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Kernels for non-local elasticity are in general obtained from phonon dispersion relations. However,
non-local elastic kernels are in the form of three-dimensional (3D) functions, whereas the dispersion
relations are always in the form of one-dimensional (1D) frequency versus wave number curves
corresponding to a particular wave direction. In this paper, an approach to build 2D and 3D kernels from
1D phonon dispersion data is presented. Our particular focus is on isotropic media where we show that
kernels can be obtained using Fourier–Bessel transform, yielding axisymmetric kernel profiles in recipro-
cal and real spaces. These kernel functions are designed to satisfy the necessary requirements for stable
wave propagation, uniformity of nonlocal stress and stress regularization. The proposed concept is dem-
onstrated by developing some physically meaningful 2D and 3D kernels that will find useful applications
in nonlocal mechanics. Relative merits of the kernels obtained via proposed methods are explored by fit-
ting 1D kernels to dispersion data for Argon and using the kernel to understand the size effect in non local
energy as seen from molecular simulations. A comparison of proposed kernels is made based on their pre-
dictions of stress field around a crack tip singularity.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Theories of classical continuum mechanics which relate local
strain to work-conjugate local stress measures, provide length-
scale independent solutions, and are successful in addressing a
large number of physical problems. However, these theories are
found to be deficient for several situations that require a character-
istic length scale of the medium to enter in the physical solution.
Examples include stress and strain fields around sharp crack-tips,
wave dispersion, strain softening and attendant size effects (see
for example, Bažant and Cedolin, 2010). The fact that atomistic cal-
culations of material properties are necessarily non-local in their
construction, upscaling from an atomistic model to a continuum
model would lead to continuum stress–strain relations that display
non-local character. Nonlocal theories and their implementations
have been intensely researched due to their promise in capturing
non-local atomistic phenomena, however, the understanding
developed to-date is incomplete. Several review articles, (Bažant
and Jirásek, 2002; Aifantis, 2003; Askes and Aifantis, 2011; Maugin
and Metrikine, 2010) have provided important details and much
insight into the types of non-local continuum theories that are at
our disposal. There exists varieties of nonlocal theories depending
on the strategies to incorporate additional atomistic features. The
focus of the present paper is on the integral type nonlocal theory
proposed in (Eringen, 1983).

In the integral type nonlocal theory, the stress at a material
point is related to a weighted integral of strains over a certain finite
neighborhood. The weighting function (a) is the non-local kernel.
The nonlocal stress, t, in a linear elastic body, V, can be described
as,

tijðxÞ ¼
Z

X
aijklðx; x0Þ�klðx0ÞdX ð1Þ

where a is a tensorial kernel representing an attenuating elastic
modulus. Here, t and � are the nonlocal stress and local strain ten-
sors, respectively, X � V is the compact support for the kernel and x
and x0 are position vectors for two material points in X. In isotropic
media, it is assumed that a unique kernel weights all entries of the
stiffness tensor equally (Eringen, 2002), and the above equation
becomes,

tijðxÞ ¼
Z

X
aðx; x0ÞCijkl�klðx0ÞdX ¼

Z
X
aðx; x0Þrijðx0ÞdX ð2Þ

Here, r is the Hookean (local) stress tensor, Cijkl is the stiffness
tensor for an isotropic material and a is a scalar kernel function. In
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general, the following additional properties are attributed to the
kernel function, a, as described in (Eringen, 1983),

� The kernel has a peak at kx� x0k ¼ 0, and decays with increas-
ing distance kx� x0k.
� The kernel function a reverts to a delta function as the non local

zone of influence vanishes, i.e., as limX!0a ¼ d. As such, aðx; x0Þ
satisfies the normalization condition, i.e.,

R
X aðx; x0ÞdX ¼ 1.

� a is bi-symmetric, i.e., aðx; x0Þ ¼ aðx0; xÞ and function of x� x0.

Additionally, Bažant and Chang (1984) suggested that a contin-
uum should not yield zero energy modes for non-rigid-body defor-
mations and should have real wave propagation velocity, which
requires that the Fourier transform of a have positive values all
over the reciprocal space. The same restriction on a has been
reached in Polizzotto (2001) by noting that Eq. (2) is a homoge-
neous Fredholm integral equation of first kind and then invoking
the Fredholm integral equation theory. It is noted in Bažant and
Chang (1984) that some of the popular kernels do not satisfy the
required conditions. Thus, it is suggested to include a dirac delta
function to alleviate this problem. However, the inclusion of a delta
function leads to the loss of stress regularity property of nonlocal
elasticity whenever the local stress is singular. In contrast to the
above mentioned restrictions on the kernel, recent research
through molecular simulations have indicated that at the nano-
scale, the kernel a attenuation need not be monotonous (Picu,
2002; Sundararaghavan and Waas, 2011). The reason for a to be
non-monotonous is attributed to the similarity between non-local
kernels and inter-atomic potentials (Picu, 2002; Sundararaghavan
and Waas, 2011). The normalization condition suggests that for
all X � V a uniform local strain field would produce a uniform non-
local stress field. However, we point out that this particular restric-
tion of nonlocal kernel is meant to be satisfied as long as X does not
intersect the boundary @V of the body V. Violation of the normali-
zation requirement leads to various problems, for instance, when X
intersects @V , a uniform strain yields a non-uniform nonlocal
stress. From a purely mathematical perspective, few modifications
to the kernel (Polizzotto, 2001; Borino et al., 2003; Polizzotto et al.,
2004) have been suggested in the past in order to satisfy the nor-
malization requirement at domain boundaries. Notwithstanding
the symmetry achieved in these papers, we note that the symme-
try condition of any function is determined by symmetry of its do-
main and codomain. Since, near the boundary X å V , the domain of
a itself is not symmetric with respect to the center of X. Hence, the
symmetry conditions near the boundary may need further investi-
gation. For detailed description about the properties of the kernel
function, the reader is referred to Eringen (1983), Bažant and
Chang (1984), Bažant and Jirásek (2002), Polizzotto (2001) and
Ghosh et al. (2013).

While various studies have focused on (mostly macroscopic)
nonlocal continuum and their numerical implementations, only a
few have focused on the connection of these theories to realistic
materials at small scale (Lam et al., 2003; Han, 2010, and refer-
ences therein). The various additional (length scale) parameters
or kernels needed to capture the non-locality of the material can
be obtained via molecular simulations (Picu, 2002; Maranganti
and Sharma, 2007a). A systematic attempt at generating 3D kernels
from molecular simulations is developed in Picu (2002). However,
the 3D kernels are not defined for distances below the distance at
which the radial distribution function goes to zero, and were con-
structed only for pairwise potentials. For general interatomic
potentials, the nonlocality is commonly obtained via wave disper-
sion studies. The dispersion curves are obtained for wave modes
propagating along specific wave vectors. The dispersion curves
obtained in this manner are inherently one dimensional, whereas
for analyzing continua (represented via integral type nonlocality)
multi-dimensional kernels are needed. In this paper, a new and
general procedure to obtain 2D and 3D isotropic nonlocal kernels
from dispersion data is proposed. Our particular focus is on
isotropic media, where we show that kernels obtained using
Fourier–Bessel transform, yield axisymmetric kernel profiles in re-
ciprocal or real space. These kernels satisfy the necessary require-
ments for stable wave propagation, and uniformity of nonlocal
stress and stress regularization. The proposed concept is demon-
strated using physically meaningful 2D and 3D kernels that should
find useful applications in nonlocal mechanics.

2. Integral-type nonlocal elasticity

The equations of motion for a non-local medium is given by,

tij;i þ qðfj � €ujÞ ¼ 0 ð3Þ

where tij ¼ Cijkl
R

X aðx� x0Þ�klðx0ÞdX for an isotropic medium. It is
experimentally observed that bulk and surface waves experience
wave dispersion at higher frequencies, i.e., the phase velocity de-
pends on the wavelength. The theories of lattice dynamics can dem-
onstrate this dispersion behavior (see Dove, 1993) but classical
elasticity fails to do the same. The following steps recapitulate that
nonlocal elasticity can represent wave dispersion through the ker-
nel function. Consider a plane wave solution for an infinite nonlocal
solid with no body force: ujðx; tÞ ¼ Aj eiðk�x�xtÞ, where k and x are the
angular wave vector and the angular frequency respectively. Substi-
tuting uj in the equilibrium equation, Eq. (3), yields:

jqx2djk � CijklâðkÞkiklj ¼ 0 ð4Þ

here âðkÞ denotes the Fourier transformed kernel. The phonon dis-
persion relation relating the angular frequency x and the wave
number k ¼ kkk is given by Eq. (4). For isotropic case
(Cijk‘ ¼ kdijdk‘ þ lðdikdj‘ þ di‘djkÞ) in which k and l denote the Lame’
constants, the above equation reduces to the following:

qx2 ¼ ðkþ 2lÞ âðkÞk2 for longitudinal waves

qx2 ¼ lâðkÞk2 for transverse waves

As described previously, in a local continuum, the kernel is a delta
function (âðkÞ ¼ 1) in which case the phase velocity (x=k) does
not depend on the wave vector k. For a non-local continuum, the
kernel âðkÞ provides the means to capture the non linear depen-
dence of phase velocity on the wave vector. In addition, for an iso-
tropic medium, the kernel function does not depend on the mode of
wave propagation. This is seen by rewriting the above equation as:

qx2
L

kþ 2l
¼ qx2

T

l
¼ âðkÞk2

Here, the subscripts L and T demotes the longitudinal and trans-
verse waves respectively. Phonon dispersion data can be obtained
either experimentally or through molecular simulation. The
following section assumes that the phonon dispersion is known
and focuses on obtaining the two-dimensional (2D) and three-
dimensional (3D) kernel in real space (a3DðxÞ) from one-dimensional
(1D) kernel in reciprocal space (â1DðkÞ) found by fitting Eq. (4) to
the phonon dispersion data.

3. Construction of multidimensional isotropic kernels

Kernel functions needed for 1D elasticity models are even func-
tions, hence can simply be obtained by Fourier-cosine transform of
the â1D. While in 1D, the isotropy induces merely the evenness of the
kernel, in 2D and 3D it also induces rotational symmetry, i.e., the
a2DðxÞ and a3DðxÞ should have cylindrical and spherical symmetries
respectively. The most natural way to build scalar functions on a 3D
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domain is through a tensor product along mutually orthogonal
directions. For isotropic materials the tensor product scheme may
not work, since functions with rotational symmetry may not be sep-
arable.3 There are exceptions, for instance, Gaussian functions are axi-
symmetric as well as separable. In fact, it is known that every
circularly symmetric separable function in 2D is Gaussian (Sahoo,
1990). The following section focuses on a more general technique
for the construction of axisymmetric kernel functions.

In case of rotational symmetry of anDðxÞ, its Fourier transform
ânDðkÞ also proves to be rotationally symmetrical. In other words,
the Fourier transform of a radial function is also radial since rota-
tion operation and the Fourier transformation commutes, see
appendix B. Here, k is the position vector in the reciprocal space
(wave vector). In 2D, the circular symmetry for a function f means

f ðx1; x2Þ ¼ f rðrÞ; where r ¼ ðx2
1 þ x2

2Þ
1=2 ð5Þ

The superscript ‘r’ refers to radial function. Note that f and f r are dif-
ferent functions. Its Fourier transform f̂ ðk1; k2Þ is also circularly
symmetric,

f̂ ðk1; k2Þ ¼ f̂ rðkÞ; where k ¼ ðk2
1 þ k2

2Þ
1=2

ð6Þ

That is the 2-D Fourier transform of a 2-D circularly symmetric
function is also circularly symmetric. In addition, the (1D) radial
profile of the Fourier transform is identical to the Hankel transform
(Bracewell, 1999) of zero order (denoted byH0) of the radial profile,
in the interval 0 6 r <1, of the 2-D circularly symmetric function
(see appendix B). The relation between these two radial functions
is obtained by Hankel transform (also known as Fourier–Bessel
transform, see Bracewell (1999)) as

f̂ rðkÞ ¼ H0 f r rð Þð Þ ¼ 2p
Z 1

0
f rðrÞJ0ðkrÞ r dr ð7Þ

f rðrÞ ¼ H�1
0 f̂ r kð Þ
� �

¼ 1
2p

Z 1

0
f̂ rðkÞJ0ðkrÞkdk ð8Þ

Note that unlike the Fourier transform there is no change in sign be-
tween forward and inverse transform. The coefficients of kr and the
factors outside the integrals are consequences of the currently cho-
sen form of the Fourier transform (see Appendix A). Here, J0 is the
zeroth order Bessel function of the first kind,4 as defined by the fol-
lowing integral equation

J0ðxÞ ¼
1

2p

Z p

�p
ei x sin h dh ¼ 1

2p

Z 2p

0
ei x cos h dh ð9Þ

Similarly in 3D the spherical symmetry for a function f yields

f ðx1; x2; x3Þ ¼ f rðrÞ; where r ¼ ðx2
1 þ x2

2 þ x2
3Þ

1=2 ð10Þ

Its Fourier transform f̂ ðk1; k2; k3Þ is also spherically symmetric,

f̂ ðk1; k2; k3Þ ¼ f̂ rðkÞ; where k ¼ ðk2
1 þ k2

2 þ k2
3Þ

1=2
ð11Þ

The relation between these two radial functions is obtained as

f̂ rðkÞ ¼ S0 f r rð Þð Þ ¼ 4p
Z 1

0
f rðrÞsincðkrÞr2 dr ð12Þ
3 If a function f ðxÞ defined on a n-D domain can be written as a tensor product of n
functions (along orthogonal directions) defined over real l ine, as
f ðxÞ ¼ f1ðx1Þ � f 2ðx2Þ � � � � � f nðxnÞ, then they are called as separable functions.

4 For integer values of n, the nth order Bessel function of the first kind is given by
the following integral representation: JnðxÞ ¼ 1

2p
R 2p

0 e�i ðns�x sin sÞ ds. For Bessel func-
tions of non-integer order (see Watson, 1995, p. 1976, chapter VI). The Bessel
functions arise naturally in Fourier analysis, they are the radial eigenfunctions of the
Laplacian operator in polar coordinate.
f rðrÞ ¼ S�1
0 f̂ r kð Þ
� �

¼ 1
2p2

Z 1

0
f̂ rðkÞsincðkrÞk2 dk ð13Þ

where the sincðxÞ ¼ sinðxÞ=x is known as the sinc function Note that
the integral of sincðxÞ over R is not unity, hence it is not normalized.
The normalized sinc function is given by sincðxÞ ¼ sinðpxÞ=ðpxÞ. The
non-normalized sinc function is equal to the first spherical Bessel
function of zeroth order j0ðxÞ ¼ sinðxÞ=x (see Arfken et al., 2005, Sec-
tion 14.2, or Abramowitz, 1972, p. 437, Section 10.1.1). Note that
the spherical Bessel function of nth order is related to the Bessel
functions of first kind of (n + 1/2)th order as jnðxÞ ¼

ffiffiffiffip
2x

p
Jnþ1=2ðxÞ,

n ¼ 0;1;2; . . . Due to the equality of sinc function to the first spher-
ical Bessel function of zero order, the notation S0 is used to denote
this transformation. The factors outside the integrals for inverse
transforms for 2D (Eq. (8)) and 3D (Eq. (13)) can be verified by using
the orthogonality relation of Bessel functions (Eq. (21)) and and
spherical Bessel functions (Eq. (23)).

3.1. Isotropic kernel construction using known radial profile

In view of the rotational symmetry of the kernels in 2D and 3D,
two different routes for the construction of the kernel are explored
in the following. In the first approach, it is assumed that the radial
profiles are identical for different dimensions in the ‘‘reciprocal
space’’. In the second approach, it is assumed that the radial profiles
are identical for different dimensions in the ‘‘real space’’. It will be
clear subsequently that kernels obtained on the basis of these two
approaches are different in general.

3.1.1. First approach: Identifying reciprocal-space radial-profile for
different dimensions

The first approach assumes:

âr
nDðkÞ ¼ cnD â1DðkÞ; n ¼ 2;3 ð14Þ

Therefore,

ar
2DðrÞ ¼ c2H�1

0 â1D kð Þð Þ ¼ c2

2p

Z 1

0
â1DðkÞ J0ðkrÞkdk ð15Þ

ar
3DðrÞ ¼ c3S�1

0 â1D kð Þð Þ ¼ c3

2p2

Z 1

0
â1DðkÞsincðkrÞk2 dk ð16Þ

where the constants c2 and c3 are used to satisfy the normalization
condition.

Normalization of kernel:
In the following the constants c2 and c3 are obtain using the

normalization conditions

2
Z 1

0
ar

1DðrÞdr ¼ 1 ð17Þ

Z 2p

0

Z 1

0
ar

2DðrÞr dr dh ¼ 1 ð18Þ

Z 2p

0

Z p

0

Z 1

0
ar

3DðrÞr2 sinð/Þdr d/dh ¼ 1 ð19Þ

Note that the factor 2 in Eq. (17) is because the kernel function is
even. In multiple dimensions the generalization of the even part
of a function is radial part of a function, as used in Eqs. (18) and
(19), some more details on this are given in appendix C.

Eq. (18) gives:

1
c2
¼ 2p

Z 1

0

1
2p

Z 1

0
â1DðkÞ J0ðkrÞkdk

� �
r dr

¼
Z 1

0

Z 1

0
J0ðkrÞ r dr

� �
â1DðkÞkdk ð20Þ



Fig. 1. 2D isotropic kernels: (a,b) stress gradient first and second approach, (c,d)
sinc2 first and second approach, (e) Gaussian (refer to Section 4 for details of the
functions c ¼ 1 for all kernels). Note that Stress gradient in the first approach and
sinc2 in the first approach have a singularity at the centre.
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Bessel functions of first kind satisfy the following orthogonality
relationship (see Arfken et al., 2005, Section 14.2)Z 1

0
JaðkrÞJaðk

0 rÞr dr ¼ 1
k

dðk� k0Þ ð21Þ

for a > �1=2 and k; k0 > 0. Here d is Dirac delta function. Noting that
J0ð0Þ ¼ 1, yieldsZ 1

0
J0ðk rÞ r dr ¼ 1

k
dðkÞ

using this relation for the bracketed part of the integrand of Eq. (20)
we obtain

c2 ¼
1

â1Dð0Þ

Similarly for 3D case, Eq. (19) gives:

1
c3
¼ 4p

Z 1

0
ar

3DðrÞ r2 dr

¼ 4p
Z 1

0

1
2p2

Z 1

0
â1DðkÞsincðkrÞk2 dk

� �
r2 dr

¼ 2
p

Z 1

0

Z 1

0
sincðkrÞ r2 dr

� �
â1DðkÞk2 dk ð22Þ

Spherical Bessel functions satisfy the following orthogonality
relationshipZ 1

0
jaðkrÞjaðk

0 rÞr2 dr ¼ p
2k2 dðk� k0Þ ð23Þ

for a > �1 and k; k0 > 0. noting that j0ð0Þ ¼ 1, yieldsZ 1

0
j0ðk rÞ r2 dr ¼ p

2k2 dðkÞ

using this relation for the bracketed term of Eq. (22) we obtain

c3 ¼
1

â1Dð0Þ
3.1.2. Second approach: Identifying scaled-radial-profile for different
dimensions

The second approach assumes:

ar
nDðrÞ ¼ CnD ar

1DðrÞ; n ¼ 2;3 ð24Þ

Therefore in this approach the intended kernel in real space is ob-
tained more directly. However, in this approach the constants
(CnD, n = 2,3) were needed to ensure normalization of the kernel.
The normalization condition for the kernels as given by Eq. (18)
and (19) yield the CnD-s as

C2D ¼
1

2p I2DðR ¼ 1Þ
; where I2DðRÞ ¼

Z R

0
a1DðrÞ r dr ð25Þ

C3D ¼
1

4p I3DðR ¼ 1Þ
; where I3DðRÞ ¼

Z R

0
a1DðrÞ r2 dr ð26Þ

Therefore as the âr
1DðkÞ is provided from the dispersion data, the

ar
1DðrÞ can be obtained via inverse Fourier transform. Subsequently

the 2D and 3D kernels are obtained by using normalization con-
stants (CnD, n = 2,3). Examples of isotropic kernels in 2D are given
in Fig. 1. It shows that these kernels may have singularity at the
center, discontinuous derivative, and compact support.

3.2. Connection with the Green’s function

The fact that differentiation in the real space gets translated to
multiplications in reciprocal domain is advantageous and widely
used, in particular for unbounded domain. Let Gðx; x0Þ be the
Green’s function for the linear differential operator L in 3D, then
LGðx; x0Þ ¼ dðx� x0Þ. Fourier transform yields bGðkÞ ¼ 1=bL. Therefore
if the 1D kernel â1DðkÞ is chosen such that 1=ânDðkÞ is identical with
an arbitrary bLðkÞ in n-dimensional space, n ¼ 1;2;3, then the ker-
nel becomes the Green function for the operator L. An important
consequence for such kernel is that under the operator L the non-
local stress yields the local stress. Therefore choosing a kernel is
tantamount to choosing a differential operator which transforms
the non-local stress to a local one (see Eringen, 1983; Ghosh
et al., 2012).

4. Examples

In this section few commonly used functional form of 1D ker-
nels were explored to obtain the 2D and 3D kernels.

4.1. Isotropic non-separable kernel: stress gradient

The 1D kernel â1D ¼ d=ð1þ c2k2
1Þ corresponds to the stress gradi-

ent theory. Here, c and d are two constants. The stress gradient the-
ory (Eringen, 1983) relates the nonlocal and classical stresses as
ð1� c2r2Þt ¼ r, the corresponding kernel provides a first order
approximation to the Born–Kármán model of lattice dynamics.
According to the first approach, the radial functions in reciprocal
space in 1D to 3D is given by ânD ¼ d=ð1þ c2k2Þ, where k ¼ kkk,
k 2 Rn, n ¼ 1;2;3. Following the first approach the radial function
for kernels in the real space are

ar
1DðrÞ ¼

1
2c

e�r=c; r ¼ jxj; x 2 R ð27Þ

ar
2DðrÞ ¼

1
2pc2 K0ðr=cÞ; r ¼ kxk; x 2 R2 ð28Þ
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ar
3DðrÞ ¼

1
4pc2r

e�r=c; r ¼ kxk; x 2 R3 ð29Þ

where c > 0 is a constant and K0 is the modified Bessel Function of
the Second Kind of order zero (see Arfken et al., 2005, Section 14.5,
Abramowitz, 1972, p. 376). The integral formula for the modified
Bessel function of the second kind of order zero is given as
K0ðrÞ ¼ 1

2

R1
0 e�r cosh t dt. Later we will need the modified Bessel func-

tion of the second kind (of order a), which is given as
KaðxÞ ¼ p

2
I�aðxÞ�IaðxÞ

sinðapÞ ; where IaðxÞ ¼ i�aJaðixÞ is the Modified Bessel

functions of the first kind. In contrast to the oscillating nature of
the standard Bessel functions the K0 is exponentially decaying, that
makes it suitable as a kernel function. Note that the 2D kernel given
by Eq. (33) is already known (Eringen, 1983, 2002). However, there-
in it is obtained as Green’s function for the differential operator
1� c2r2. Here, we have provided a systematic approach for 2D
and 3D kernel construction from the 1D dispersion data. Given that
obtaining Green’s functions for an arbitrary operator is difficult, the
currently proposed approach is more general. Note that due to the
normalization, the constant, d, for â1D, does not affect the final
kernel.

The multi dimensional kernels shows singularity at r ¼ 0. Note
that these kernels are the Green’s function for the operator
1� c2r2 in 1, 2 and 3 dimensions. Therefore, kernels obtained
following the first approach corresponds to the Green’s function
of the stress gradient differential operator. The 1D kernel has jump
discontinuity of unit magnitude like a Heaviside function in its
derivative at origin. The 2D and 3D kernels have (essential and pole
respectively) singularity at origin. Other than the origin they
satisfy the homogeneous differential equation 1� c2r2 ¼ 0. Note
the qualitative similarity of the functional form with the Green’s
function for differential operator in Helmholtz’s equation
(r2 þ c2) (Polyanin, 2002; McQuarrie, 2003).

Following the second approach the radial function for the
kernels in the real space are

ar
2DðrÞ ¼

1
2pc2 e�r=c; r ¼ kxk; x 2 R2 ð30Þ

ar
3DðrÞ ¼

1
8pc3 e�r=c; r ¼ kxk; x 2 R3 ð31Þ

Therefore, the two approaches yield completely different kernels in
the real space. While the first approach yields only one singularity at
r ¼ 0 the second approach does not have any singularity. Note that
all of the required conditions for kernels as mentioned in Section 1
are satisfied by these kernels.

4.2. Isotropic non-separable kernel: sinc2

The sinc2 function is another example of a smooth attenuating
function that can be used to fit the dispersion data, with the kernel

defined as â1D ¼ dsinc2ðkc=2Þ ¼ dc2

4
sinðkc=2Þ

k

� �2
. Note that the lattice

dynamics theory applied to chain of atoms connected by nearest
neighbor springs (Born–Kármán model) shows that the phonon
dispersion can be expressed in terms of square of the sine function.
Using the theory for dispersion in nonlocal elasticity the corre-

sponding kernel turns out to be a sinc2 function. Following the first
approach the radial function for the kernels in the real space are

ar
1DðrÞ ¼

c � r þ jc � rj
2c2 ; r ¼ jxj; x 2 R ð32Þ

ar
2DðrÞ ¼

0; for r > c;
log cþ

ffiffiffiffiffiffiffiffi
c2�r2
p

r

� �
pc2 ; for r 6 c;

8<: r ¼ kxk; x 2 R2 ð33Þ
ar
3DðrÞ ¼

1þ signðc � rÞ
4pc2r

; r ¼ kxk; x 2 R3 ð34Þ

Here sign denotes the sign function or signum function. The one
dimensional kernel, ar

1D, is a triangle function. For the kernels ob-
tained via first approach at r ¼ 0 we get a logarithmic singularity
(an essential singularity) for ar

2D and a pole for ar
3D. Note that the

both ar
1D and ar

2D have discontinuity in their derivative at r ¼ c.
For ar

3D the sign function induces a discontinuity at r ¼ c. Note that
several numerical strategies are developed to handel discontinuity
that may arise due to the singularity present in some of the kernels
(see Tornberg, 2002; Muller et al., 2012; Mousavi and Sukumar,
2010).

Following the second approach the radial function for the ker-
nels in the real space are

ar
2DðrÞ ¼

3ðc � r þ jc � rjÞ
2pc3 ; r ¼ kxk; x 2 R2 ð35Þ

ar
3DðrÞ ¼

3ðc � r þ jc � rjÞ
2pc4 ; r ¼ kxk; x 2 R3 ð36Þ

For this kernel also the two approaches yield completely different
kernels in the real space. In this case also the kernels found from
the second approach do not produce any singularity. For this case,
kernels via both approaches in all dimensions are compactly
supported over the domain of radius r. It is worth noting that com-
pactly supported kernels would facilitate computational implemen-
tation of nonlocal elasticity.

4.3. Isotropic separable kernel: Gaussian

The 1D Gaussian kernel in reciprocal space is, de�c2k2=4. If the
coefficient c is same along different cartesian axes then this is a
separable function. For separable axisymmetric functions, con-
struction using tensor product approach and proposed radial func-
tion based approach (Section 3) will yield identical kernels.
Following the first approach the radial function for the kernels in
the real space are

ar
1DðrÞ ¼

e�
r2

c2

c
ffiffiffiffi
p
p ; r ¼ jxj; x 2 R ð37Þ

ar
2DðrÞ ¼

e�
r2

c2

c2p
; r ¼ kxk; x 2 R2 ð38Þ

ar
3DðrÞ ¼

e�
r2

c2

c3p3=2 ; r ¼ kxk; x 2 R3 ð39Þ

The 2D and 3D kernels obtained by second approach is identical to
the above. Therefore, for 1D Gaussian kernel all approaches yield
the same nD kernels.

5. Domain of nonlocal influence and computational kernel

The kernel function for a particular material would depend on
the microstructure. Thus, at the atomic scale, it depends both on
the spatial distribution of atoms and the interatomic interactions.
One of the important feature of kernel is the width/extent of non-
locality. Since, some of the kernels under consideration do not have
compact support, the kernels were truncated after some specific
radial distances from the center, which is defined as the computa-
tional radius of influence ðrcompÞ, (also known as cut-off radius). The
volume covered by the radius of influence is the computational
compact support (Xcomp) of the kernel. For isotropic materials
Xcomp may be taken as a nD ball (spherical volume), BðrcompÞ, of
radius r. There is no specific rule to select the radius of influence,



Fig. 2. Molecular model of face centered cubic (FCC) Argon for the tension test and phonon dispersion computation: (left) the hexagonal close pack planes ((111) planes), each
color represents a different layer. (right) Long prismatic molecular structure made of 110400 atoms.
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Fig. 3. (a) Comparison of experimental dispersion data for Argon with those
computed from MD simulations (Heino, 2007). The experimental data is obtained
using a triple-axis neutron spectrometer at 10 K (Fujii et al., 1974). (b) Longitudinal
and transversal dispersion curve for FCC argon along the [111] symmetry direction
and different curve (1D kernel) fits. Maximum error in the Gaussian kernel fit is�5%
and in stress gradient kernel is �7%.
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however, it is customary to choose the radial distance from the
central point to the point where the integral of the kernel reaches
some specific value (close to unity). The following function is used
to denote integral of the kernel over a nD ball of radius r.

wnDðrÞ ¼
Z

BðrÞ
anDðrÞ dV

Using the function InDðrÞ defined in Eqs. (25) and (26), for different
dimensions, it becomes

w1DðrÞ ¼ 2 I1DðrÞ; w2DðrÞ ¼ 2p I2DðrÞ; w3DðrÞ ¼ 4p I3DðrÞ

Analytical expressions for wnDðrÞ for different dimensions are given
in appendix (D). It is not always possible to obtain the analytical
expressions for r in terms of the tolerance, hence they have to be
obtained numerically from InDðrcompÞ. For instance, if the tolerance
is chosen as 1% (i.e., w3DðrcompÞ ¼ 0:99), the corresponding radii of
influences are given by c, c, 2.382c, 6.64c and 8.41c, for the sinc2

kernels �1 and �2, Gaussian kernel and Stress Gradient kernels
�1 and �2 respectively. We define the computational kernel acomp

nD

in the n-Dimension as:

acomp
nD ðrÞ ¼ anDðrÞ � anDðrcompÞ

ðwnDðrcompÞ �Xcomp aðrcompÞÞ
ð40Þ

The computational kernels were set to zero outside their compact
support and scaled to satisfy the normalization condition inside
their compact support. It is important to note that for a given toler-
ance, radii of influence are different in different dimensions for the
same functional form of the kernel.

6. Modeling size effect observed in molecular simulation
through different kernels

Nonlocal theories have advantage over the length-scale-inde-
pendent classical elasticity theories for capturing the size depen-
dent mechanical properties at small-scale (see Park and Gao,
2006; Maranganti and Sharma, 2007a; Maranganti and Sharma,
2007; Sundararaghavan and Waas, 2011; Wang et al., 2008; Tang
and Archive, 2010). In the following, the nonlocal elasticity will
be used to phenomenologically demonstrate the size effect for an
example case of an Argon single crystal. The available experimental
data is at a temperature of 10 K, given in Fig. 3(a) for wave propa-
gation along wave vector [111]. The ½111� direction is chosen since
the atomic plane has a hexagonal 2D lattice which exhibits in-
plane isotropy approximately (see Schargott et al., 2007; Metrikine
and Askes, 2006). Using the lattice dynamics theory within the har-
monic approximation, the dispersion curve for the direction can be

expressed via a sine-function (Dove, 1993) xðkÞ ¼ ð4Ji
m Þ

1=2
sinðka=2Þ;

ka 2 ½0;p�. Here, a and m are the inter-planer spacing and mass of
atom respectively and Ji; i ¼ L; T is the inter-planer force constant
for longitudinal (or transverse) waves. In case of wave propagation
along wave vector [111], a ¼ A=

ffiffiffi
3
p

, for longitudinal wave JL ¼ 2�k0

and for transversal wave JT ¼ �k0=2, here, �k0 is the interatomic har-
monic force constant. The experimental data yields the values for
the lattice parameter A ¼ 5:313 Å and �k0 � 1:32 (Dove, 1993).
The kernel corresponding to this aforementioned sine curve is

the sinc2 kernel, â ¼ a2

4 sinc2ðka=2Þ. Note that for the dispersion

curve given in Fig. 3(b), the frequency, x, is scaled with ð4Ji
m Þ

1=2
, such

that, �x ¼ x=ð4Ji
m Þ

1=2
. Owing to the scaling of the experimental data

with the initial slope and the in-plane isotropy of the ½111� plane,
frequencies for longitudinal and transverse waves are almost
identical.

We have fitted two other 1D kernels, namely stress gradient
and Gaussian, as mentioned in Section 4. We have avoided the
best-fit approach since it is more important for physical consider-
ations to fit both the �x (in Hz) and @x

@ kað Þ at the centre and the bound-

ary of Brillouin zone. From the experimental data: @ �x
@ kað Þ

			
ka¼0
¼ 1=2,

and at the boundary of Brillouin zone @ �x
@ kað Þ

			
ka¼p
¼ 0. Since the stress
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gradient curve does not show zero slope at the boundary, it is fitted
to simply match �xðk ¼ p=aÞ. This gives the following 1D stress gra-
dient kernel:

âðkÞ ¼ a2

4ð1þ c2k2Þ
; c ¼ 0:3856a ð41Þ

The Gaussian kernel is fitted for zero slope at the boundary of the
Brillouin zone, it yields

âðkÞ ¼ a2

4
e�c2k2

; c ¼ 2a=p ð42Þ

Corresponding a3DðxÞ’s for the stress gradient kernels (via first and
second approaches) and Gaussian kernels are given by Eqs. (34),
(36) and (39), respectively. The radial profile of kernels for the
above fitted data are given in Fig. 4. It shows that the two different
approaches yield different kernels.
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Fig. 4. Radial profile for 1D, 2D and 3D Kernels, given in (a), (b) and (c) respectively.
The first and second approach for different kernels are denoted by �1 and �2
respectively. Note that for 1D they are same. c is 0.3856a, 2a=p and a for stress
gradient, gaussian and sinc2 kernels respectively.
In addition to experimental result shown in Fig. 3 (left), we also
plotted the dispersion curve computed using molecular dynamics
simulation with a Lennard–Jones potential (Heino, 2007) that clo-
sely reproduces the experimental dispersion, we have also verified
their MD result. The dispersion is obtained in the MD simulation
using the frequency content of the Fourier transformed atomic
velocities (for detailed steps see Dickey and Paskin, 1969; Ghosh
et al., 2012). To investigate the size dependence of nonlocal energy,
we strained this molecular model and computed the nonlocal ener-
gies for different sizes of the crystal. An uniform uniaxial tensile
strain is imposed along a (prismatic) molecular assembly of length
L made of FCC Argon with lattice parameter A ¼ 5:313 Å shown in
Fig. 2(b). Periodic boundary conditions were imposed along the
other directions. The strain can be represented as:

�ðxÞ ¼ �0ðHðx1Þ � Hðx1 � LÞÞ ð43Þ

where �0 is 0.01. H is the Heaviside step function. The internal en-
ergy is calculated via atomistic simulations for different L and nor-
malized with that of the initial sample length, 343.7 Å.

The quadratic functional for the nonlocal strain energy density
of the body V, under linear small-strain assumption is defined in
(Bažant and Jirásek, 2002), as

Wnonlocal ¼
1
2

Z
X
�klðxÞaðx; x0Þrklðx0Þ dX ð44Þ

¼ 1
2
�klðxÞ tklðxÞ ð45Þ

For the nonlocal continuum model the energy per unit length of the
prismatic body can be found using Eq. (44). The total energy per
unit length is given by

EnNL ¼ 1
L

Z
V

Wnonlocal dV ¼ 1
2L

Z
V
�klðxÞ tklðxÞdV ð46Þ

where V is the volume of the body. The dependence of nonlocal
strain energy on the sample size is quantified by the energy ratio

EnNLðLÞ
EnNLðL0Þ

The normalized nonlocal energy obtained by nonlocal elasticity
and molecular simulations are plotted in Fig. 5. For clarity results
only for stress gradient kernels are plotted as it yields the best
match among all kernels. The first and second approach are com-
pared for the popular stress gradient kernel. Both atomistic data
and the non-local simulation show a distinct size effect with the
energy ratio decreasing with decrease in specimen length. An exact
fit is not anticipated due to the cubic anisotropy of the 3D lattice.
However, the results indicate that stress gradient kernel through
the second approach serves as a better fit to molecular data. The
reason behind this may be explained using the integral of the ker-
nels, w3D. In Fig. 6 w3Ds are plotted for different kernels fitted to the
same dispersion curve. It is clear that the stress gradient kernel via
second approach has the largest radius of influence and captures
the longer range interactions seen in the molecular model.5
5 REMARK: Note that the nonlocal energy (given by Eq. (46)) is only function of x1

only. Hence, for separable kernels calculation of the total nonlocal energy is straight
forward. For Gaussian kernel total nonlocal energy as a function of length, L, is given
by

EnNL ¼ E�2
0

4
2cffiffiffiffi
p
p e�L2=c2 � 1

� �
þ 2LErf L=cð Þ

� �
ð47Þ

where Erf is the error function (see p. 297 of Abramowitz, 1972) given by the integral

of the Gaussian distribution: ErfðzÞ ¼ 2ffiffiffi
p
p
R z

0 e�t2 dt.
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Fig. 7. Comparison of nonlocal hoops stresses along crack-line obtained through
different kernels.
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7. Effect of kernel on crack-tip stress field

This section demonstrates the sensitivity of the choice of kernel
in predicting crack-tip stress fields. Due to the difficulty associated
with directly solving the integro-partial differential equilibrium
equation for nonlocal elasticity, a Green’s function approach pro-
posed in Eringen (1983) is used to obtain the non-local stress field.
Here, the equilibrium equation is written as

rkl;k þ LG ðqðfl � €ulÞÞ ¼ 0 ð48Þ

where aðrÞ be the Green’s function for the operator LG. It is evident
that if LGðqðfl � €ulÞÞ ¼ 0 then the above equation reduces to the clas-
sical equilibrium equation: rkl;k ¼ 0. The operator LG can also be ap-
plied to the non-local traction boundary conditions, if specified.
Therefore a classical boundary value problem is obtained. Solution
for such problems are well known through either analytical or
numerical techniques. Subsequently the nonlocal stress can be ob-
tained using Eq. (2) (Lu et al., 2007).

Nonlocal stress field is a kernel average of the local stress over a
domain, making it finite and smooth even if the stress predicted
from local elasticity is singular. The Griffith crack problem is cho-
sen to demonstrate this fact. The Griffth crack problem consists of
a thin elastic plate, of thickness, t, with a slit crack of length 2L,
L = 50 lm, located at �L 6 x1 6 L on x1-axis, and subjected to a
far field uniform tension r1. The crack is assumed to be ‘‘mathe-
matically sharp’’, implying a zero radius of curvature at the tip.
The plate dimensions and slit crack length, L are much larger than
the plate thickness, t. The 2D stress fields, corresponding to a clas-
sical plane stress continuum model are well known, and produces
infinite stresses at the crack-tip for classical elasticity. The stress
field via classical elasticity is given below:

r22 ¼ r1 Re
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � L2
p !

þ x2Im
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � L2
p � z2

ðz2 � L2Þ3=2

 !" #
ð49Þ

where z ¼ x1 þ ix2.
The kernels developed for FCC Argon are used in this example.

The nonlocal hoop stresses obtained using various kernels are plot-
ted along the crack-line in Fig. 7. At the crack tip very high stress in
front of the crack is weighted along by very low stresses behind the
crack, preventing the nonlocal stress from reaching its maximum
at the crack-tip. Whereas, slightly away from the crack-tip and in
front of it, the local stresses are very high, leading to a maximum
in the nonlocal stress. The peak is dependent on the type of kernel,
however, maximum difference in the computed results is only
� 15%. In addition, the peak locations are always within one half
of lattice spacing and does not vary widely. The stress-gradient-2
kernel predicts the lowest peak, 197 times r1, due to its wider ra-
dius of influence. Other kernels provide similar values for the peak,
among them sinc2 kernels predict highest, close to a stress concen-
tration factor of 229.

We note that in the nonlocal calculation the convolution of the
stress with the kernel function is done without considering the
crack-boundary effect. Whenever, the intersection of the kernel
with the boundary is significant, the ensuing nonlocal stress is
not accurate. A better treatment of incorporating boundary effects
is needed and that should lead to an improved understanding of
the crack-tip nonlocal stress field. However, a key feature of non-
local theory is the removal of a stress singularity that is non-phys-
ical. What is suggested for further investigation is the development
of a microstructure specific sub-scale model that can be used in
tandem with the non-local model so that a smooth transition from
the sub-scale (including boundary regions) towards the interior
(away from boundaries) non-local continuum is attained in a rigor-
ous manner. This aspect is left for future study. We note that
Molecular Dynamics (MD) calculation of hoop-stress along the
crack line has been reported in Jin and Yuan (2005), Yamakov
et al. (2006), see for instance Figs. 7 and 8 of Jin and Yuan (2005)
and Figs. 8, 9, and 11 of Yamakov et al. (2006). In those studies,
the maximum (and finite) stress occurs away from the crack tip,
but reasons for this occurrence are not discussed.
8. Conclusions

This paper provides a general approach to obtain multi-dimen-
sional kernels, useful for nonlocal elasticity, from phonon disper-
sion data. In particular, given a 1D kernel in reciprocal space, the
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analytical techniques to obtain the multi-dimensional counterpart
for isotropic materials are proposed. For isotropic materials, the
kernels obtained must be rotationally symmetric functions in both
real as well as in reciprocal space. The present study has proposed
two techniques (first and second approach respectively) to build
multi-dimensional kernels such that they have identical radial pro-
file with the 1D kernel in either, the (1) reciprocal space or (2) real
space. It is found that for separable functions both approaches be-
come the same. For the first approach, the kernels are obtained as
the generalized Hankel transform of the radial profile of the ker-
nels in reciprocal space. Multi-dimensional kernels obtained via
both approaches are normalized. Using the orthogonality of Bessel
functions it is shown that the normalizing factor for the first ap-
proach is the reciprocal of the slope at the center of the Brillouin
zone. Several multi-dimensional analytical kernels are developed.
Comparison of nonlocal energy for molecular simulations and non-
local elasticity with different kernels obtained by fitting dispersion
data is used as a test for suitability of these kernels. It turns out
that for FCC Argon, stress gradient kernel obtained through the sec-
ond approach provides the closest prediction of the size effect in
energy due to a larger zone of influence. Sensitivity of the non-local
stress field on the choice of kernel function is analyzed for Griffith’s
crack problem. It is found that the dependence of (finite) peak
stress on kernel function is significant, though the location of the
peak is not very sensitive to the choice of the kernel. Since the ker-
nels are derived through atomistic simulations, the corresponding
nonlocal stress field obtained is material specific. That makes ker-
nel selection and construction an important part of nonlocal theory
development. Any implementation of nonlocal elasticity in multi-
ple dimensions would find this study useful in choosing an appro-
priate kernel function.
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Appendix A. Definitions

Let the Fourier transform f̂ of an integrable function f defined on
Rn

f̂ ðkÞ ¼ Fðf ðxÞÞ ¼
Z

Rn
f ðxÞe�ix�k dVx ð50Þ

and

f ðxÞ ¼ F�1ðf̂ ðkÞÞ ¼ 1
ð2pÞn

Z
Rn

f̂ ðkÞeix�k dVk ð51Þ

where x � k is the dot product of the n-dimensional vectors, x and k.

Appendix B. Fourier transform for a radial function

Fourier transform under different transformations (e.g., rota-
tion) has interesting properties and can be found in many text
books (see Stein and Weiss, 1971, chapter-IV). A function f defined
on Rn (n > 1) is radial if f ðxÞ ¼ f ðRxÞ for any orthogonal transfor-
mation R, (R 2 SOð3Þ). This yields that for radial function
f ðxÞ ¼ f ðxÞ; x ¼ kxk. In the following we recount that the Fourier
transform of a radial function, f, is radial. If f ðxÞ and f̂ ðkÞ are Fourier
transform pairs in Rn then

f̂ ðkÞ ¼ Fðf ðxÞÞ ¼
Z

Rn
f ðxÞe�ix�k dVx ¼ Fðf ðR xÞÞ ¼

Z
Rn

f ðR xÞe�ix�k dVx
using change of variable y ¼ Rx and noting the corresponding Jaco-
bian is one.

f̂ ðkÞ ¼
Z

Rn
f ðyÞ e�iR�1 y�k dVy ¼

Z
Rn

f ðyÞ e�iy�R k dVy ¼ f̂ ðRkÞ

Therefore the Fourier transformed function of a radial function is
also radial. In fact using the above it can be shown that the Fourier
transform and orthogonal transformation are commutative, i.e.,
FRðf ðxÞÞ ¼ RFðf ðxÞÞ. Further, the subspace of L2ðRnÞ consisting of
all radial functions remains close under Fourier transform.

B.1. Hankel transform in n dimensions

Let f be a radial function defined on Rn then the Fourier trans-
formed function is also radial and is given by Hankel transform
in nD, it has the form

f̂ ðkÞ ¼ 2p
kn=2�1

Z 1

0
f ðrÞ Jn=2�1ðkrÞ rn=2dr ð52Þ

Eqs. (7) and (12) are obtained by setting n ¼ 2 and n ¼ 3 in the
above.

Appendix C. Evenness in higher dimensions

A generalization of the even part of a function in more than one
dimension is radial part of a function. Eqs. (17)–(19) are corollary
of a more general theorem as given below (Baker, 1999):

Theorem. Let g : R! R be Riemann integrable on R and let
f ðxÞ ¼ gðrÞ, 8x 2 Rn, r ¼ kxk. Then f is Riemann integrable on Rn andZ

Rn
f ¼ xn�1

Z 1

0
gðrÞrn�1dr
Theorem. The area of the unit sphere Sn�1 # Rn is given by

xn�1 ¼ 2p
n
2

Cðn2Þ
. C is the Gamma function.

Here S2, is the standard sphere in 3D, it is a two-dimensional
surface of a (three-dimensional) ball in 3D. 1-Sphere, S1, is the
circle in 2D and the 0-sphere, S0, is the pair of points at the ends of
a (one-dimensional) line segment. For S0 in 1D the two points get
count x0 ¼ 2. Therefore the area of the 0,1,2 -spheres are given by
2;2p and 4p respectively. So they arise in C2D and C3D of Eqs. (25)
and (26).
Appendix D. Integral of kernels over a compact support in
different dimensions

Analytical expressions for the integral of kernels over the com-
pact support is given below for all the kernels. Here rcut denotes
cut-off distance mesured in different dimensions.

For Gaussian kernels:

w1DðrcutÞ ¼ Erf
rcut

c

� �
w2DðrcutÞ ¼ 1� e�

r2
cut
c2

w3DðrcutÞ ¼ 4p � e�
r2
cut
c2 rcut

2cp3=2 þ
Erf rcut

c

� �
4p

0B@
1CA

Here, Erf is the error function.
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For stress gradient kernels via first approach:

w1DðrcutÞ ¼ 1� e�
rcut

c

w2DðrcutÞ ¼
c � rcut K1

rcut
c

� �
c

w3DðrcutÞ ¼
c � e�

rcut
c ðc þ rcutÞ

c

Here, K1 is the modified Bessel Function of the Second Kind of order
one.

For stress gradient kernels via second approach:

w2DðrcutÞ ¼ 1� e�rcut ð1þ rcutÞ

w3DðrcutÞ ¼
1
2

2� e�rcut ð2þ rcutð2þ rcutÞÞð Þ

For sinc kernels via first approach:

w1DðrcutÞ ¼
1 rcut > c
2c rcut�r2

cut
c2 ; Otherwise

(

w2DðrcutÞ ¼
1 rcut > c

c c�
ffiffiffiffiffiffiffiffiffiffiffi
c2�r2

cut

p� �
þr2

cut log
cþ
ffiffiffiffiffiffiffiffiffiffi
c2�r2

cut

p
rcut

� �
c2 ; Otherwise

8<:
w3DðrcutÞ ¼

1 rcut > c
r2

cut
c2 ; Otherwise

(

For sinc kernels via second approach:

w2DðrcutÞ ¼
1 rcut > c
3c r2

cut�2r3
cut

c3 ; Otherwise

(

w3DðrcutÞ ¼
1 rcut > c
4c r3

cut�3r4
cut

c4 ; Otherwise

(
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