles across the quadrants. A verification of the algorithm is
provided by three specific cases: a fringe contour comparison for an

isotropic plate that is available in the literature, an orthotropic plate

tension problem using unidirectional plies, and a benchmark
buckling problem for orthotropic laminates with unidirectional plies.
After the verification of the solution methodology, the global optimi-
zation is performed using a genetic algorithm using the defined
objective functions and the optimization parameters. The optimum
design is selected among all feasible solutions, and it provides a very
significant increase in the thermal buckling capacity.
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