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Abstract

Quantitative estimation of features from sectional images of microstructures is fundamental to determining the microstructural

influences on material behavior. Geometric data extracted from planar materialographic sections through image analysis techniques

are primarily lower-order descriptors of the microstructure. Such descriptors do not contain complete morphological information

and hence cannot fully describe the material microstructure. This work uses a multi-class support vector machine classification

method in conjunction with principal component analysis to build a dynamic and evolving microstructure library that can be used to

efficiently describe single-phase polyhedral microstructures. Lower-order descriptors are initially used to associate the material

microstructure to classes of microstructures stored in a digital material library. Complete description is obtained by quantifying the

microstructure using the coefficients of a continuously updating basis within a class of the library. These techniques are essential

towards the development of a dynamic materials library that will be able to analyze, classify and represent microstructures for

modeling, accelerating the design and testing of single-phase polycrystalline materials.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Quantitative schemes for evaluating material micro-

structure are essential for predicting microstructure-

dependent properties. Over the years, automated image

analysis has been successfully used to characterize

features like grain sizes and anisotropies [1] which in

turn have proved useful in improving the quality of

products by relating the material properties to the

processing conditions. Models that attempt to predict
properties rely on statistical descriptions of material

microstructure [2]. Pole figures and orientation distri-

bution functions represent crystallographic anisotropies

of single-phase polyhedral microstructures [3]. Stereol-

ogical parameters have been used to study the mor-
* Corresponding author. Tel.: +1-607-255-9104; fax: +1-607-255-

9410.

E-mail address: zabaras@cornell.edu (N. Zabaras).

URL: http://www.mae.cornell.edu/zabaras/.

1359-6454/$30.00 � 2004 Acta Materialia Inc. Published by Elsevier Ltd. A

doi:10.1016/j.actamat.2004.05.024
phological anisotropy of such materials. The technique

involves estimation of the three-dimensional size and
shape distributions of grains through observations in

planar sections using stereological equations [2,4,5].

However, in these characterization techniques, the

completeness of representation has not been well

studied.

Parameters such as grain size, elongation and orien-

tation that describe single-phase polyhedral microstruc-

tures belong to the class of lower-order descriptors.
Yeong and Torquato [6–8] employed lower-order de-

scriptors such as lineal measures and two-point proba-

bility functions to reconstruct polyphasemicrostructures.

Even though the reconstructed and reference correlation

functions matched the input microstructure, the recon-

structed microstructure was found to differ in other cor-

relation measures when compared to the original

microstructure. This non-uniqueness results from the
absence of complete morphological information in

lower-order correlation functions. It can be seen that
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Fig. 1. Microstructure image preprocessing operations.
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parameters like the grain sizes and shapes can only pro-

vide an incomplete description of a microstructure.

This paper focuses on the completeness aspect of the

description of planar images of single-phase polyhedral

microstructures. Instead of looking at selective features
or descriptors of the microstructure, an attempt is made

to describe the microstructure as a single entity and

quantitatively describe it with select set of coefficients.

We employ a classification technique in conjunction

with principal component analysis (PCA) for achieving

a higher-order representation of microstructure images.

Literature provides instances where classification is used

for describing material microstructure. Tojima et al. [9]
employed neural networks for the classification of

graphite size in cast iron and grain sizes in stainless steel

through a feature extraction method. Jenkins et al. [10]

employed a decision tree-based classification scheme to

describe the iron ore sinter structure. The idea behind

this work was the use of a hierarchical classification

structure to completely classify a microstructure based

on its features. However, even though the classification
scheme for a microstructure is exhaustive, the descrip-

tors used are still lower-order terms and hence

incomplete.

The automated classification structure proposed in

this paper also employs lower-order descriptors like

grain sizes and shape features. Nonetheless, complete

description of the material microstructure is obtained by

describing the microstructure through the use of a basis
within a class library. In our approach, feature compo-

nent vectors representing independent patterns extracted

from the various classes of single-phase polyhedral mi-

crostructures are used to train a system. The classifica-

tion structure evolves into a digital library through

recognition of new microstructure classes and by addi-

tion of new microstructures to the existing classes.

Support vector machine (SVM) is employed for effecting
the automated classification of microstructures and to

create the library. SVM is a successful pattern recogni-

tion technique with applications in classification, re-

gression and time series prediction of data [11–13]. SVM

outperforms classification methods like the Bayes clas-

sifier, nearest neighbor classifier and neural networks in

speed and accuracy. Initial training classes consisting of

ensembles of single-phase polyhedral microstructure
were constructed using a Monte Carlo algorithm for

grain growth. The library does not store any micro-

structures. Every class consists of a reduced basis which

can effectively describe new microstructures. This basis

evolves when new microstructures are added to the

classifier and the information content of the class im-

proves. New microstructures can be completely recon-

structed through a linear combination of the basis using
a set of coefficients, which are used for quantitatively

representing the microstructure. A modified form of

PCA extensively applied in face recognition and vision
applications [14–16] has been employed for the creation

of the basis. The method called incremental PCA tech-

nique [17] dynamically updates the basis within each

class whenever new microstructures are added to the

library.
The microstructure classification framework holds

promise to the objective of automating estimation of

material properties from the microstructures obtained

through a real-time microstructure imaging system

based on the derived set of coefficients created from the

basis of the material library. Furthermore, one could

potentially affiliate the microstructure classes with pro-

cesses required to produce such microstructures, thus
leading to an ability to select processes leading to desired

microstructural features. The paper is presented in four

main sections. Section 2 describes the basic image

analysis methods used for feature extraction, whereas

Sections 3 and 4 deal with an introduction to PCA and

SVM, respectively, along with examples in relation to

microstructures. In Section 5, details of implementation

and results are provided.
2. Feature extraction

An automated image analysis scheme is adopted for

feature extraction. For a classifier that leads to correct

property calculation, it is necessary that the magnifica-

tion and the rotation of the image with respect to the
rolling direction are known prior to feature extraction.

Raw images are initially modified so that all images in

the microstructure library have the same orientation and

magnification. Fig. 1 shows the important preprocessing

steps such as image alignment, scaling and subsequent

steps that involve sharpening the image through illu-

mination equalization, edge enhancement and finally

grain boundary detection. The boundary image can then
be used in the size and shape parameter identification

steps.



Fig. 2. (a) The input microstructure; (b) histogram of mean intercept length versus number of lines obtained using Heyn intercept technique; (c) rose

of intersections and (d) color histogram of the input microstructure.
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The classifier requires approximate but consistent

feature vectors that can describe single-phase polyhe-
dral microstructure features like grain sizes and

shapes. The procedures for grain parameter assessment

are well defined in the ASTM grain size standards,

such as ASTM methods for determining average grain

size (E, 112), for characterizing duplex grain sizes

(E, 1181), and for determining the average grain size

using semi-automated and automated image analysis

(E, 1382).
The following three feature vectors were extracted

from the input microstructure (Fig. 2(a)):

(1) Heyn’s intercept technique [18,19] is employed for

assessing the grain sizes. Histograms of the intercept

length distribution (mean intercept length versus

number of test lines possessing the mean intercept

length, Fig. 2(b)) is used as the feature vector.

(2) Rose of intersections [20] (Fig. 2(c)) is used as the
feature vector for assessing grain shapes.

(3) Color histogram [21] (Fig. 2(d)).

It must be mentioned that the system is not limited to

the above set of descriptors. Through a hierarchical

classification scheme, we include the flexibility of in-

corporating additional descriptors for classification. It is

worth noting that the features extracted here are inca-

pable of complete description of the microstructure
since they do not contain complete morphological de-

tails of the microstructure. A method for completely

representing microstructures is described in the follow-

ing section.
Fig. 3. Sample microstructures to
3. Principal component analysis

Principal component analysis is a powerful method to

obtain low-dimensional representation of a large

amount of data. Using a set of large-dimensional data

called the ‘snapshots’, the method decomposes the data

into an optimal orthonormal basis. Few basis vectors

selected in the order of importance can be used for the

representation of the high-dimensional data sets. This

method is well suited to the representation of micro-
structures and this section describes the procedure in

general. Fig. 3 shows sample microstructures (Ii) used as

an example for this section. The following methodology

is followed to yield a low-dimensional representation of

these planar microstructures. Let N different planar

microstructures (I ðiÞ; i ¼ 1; . . . ;N ), each of size n pixels

by n pixels are to be represented. The microstructure

images are converted into N vectors (XðiÞ) and the av-
erage is computed as l ¼ ð1=NÞ

PN
i¼1 X

ðiÞ. The average

microstructure (l) is then subtracted from all the image

vectors as XðiÞ  XðiÞ � l, for i ¼ 1; . . . ;N . The ei-

genvectors UðkÞ of the n2 � n2 covariance matrix

C ¼ ð1=NÞ
PN

i¼1 X
ðiÞXðiÞ

T

satisfying

CUðkÞ ¼ kkU
ðkÞ; k ¼ 1; . . . ; n2; ð1Þ

with the eigenvalues kk form the best basis for the mi-

crostructures. Even though the above method calculates

the best uncorrelated basis, it is computationally inten-

sive since it involves the calculation of a correlation

matrix of very large dimensionality. The work around
be represented using PCA.



Fig. 4. Images of the eigenbasis: the eigen-microstructures.
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this problem is the so-called ‘method of snapshots’.

Here, the property that the eigenvectors UðkÞ are the

unique linear combinations of the microstructures (XðiÞ)

is exploited and can thus be written as

UðkÞ ¼
XN
j¼1

ajkX
ðjÞ; k ¼ 1; . . . ;N : ð2Þ

Let us define C� as XðiÞ
T

XðjÞ, i; j ¼ 1; . . . ;N ; and let the

vector EðkÞ ¼ aik, i ¼ 1; . . . ;N ; denote the coefficients of

the eigenvector UðkÞ in the basis of the snapshots. Then,

the original eigenvalue problem in Eq. (1) is equivalent

to the eigenvalue problem,

C�EðkÞ ¼ k�kE
ðkÞ: ð3Þ

An N � N matrix, XðiÞ
T

XðjÞ is constructed and the vectors
EðkÞ, k ¼ 1; . . . ;N are found from the solution of the

above eigenvalue problem. The N eigenvectors UðkÞ are

subsequently found using Eq. (2). These vectors form

the so-called ‘eigen-microstructures’. The eigen-micro-

structures for the input microstructures in Fig. 3 are

shown in Fig. 4. The eigenvectors are normalized and

stored in the material library. Once the eigenbasis for the

set of microstructure in the class is identified, any new
microstructure corresponding to that class can be rep-

resented by transforming the microstructure into the

eigenvector components by a projection operation. The

coefficients (xk) of the new microstructure (C) in

the normalized eigenbasis are given by

xk ¼ UðkÞ
T

ðC� lÞ; k ¼ 1; . . . ;N : ð4Þ
The coefficients (xk) form a vector X ¼ ½x1; . . . ;xN �T
that is used as a reduced representation for the micro-

structure. The matrix of coefficients of the input mi-
crostructures ½X1; . . . ;XN � is denoted by A, the

representation matrix. The representation matrix for the

input microstructures of Fig. 3 in the eigenbasis of Fig. 4

is listed in Table 1.
Table 1

Coefficients (A) of the input microstructures in the eigenbasis ð�0:001Þ
0.0125 1.3142 )4.23 4.5429 )1.6396

)0.8406 0.8463 )3.0232 0.3424 2.6752

3.943 )4.2162 )0.6817 )0.9718 1.9268

1.1796 )1.3354 )2.8401 6.2064 )3.2106
5.8294 5.2287 )3.7972 )3.6095 )3.6515
4. Support vector machines

Microstructures with similar features can be repre-

sented by a set of coefficients in a reduced basis using

PCA. The aim of classification is to group similar mi-

crostructures within a class where PCA may be carried

out efficiently (i.e., with a reduced number of eigen-mi-

crostructures). For clarity of the presentation, the dis-
cussion here is limited to binary classification. The

classification problem has been solved using SVM. SVM

is a statistical learning algorithm for pattern classifica-

tion and regression [22]. The classification involves prior

training with features from known microstructure clas-

ses. The training involves finding the optimal hyperplane

such that the error for unseen test microstructures is

minimized. Each instance in the training set consists of
class labels and several attributes extracted from the

microstructure. The goal of SVM is to produce a model

which predicts the class of the data set given in the form

of features. Given a training set of feature-class pairs

ðxi; yiÞ, i ¼ 1; . . . ; ‘; where xi 2 Rm and yi 2 f1;�1g, the
SVMs non-linearly maps the data x to a higher-dimen-

sional feature space F as z ¼ /ðxÞ. The function /ðxÞ is
defined by a positive definite kernel, Kðx1; x2Þ, specify-
ing an inner product in the feature space,

/ðx1Þ � /ðx2Þ ¼ Kðx1; x2Þ. The kernel employed for mi-

crostructure classification is the linear kernel,

Kðx1; x2Þ ¼ x1 � x2. If the data are linearly separable in

F , a decision function DðxÞ ¼ w � /ðxÞ þ b, where w is

an m-dimensional vector and b is a scalar, can be de-

termined such that,

yiDðxiÞP 1; i ¼ 1; . . . ; ‘: ð5Þ
The distance from the separating hyperplane DðxÞ ¼ 0
and the training datum nearest to the hyperplane is

called the margin. The hyperplane with the highest

margin is called the optimal hyperplane. Fig. 5 shows a

realization of a binary classifier through the creation of

a hyperplane that maximizes the margin between the

two examples. The vector w for the optimal hyperplane

is obtained by maximizing the margin which becomes

equivalent to minimizing kwk. The solution to this is
given by

w ¼
X‘
i¼1

aiyi/ðxiÞ for ai P 0:
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Fig. 5. Support vectors (shown as dotted lines) used for binary clas-

sification in a non-separable case. The slack variables (n) are used to

minimize the training error while maximizing the margin.
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The problem of determining the ai’s is posed as a qua-

dratic programming problem of maximizing,

W ðaÞ ¼
X‘
i¼1

ai �
1

2

X‘
i;j¼1

yiyjaiajKðxi; xjÞ; ð6Þ

in the positive quadrant ai P 0; i ¼ 1; . . . ; ‘, subject to
the constraint,

P‘
i¼1 aiyi ¼ 0. The optimal b is then

found as b ¼ yi � w � xi, where i ¼ argmaxkðakÞ. The

support vectors are the points for which ai > 0 satisfying
Eq. (5) with equality. Given a new microstructural fea-

ture x, the decision function which gives the class

yi 2 f1;�1g can be written as

f ðxÞ ¼ sgn
X‘
i¼1

aiyiKðxi; xÞ
 

þ b

!
: ð7Þ

When the data are non-separable in the higher-dimen-
sional feature space, slack variables ni P 0 are intro-

duced such that yiDðxiÞP 1� ni; i ¼ 1; . . . ; ‘ to allow

the possibility of samples to violate Eq. (5). Fig. 5 shows

the optimal hyperplane with the slack variables (ni) in-
dicated. The idea is to simultaneously maximize the

margin and minimize the training error (represented by

the slack variables). The generalized optimal separating
Fig. 6. (a–d) Microstructures classified to the same class. The distance of the a

vector is indicated below each microstructure. A new class is created to acco
hyperplane is then the minimization of

ð1=2Þkwk2 þ C
P‘

i¼1 ni, where the purpose of C in the

second term is to control the number of misclassified

points.

4.1. Multi-class support vector machines

Microstructure classification is a multi-class problem

with classification based on multiple feature parameters

like grain sizes and shapes. The one-against-one method

has been employed for this classification problem [23]. If

between two classes i and j, a given data set is classified

to class i, then the vote for class i is incremented by one.
Given k classes of microstructures, this method con-

structs kðk � 1Þ=2 classifiers, where each classifier is

trained on data from two classes. A new data point is

classified to the class which obtains the maximum votes.

In case that two classes have identical votes the class

with a smaller index is selected. A study [24] indicates

that this method is more effective than other multi-class

SVM techniques like ‘one-against-all’ and ‘all-together’
methodologies. Given a new microstructure that does

not belong to the existing classes, the SVM classifier

places the microstructure into the class k in which the

feature sets are closest to the input feature vector (x). An

ad hoc method that allows creation of new classes from

such microstructures is the calculation of a distance

measure (�k) between the input feature vector (x) and the

average feature vector (xk) of the class k as,
�k ¼ kx� xkk2. If the distance �k is above a chosen

threshold, the feature is optionally used to create a new

class and the classifier is retrained to create new support

vectors of the class. Fig. 6 shows the distance of the

roses of intersection feature vector of four representative

class microstructures from the average feature vector of

a class. The feature vector of microstructure (a) exceeds

the threshold (�k > 30) and is used to create a new class.
This is followed by retraining of the classifier. The re-

training process realigns the support vectors so that the

new class can be separated from the other classes. An

iterative online training procedure where the alignment

of the support vectors are gradually improved with
verage feature vector of the class from the input microstructure feature

mmodate microstructure (a).
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addition of training data is another option but is not

addressed in this work.
5. Implementation and results

The microstructures used in this study have been

generated using a Monte Carlo grain growth model.

Mehnert et al. [25] employed a similar Monte Carlo

simulator for generating samples of microstructure for

the stereological problem of estimating the spatial grain

size distribution from planar microstructures. The

model provides a representative set of polyhedral mi-
crostructures similar to the complex microstructures

encountered in reality. Using the features of these mi-

crostructures as the training data sets, SVMs identify the

representative classes of new and unknown microstruc-

tures. Fig. 7 describes the two class hierarchical struc-

ture of the library. Microstructures are first classified

according to the shape of grains in the top tier of the

library. Classes of microstructures having similar grain
shapes are further divided into sub-classes based on the

constituent grain sizes. The hierarchical class structure

can be expanded by further dividing the grain size

classes based on additional microstructure-specific

features.

Even though Fig. 7 depicts microstructure images

associated with the classes, in practice none of the im-

ages are stored in the library. The lowest class level (the
grain size classes corresponding to each shape class in

Fig. 7) holds an eigenbasis which contains information

about the microstructures (see Section 5.2).

5.1. Testing of the classifier’s accuracy

To test the classification scheme employed, 375 im-

ages of microstructures were created using the Monte
Fig. 7. An example of hierarchical classification structure: In level 1, micro

structures in each shape class are subdivided into three more classes accordi
Carlo grain growth model. Each microstructure image

was sized to 128� 128 pixels with 256 intensity levels.

For testing the accuracy of classification, we do not al-

low creation of new classes. The classifier is tested within

a fixed set of 11 classes of microstructures created based
on grain shapes. The roses of intersection of the mi-

crostructures were normalized in the range ½�1; 1� and
were used as feature vectors. Randomly selected images

were employed for training the classifier. It is ensured

that the training and the test sets do not overlap. The

classifier was repeatedly trained using random sets of 40

microstructures and the classifier accuracy was checked

using the rest 335 microstructures as test examples. On
an average, the multi-class SVM classification scheme

gave an accuracy of 92.53%, with the lowest accuracy of

87.76% and highest accuracy of 95.82% for 30 training

runs. When the number of training examples was in-

creased to 100, the classifier was able to achieve an av-

erage accuracy of 95.80%.

5.2. Representation over the eigenbasis

Once the initial class structure for the library is cre-

ated, an eigenbasis is created at the last level in the class

hierarchy. The possibilities that arise when a new mi-

crostructure is given to the library for representation

are:

(1) The new microstructure is classified to an already

existing class in the library.
(a) No new information is gained from the micro-

structure. The existing basis is used for repre-

senting the microstructure.

(b) Microstructure contains additional information

about the class. The basis is updated to accom-

modate the new information (see Section 5.3).

In addition, the representation coefficients in

the new basis of the images used to generate
structures are classified according to grain shapes. In level 2, micro-

ng to the grain sizes.
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Fig. 9. Eigenvalues of the correlation matrix.
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the old basis and of the new microstructure are

computed and stored.

(2) The microstructure does not belong to any of the ex-

isting classes. A new class is created along with an

initial basis for the class.
When a new class is created, the first microstructure

in the class is used to create an initial eigenbasis for the

class by assigning the mean l ¼ X1, the initial eigenbasis

U ¼ ½0; . . . ; 0�1282�1 and the representation coefficient

A ¼ 0, where X1 is the image vector of size 1282 � 1. The

basis is then continuously updated based on new mi-

crostructures that contain additional information about

the class of microstructures.
The coefficients over a fraction of the eigenbasis is

normally sufficient for complete representation of a mi-

crostructure. Fig. 8 shows amicrostructure reconstructed

within a class using different fractions of eigenvectors in

the basis. It can be seen that a reconstruction of good

quality is possible even when 40% of the eigenvectors are

not used for the reconstruction.

Fig. 9 shows the eigenvalues based on PCA of a class
of 25 microstructures. Eigenvalues decay rapidly and

most of the ‘energies’ are concentrated in the first few

eigenvalues. The eigenvectors corresponding to the

smaller eigenvalues can be discarded to achieve a more

compact representation.

5.3. Dynamic update of eigenspaces

Whenever a new microstructure (Ck) of size

(128� 128) is added to a class of microstructures, the

existing basis (U ) is first used to reconstruct the micro-

structure. We use a distance measure (d) to test if the

microstructure contains any new information that can

be used to improve the information contained in the

class basis. This measure is based on the Frobenius

norm of the difference between the test microstructure
(Ck) and the reconstructed microstructure (CR

k ) and is

given by

d ¼ kCk � CR
k kF

128
: ð8Þ

The gray level intensities of the test microstructure and

the reconstructed microstructure were normalized

within limits of ½0; 1�. If d is less than 0.1, the micro-
Fig. 8. Microstructure reconstructed using PCA with: (a) 100% of the basis
structure is assumed to add no new information to the

existing basis and after it is represented in the old basis is

discarded. If d > 0:1, the basis is updated to accom-
modate the new information contained in the micro-

structure. The microstructure is represented based on

the updated basis.

In the dynamic library, we foresee representation of

microstructures sequentially in real-time. The PCA

technique described in Section 3 is performed in the

batch mode. Generation of the updated eigenbasis using

batch PCA would be computationally prohibitive since
the analysis is based on a set of high-dimensional image

data.

To avoid operations on higher-dimensional images,

we employ an incremental PCA technique proposed by

Sko�caj and Leonardis [17] for the dynamic update of the

eigenbasis. As discussed earlier, the microstructures are

discarded after a PCA update and only the coefficients

of the microstructures are stored along with the updated
eigenbasis. The implemented technique summarized in

Table 2 provides the framework for online representa-

tion of microstructures. The PCA performed on the

coefficient matrix A0 is similar to the PCA in Section 3

but using the columns of the coefficient matrix instead of

the images XðiÞ.
The representation format of a microstructure in the

dynamic material library is shown in Table 3. The rep-
resentation includes information about the lower-order
; (b) 80% of the basis; (c) 60% of the basis and (d) 40% of the basis.



Table 3

Representation format for a microstructure in the library

Date: 12/7 2:45PM, Basis updated

Shape class: 4 (Description: oriented 45�, elongated)
Size class: c (Description: large grains)

Basis coefficients: (Size class c of shape class 4): [12.06, 4.32,

)5.45, 16.54, 2.75]

Table 2

Principal component analysis: algorithm for incremental basis update

[17]

Inputs at update step ðnþ 1Þ: current mean of existent images in

the class lðnÞ, current eigenvectors UðnÞ, current coefficients of

existent class images AðnÞ, new input image X

Outputs: updated mean lðnþ1Þ, eigenvectors Uðnþ1Þ and coefficients

Aðnþ1Þ

Project the new image X in the current eigenbasis:

a ¼ UðnÞTðX� lðnÞÞ.
Reconstruct the new image: Y ¼ UðnÞaþ lðnÞ

Compute the residual vector: r ¼ X� Y

Append r as the new basis vector: U0 ¼ UðnÞ; r
krk

h i
Form A0 as follows: A0 ¼ AðnÞ; a

0; krk

� �
Perform PCA on A0 and obtain the mean l00 and the

eigenvectors U00.

Update the coefficients: Aðnþ1Þ ¼ U00TðA0 � l0011�ðnþ1ÞÞ
Update the basis: Uðnþ1Þ ¼ U0U00

Update the mean: lðnþ1Þ ¼ lðnÞ þU0l00
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descriptors like grain shapes and sizes, along with ad-

ditional data in the form of PCA representation coeffi-

cients for complete description of the microstructure.

Fig. 10 illustrates the importance of classification in the

context of microstructure representation. Fig. 10(a)

shows a new microstructure assigned to a class by the

SVM classifier. Fig. 10(b) shows the reconstruction

achieved using six coefficients (24% of the updated basis)
in the class containing 25 eigenvectors. After the number

of eigenvectors in the class had expanded to accommo-

date information content of 60 images, the microstruc-

ture was once again given as a test example for

reconstruction. Fig. 10(c) shows the new reconstructed

image, once again using six coefficients (10% of the ba-
Fig. 10. (a) New microstructure; (b) microstructure reconstructed using

six coefficients in a class of 25 eigenvectors and (c) reconstruction using

six coefficients over the expanded class of 60 eigenvectors.
sis). The improvement in the representation can be at-

tributed to an enhancement in the information content

of the basis whenever microstructures with similar

lower-order (shape) attributes are used to update the

class basis. As it is expected, with the number of mi-
crostructures used to generate the eigenbasis increasing,

the quality of representation of other images increases

when using a fixed number of eigenvectors.

Misclassification and insufficient classification can

deteriorate the basis. Improved feature selection and

classification schemes need to be developed to address

such problems. Efficient PCA representation can also be

obtained through several levels of class refinement to
limit large variations in microstructures within a class.
6. Conclusions

The problem of completeness of microstructure rep-

resentation is addressed in this paper by demonstrating

a classification based representation scheme for single-
phase polyhedral microstructures based on a dynamic

microstructure library. SVMs are used to classify mi-

crostructures based on the grain size and shape features.

The classification structure evolves into a library of

microstructures through recognition of new classes and

by addition of information to the existing classes

through new microstructures. The lowest level in the

class hierarchy holds a eigenbasis for representing mi-
crostructures. The basis dynamically updates with the

arrival of new microstructures within a class and the

information content of the basis improves. Complete

microstructure representation is achieved through a set

of coefficients in the generated basis. Through continu-

ous training, the dynamic microstructure library is ca-

pable of recognizing and completely representing any

single-phase polyhedral microstructure.
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