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Abstract In this paper, a multi-scale analysis scheme for
solidification based on two-scale computational homogeni-
zation is discussed. Solidification problems involve evolu-
tion of surfaces coupled with flux jump boundary conditions
across interfaces. We provide consistent macro-micro
transition and averaging rules based on Hill’s macro-
homogeneity condition. The overall macro-scale behavior is
analyzed with solidification at the micro-scale modeled using
an enthalpy formulation. The method is versatile in the sense
that two different models can be employed at the macro-
and micro-scales. The micro-scale model can incorporate
all the physics associated with solidification including mov-
ing interfaces and flux discontinuities, while the macro-scale
model needs to only model thermal conduction using con-
tinuous (homogenized) fields. The convergence behavior of
the tightly coupled macro-micro finite element scheme with
respect to decreasing element size is analyzed by comparing
with a known analytical solution of the Stefan problem.

Keywords Multi-scale modeling · Interface evolution ·
Homogenization · Solidification

1 Introduction

Solidification is inherently multi-scale in nature. Interaction
between thousands of crystals gives the overall behavior of
the solidification process and defines the properties of the
final product. Investigating the interaction and growth of
crystals in the micro-scale is computationally very inten-
sive, whereas macro-scale models lack accuracy being based
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on a large number of simplifications. Multi-scale modeling
by coupling macroscopic and microscopic models allow us
to take advantage of both the efficiency of the macroscopic
models and the accuracy of the microscopic models. Multi-
scale analysis of general heat conduction problems have been
previously addressed using micro-scale effective properties
obtained through either bounding relations [1,2] or analytical
closed-form expressions (reviewed in [3]) in a macro-scale
model. These approaches were restricted to simple geom-
etries with a simple material response, not yielding accu-
rate results when discontinuous interfaces are present. More
recently, numerical schemes using asymptotic homogeni-
zation approaches, based on an expansion of the unknown
temperature or displacement with respect to a micro-scale
length parameter, have been developed to address micro-
macro heat conduction problems [4–9]. However, the prob-
lems considered are restricted to constant conductivity and
focused on steady-state heat conduction problems. Solidifi-
cation problems involve transient effects, and in addition,
field discontinuities (flux jumps) that have not been pre-
viously addressed in a multi-scale methodology. Previous
works in literature for addressing multi-scale solidification
problems have involved analytical studies [10] or simple
numerical computation [11] at the micro-scale followed by
transfer of data to the macro-scale model. Other approaches
include multi-scale algorithms driven by microscopic numer-
ical solution data, e.g., database look-up or regression fit
[12,13] and sub-grid modeling [14] approaches. A recent
article in this journal summarizes various techniques pro-
posed in the solid and fluid mechanics community for add-
ressing multi-scale problems in general [15].

In [10], the macroscopic transport equations are derived
using volume averaging technique and closed by supplemen-
tary relations, which are obtained from the micro-scale. In
[10], there is no numerical computation performed at the
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micro-scale. In [12,13], micro-scale computations are used
to obtain data for regression fit of a predictive equation,
which is further used for macro-scale computation. Since
micro- and macro-scale equations are decoupled in database
approaches, they do not model loading history dependence
and non-linearity in micro-scale data. In [11], microscopic
modeling is done by assuming periodic distribution of crys-
tals and numerical computation of a single crystal growth
is carried out for every point of a macroscopic grid to pro-
vide information for the macro-scale computation. In [14], a
sub-grid based model was suggested wherein a micro-scale
model is applied for each sub-domain to pass information
of volume fraction to the macro-scale model which is calcu-
lated based on the macro-scale temperature field. However,
in these studies, no attempt is made to prove micro-macro
thermodynamic balance laws when using the proposed scale
transition. The emphasis in this paper, is to provide a general-
ized macro-micro homogenized model of diffusion problems
with flux discontinuities where scale transitions are derived
from balance laws.

Computational homogenization provides an attractive
avenue for computing the macroscopic response in problems
with discontinuities and non-linearities in the microstruc-
tural behavior. Application of such approaches for mechani-
cal deformation has been well studied previously [16–19] and
recently extended to thermomechanical problems [20]. In this
approach, a representative volume element (RVE) is defined
at the micro-scale and boundary conditions are defined on
the RVE in terms of macroscopic quantities. The data from
micro-scale simulations are used to extract quantities for the
macroscopic simulation via consistent averaging schemes.
Homogenization approaches remain valid as long as the
length scale over which the macroscopic field variables vary
remains much larger than the microscopic length-scale.
Recently, such a scheme was developed for thermal conduc-
tion problems [21] using a well-behaved micro-scale model
without flux discontinuities or moving interfaces. In this
paper, computational homogenization approach has been
developed for the case of fluid solidification problems.
Macro-scale quantities such as heat flux are consistently com-
puted from the microstructural sub-problem and heat flux
discontinuity at the solidifying interface is handled during
averaging through appropriate use of Stefan’s condition. The
convection-diffusion equation at the micro-scale is solved
using enthalpy as the unknown variable to overcome dif-
ficulties arising from the presence of flux jump condition
at the solid-liquid interface. Once the micro-scale problem
is solved, the transport properties and fluxes are homoge-
nized using consistent averaging schemes. The convergence
behavior of the coupled macro-micro finite element scheme
with respect to decreasing element size and time step is then
analyzed by comparing with a known analytical solution.
The paper is arranged as follows. In Sect. 2, the multi-scale

formulation is introduced, followed by description of the
micro- and macro-scale problems and the computational
scheme in Sect. 3. In Sect. 4, we demonstrate the potential
of the approach by comparing the results from this approach
with a well-known analytical solution.

2 Multi-scale formulation

We consider a problem of heat conduction in an incompress-
ible fluid, where parts of the fluid are frozen, while other
parts are in a liquid state. The interface between the frozen
and molten region is an unknown moving internal bound-
ary. At the micro-scale, material 1 (in liquid state) occupies
the domain V + and material 2 (in solid state) occupies the
domain (V −), where V + and V − are open subsets of V . At
the interface SI , material 2 solidifies further and advances
into V +. The interface SI moves in the direction −nI with
speed Vn , where nI is the outward normal of V +) at the
interface.

Macro-micro linking is achieved by decomposing the
micro-scale temperature field (T )into a sum of macroscopic
field and a fluctuation field (T̃ ) as:

T = Tref + ∇T · x + T̃ (1)

Here, x is the coordinate of a point on the micro-scale relative
to a reference point on the bottom left corner of the micro-
structure where temperature is Tref (as shown in Fig. 1). In
general, we denote a macroscopic counterpart of a micro-
scopic field quantity (say, χ ) as χ . In the above equation,

Macro-scale

Ω

Γ

Micro-scale

nI

S V+
V-

Liquid

Solid

SITref

Fig. 1 Multi-scaling procedure: Macro-scale is associated with a
homogenized continuum. The macro-scale temperature (and gradient
in temperature) is passed to the micro-scale as boundary conditions.
Macro-scale quantities such as the thermal flux and conductivity (at
the material point) are computed from the microstructural sub-problem
through consistent averaging schemes
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Fig. 2 Solidifying interface is
tracked using an adaptive
meshing strategy. This allows
flux discontinuities to be
accurately modeled at the
micro-scale

gradient in temperature at macroscopic material point is
denoted as ∇T (= ∇macroT̄ ). Our basic homogenization
assumption is that ∇T can be computed from the temper-
ature at the external boundary (S) of the microstructure with
outward normal n as:

∇T = 1

V

∫

S

T n d S (2)

Using the decomposition of the micro-scale temperature
field, it can be shown that:

1

V

∫

V

∇T dV = ∇T + 1

V

∫

V

∇ T̃ dV (3)

We employ the generalized divergence theorem of the
form

∫
V ∇χdV = ∫

S χnd S + ∫
SI [|χ |]nI d SI in the above

equation (where, [|χ |] denotes the jump in the field quantity
across the evolving interface (SI ) with normal nI ) to obtain
the following relationship:

1

V

∫

S

T nd S = ∇T + 1

V

∫

S

T̃ nd S

+ 1

V

∫

SI

([|T̃ |] − [|T |])nI d SI (4)

The jump in a field quantity, say T , across such an interface
is computed as [|T |] = T+ − T−. Here, T+ and T− refer to
the quantity in domain V + and V −, respectively, close to a
point on the interface (as shown in Fig. 2). We aim to build
boundary conditions at the micro-scale that satisfies Eq. 4.
Assumption of T̃ = 0 at all points in the microstructure
leads to rule of mixtures (or Taylor model in deformation
problems). This is not a valid assumption for solidification
problems as the solid-melt interface is at the melting point,
whereas in a Taylor model, temperature at all points are con-
strained as T = Tref + ∇T · x. In addition, Taylor model
solution does not satisfy micro-scale thermal equilibrium.

Due to the strong constraint imposed on micro-scale
temperatures, it can be shown that the Taylor model pro-
duces an upper-bound result for conductivities calculated.
Two other boundary conditions are applicable to the solid-
ification problem that can allow satisfaction of equilibrium
constraint as well as interface temperature constraint. The
first is an essential boundary condition on the surface of the
microstructure and the other is a periodic boundary condi-
tion (refer [21]) on temperatures. In this paper, we restrict
ourselves to the essential boundary conditions given below:

T̃ = 0 on S (5)

([|T̃ |] − [|T |]) = 0 on SI (6)

In this case, temperature at the boundaries of the microstruc-
ture is derived from the macro-scale temperature field and
temperature gradient as T = Tref + ∇T · x. The interface
temperature jump constraint (Eq. 6) is trivially satisfied (by
computing jump from Eq. 1 and noting that macroscopic
fields are assumed continuous). In solidification problems,
temperature fields are continuous ([|T |] = 0) and an addi-
tional boundary condition is applied that enforces the inter-
face to be at the melting point (or calculated using
Gibbs–Thomson relation for dendritic growth simulations
(e.g., [13]).

Solidification is modeled at the micro-scale using the
convection-diffusion equation:

∂(ρcT )

∂t
+ ∇ · q = −∇ · (ρcT v) (7)

where, q represents the heat flux (q = −k∇T , where k is
the thermal conductivity), ρ denotes the density, c is the heat
capacity and v represents the velocity field. For simplicity,
convective effects within the fluid are ignored and the veloc-
ity field is assumed to be non-zero only on the evolving
solidification front. Since the microscopic length scale is
considered to be much smaller than the scale of variation
of the macroscopic temperature field, the micro-scale can be
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assumed to be at steady state at any instant of the macroscopic
(transient) evaluation [21]. The microscopic diffusion equa-
tion is then given as:

∇ · q = −∇ · (ρcT v) (8)

Consider the space of weighting functions, V , given by

V = {φ : φ ∈ H1 over V, φ = 0 on S} (9)

and the space of trial functions, L, given by

L={T : T ∈ H1 over V + ∪ V −, T given on S ∪ SI } (10)

Weak form of the above equation can be simplified as fol-
lows (where φ is the weighting function that is assumed to
be continuous across the microstructure):

(∇φ, q)V = (vn[|ρcT |], φ)SI + ([|qn|], φ)SI (11)

In the above equation, the symbol (., .) represents the
Euclidean inner product over the domain given by the sub-
script. To obtain the above mentioned weak form, we have
assumed that the velocity at all points (aside from the points
on the interface) are small (i.e., v = 0 on V + ∪ V −). As
described previously, the micro-scale model includes both
heat capacity jump ([|ρc|]) and flux jump ([|q|]) in the nor-
mal direction across the solidifying interface. The velocity
of the solid-liquid interface is governed by the heat flux jump
through the classical Stefan equation:

([|qn|] + vn[|ρc|]T ) = 0 (12)

where, T [|ρc|] = L or [|qn|] = −vn L (13)

where, L is the latent heat of phase transformation per unit
volume.

Based on Stefan equation, it can be proved that the inte-
gral of normal heat flux over the microstructure surface goes
to zero as follows:∫

S

qn d S =
∫

S

q · n d S =
∫

V

∇ · q dV −
∫

SI

[|qn|] d SI

= −
∫

V

∇ · (ρcT v)dV −
∫

SI

[|qn|]d SI

= −
∫

SI

(vn[|ρc|]T + [|qn|])d SI = 0 (14)

The above relation is subsequently used for homogeniza-
tion of the micro-scale flux. In particular, we are interested
in obtaining a macroscopic flux that satisfies Hill’s macro-
homogeneity condition (which relates the macroscopic flux
(q̄) with its microstructural counterpart (q [22]) as follows:

∇T · q = ∇T · q (15)

Application of the governing equation (Eq. 8) changes the
macro-homogeneity condition to the following form:

∇T · q = ∇T · q = 1

V

∫

V

(∇ · (T q) − T ∇ · q)dV

= 1

V

∫

S

T qnd S + 1

V

∫

SI

[|T qn|]d SI

+ 1

V

∫

V

T ∇ · (ρcT v)dV (16)

We can reduce the first term in the above equation using the
definition of micro-scale temperature (Eq. 1) and the homo-
geneous boundary conditions as:

1

V

∫

S

T qn d S = 1

V

∫

S

[Tref +∇T · x]qn d S

= ∇T· 1

V

∫

S

xqnd S

⎛
⎝ using

∫

S

qnd S = 0

⎞
⎠

(17)

The second and third terms in Eq. 16 are again reduced using
the generalized divergence theorem as:

1

V

∫

SI

[|T qn|] d SI + 1

V

∫

V

T ∇ · (ρcT v) dV

= 1

V

∫

SI

[|T qn|] d SI + 1

V

∫

V

∇ · (ρcT 2v) dV

− 1

V

∫

V

∇T · (ρcT v) dV

= 1

V

∫

SI

T [|qn|]d SI + 1

V

∫

SI

T 2[|ρc|]vnd SI = 0 (18)

In the above derivation, we use Stefan equation and the fact
that the particle velocity is zero at all points in the material
except the interface. Combining Eqs. (16–18), the macro-
scopic flux is obtained as:

q = 1

V

∫

S

xqn d S (19)

The above equation allows macroscopic heat flux to be com-
puted from the normal flux at the boundaries of the micro-
structure similar to Eq. 2. Using Stefan equation, we can
also show that the macroscopic heat flux thus computed cor-
responds to the volume averaged heat flux at the micro-scale
(see Appendix A).
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3 Evaluation of homogenized transport properties

The macroscopic diffusion equation is defined on a uniformly
meshed domain (�) on which solidification occurs. Bound-
aries of the macro-scale domain is denoted as �. Solidifica-
tion is explicitly modeled at the micro-scale, while only heat
conduction is modeled at the macro-scale using homogenized
quantities as follows:

∂ H̄

∂t
= −∇ · q̄, T (�, t > 0) = T̂ , T (�, t = 0) = T0 (20)

where, the macroscopic (homogenized) enthalpy (H̄ ) is
defined using microscopic volume averaged heat capacity
(ρc) as follows:

H̄ = ρcT + Lρ f = ρcT̄ + Lρ f (21)

Here, f is the volume fraction of liquid in the micro-scale,
L is the latent heat of solidification defined per unit mass. In
the above equation, the enthalpy is defined using microscopic
volume averaged heat capacity (ρc). This definition is con-
sistent with the condition that stored energy at macro-scale
is same as the average micro-scale stored energy [21]. The
temperature boundary conditions at the micro-scale is com-
pletely defined once Tref for the next time step is computed
using Eqs. 21 and 1 at the end of each time step of the simu-
lation. Due to the use of an explicit scheme to calculate Tref ,
smaller time steps at the macro-scale allow better satisfac-
tion of balance of stored energy. In the numerical examples,
we report the error between the macro- and micro-stored
enthalpy at various material points to show that the balance
of stored energy condition (Eq. 21) is indeed satisfied during
homogenization.

To solve the non-linear macroscopic equation (Eq. 20),
Galerkin finite element method is adopted and the weak
form is solved in an incremental-iterative manner using
the Newton–Raphson method. The (λ + 1)th Newton–
Raphson step at time (t + 1) involves solution of the system
K {δ H̄λ+1,t+1} = f , where the unknown vector in the above
system is the increment in the enthalpy (δ H̄λ+1,t+1). To
understand the micro-scale quantities that are needed to cre-
ate the system of equations, the Jacobian matrix and force
vector for a finite element e with shape functions Ni occu-
pying a volume �e is expanded below:

K e
i j = 1

	t

∫

�e

Ni N j d� −
∫

�e

κ̄λ,t+1∇Ni · ∇N j d�

f e
j =

∫

�e

q̄λ,t+1 · ∇N j d�

− 1

	t

∫

�e

(H̄λ,t+1 − H̄ t )N j d� (22)

From the above equations, it is seen that to solve the
macro-scale equations, one requires the homogenized con-
ductivity κ̄ to be defined at each integration point in the
macro-scale as follows:

δq̄λ,t+1 = κ̄λ,t+1δ(∇H) (23)

The homogenized conductivity can either be obtained
using perturbation analysis [23] or by directly manipulating
the converged Jacobian and residual matrices of the micro-
scale problem [21]. In the former approach, each component
of the macroscopic temperature gradient is independently
perturbed by a small amount ε which affects the boundary
conditions at the micro-scale through Eq. 1. The micro-scale
problem is solved again using the perturbed boundary con-
ditions and the resulting perturbation in homogenized flux is
used to compute the homogenized conductivity. This involves
solution of N different micro-scale problems during each
Newton–Raphson iteration at the macro-scale, where N is
the dimensionality of the macro-scale problem. Note that
numerical approximation of the homogenized conductivity
does not change the physical result in any way, only the speed
of iteration process changes.

In this work, we follow the approach of [21] to obtain
homogenized conductivity by direct manipulation of the con-
verged Jacobian and residual matrices of the micro-scale
problem. The steps to compute the homogenized conduc-
tivity using the approach is as follows. Macroscopic flux is
first written using the vector of normal fluxes on the exter-
nal nodes of the microstructure ({qext

n }) using finite element
matrix representation as follows:

q = 1

V

∫

S

xqnd S = L{qext
n } (24)

To compute the homogenized conductivity, one needs to
compute sensitivity of {qext

n } to perturbations in the mac-
roscopic enthalpy gradient δ(∇H) as:

δq = L{δqext
n } = κ̄δ(∇H) (25)

To obtain the homogenized conductivity, the converged finite
element solution from the Newton–Raphson iterations at the
micro-scale is employed as follows:
[

K ee K ei

K ie K i i

] [
δHe

δH i

]
=

[
0
0

]

In the above equation, the assembled matrix (K ) on the left
hand side is the Jacobian matrix of the Newton–Raphson
iteration. The residual on the right hand side goes to zero
since the micro-scale solution has converged. The assem-
bled matrix (K ) is arranged such that the vectors δHe and
δH i contain the enthalpies on the external and internal nodes
of the microstructure, respectively. Sensitivity of enthalpy on
external nodes of the micro-scale mesh to the perturbation in
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Table 1 Solution scheme for multiscale homogenization of solidification problems

(1) Initialize macro-scale model and assign a microstructure to every integration point. Initially, all the underlying microstructures are in liquid
state with known conductivity

(2) Apply time increment 	t to the macro-scale problem

(3) Iteration step:

(3.1) Assemble the macroscopic stiffness matrix

(3.2) Solve the macroscopic system and compute temperature and the temperature gradient at each integration point

(3.3) Loop over all integration points

(a) Transfer boundary conditions to micro-scale problem using Eqs. 1, 5

(b) Assemble and solve the micro-scale problem

(c) Calculate the macro-flux (Eq. 19) and the macro-conductivity (Eq. 27) using the micro-scale solution and store the data

(3.4) Assemble the macroscopic residual vector

(4) Check convergence, if not converged go to step 3, otherwise go to step 2

the imposed macroscopic enthalpy gradient can be written
using matrix G [computed from the boundary condition on
the temperatures on the external nodes (Eq. 1)] as follows:

{δHe} = G{δ∇H} (26)

Substituting the above relation into the converged matrix
equation at the micro-scale and taking the known quantities
to the right hand side, we obtain the equation:
[

K ee K ei

K ie K i i

] [
0
δH i

]
=

[−K ee Gδ∇H
−K ie Gδ∇H

]

The vector on the right hand side provides the sensitivity
of microscopic flux to the macroscopic enthalpy gradient,
which leads to the homogenized conductivity, κ̄ as follows:

δqext
n = −K ee Gδ∇H

(27)
κ̄ = −L K ee G

The overall solution scheme is shown in Table 1. To aid in
speeding up the solution process for the multi-scale problem,
the algorithm was parallelized using MPI. The macro-scale
domain was decomposed and elements in each domain dis-
tributed to different processors. The underlying micro-scale
problems were solved in serial within each processor. The
simulator was developed using object oriented programming
and was dynamically linked to the parallel toolbox PetSc
[24] for parallel assembly and solution of linear systems. For
solution of linear systems, a GMRES solver along with block
Jacobi and ILU preconditioning was employed.

4 Numerical examples

In order to validate the multi-scale simulation procedure, a
well-studied one-dimensional solidification problem is
employed. In this simulation, one end of the simulation
domain is fixed to a temperature less than melting point. The

other end is assumed to at infinity and fixed to a temperature
larger than the melting point so that the solid-liquid inter-
face moves between these two ends. The analytic solution
for the position of the interface (X (t)) at various times can
be expressed as the following [25]:

X (t) = 2λ
√

αs t (28)

In the above expression, α = ( k
ρc ) where k is the thermal

conductivity and the subscripts s and l are used when using
properties of solid and liquid phase respectively. Constant λ

is equal to 0.2037 for this particular problem [26]. The ana-
lytical solution for the temperature history can be expressed
as [25] (where er f is the error function and Tm = 0◦C is the
melting point for the fluid):

T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T (0, t) + Tm−T (0,t)
er f (λ)

er f
(

x
2
√

αs t

)
x < X (t)

Tm x = X (t)

T (∞, t) + Tm−T (∞,t)

1−er f

(
λ
√

αs
αl

)
(

1 − er f
(

x
2
√

αl t

))
x > X (t)

(29)

In the numerical simulations, the problem is modeled in a
two-dimensional domain discretized using three-noded trian-
gular elements at the macro- and micro-scales. A sufficiently
large FE model size is chosen to approximate the infinite
boundary. The material properties, boundary conditions, and
initial conditions for the material used in this simulation are
provided in the Table 2.

4.1 Micro-scale simulation approach

The problem is addressed using a single scale model as well
as a multi-scale model to validate the results. Solution of
micro-scale problem presents computational difficulties due
to the presence of interface conditions in the form of an
essential boundary condition and specified heat flux jump.
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Table 2 List of material constants (for both solid and liquid phase) and
boundary and initial conditions used for the 1D solidification problem

Material constant Value

L (kJ/kg) 100,000

ρ (kg/m3) 1

c (kJ/kgK) 2,500

k (W/mK) 2

BC’s IC’s{
T (x = 0, y, t) = −4◦C
T (x = ∞, y, t) = 2◦C

{
T (x =0, y, 0)=−4◦C
T (x >0, y, 0)=2◦C

a b

Fig. 3 Schematic of the enthalpy-temperature relationship for a pure
substance; a H is a discontinuous function of the temperature. b
Numerical treatment of discontinuity [27]

To overcome these issues, we have employed the now
well-established enthalpy formulation [27] to solve the
micro-scale problem. Using the enthalpy formulation, it is
possible to formulate a solution procedure where the flux
jump condition is automatically satisfied without explicitly
tracking the internal boundary. The governing equation is
posed using enthalpy as the unknown variable and the equa-
tions are solved using a standard Galerkin FE formulation.
Enthalpy is a discontinuous function at the interface as latent
heat is added during phase change from solid to liquid state.
In the enthalpy approach, the discontinuity of enthalpy at
the interface is treated by allowing it to be continuous in a
small region with Ts = Tm − ε and Tl = Tm + ε around the
interface as shown in Fig. 3. Because of this numerical treat-
ment, the desired interface behavior can be achieved without
divergence and singularity issues. In particular, the following
enthalpy function with respect to temperature has been used
in this work (with ε = 0.1K ):

H =
⎧⎨
⎩

ρcT T < Ts

ρcTs + ρ
( 2cε+L

2ε

)
(T − Ts) Ts ≤ T < Tl

ρcT + ρL T > Tl

(30)

4.2 Case 1. Single-scale simulation results

We first compare simulation results (based on the enthalpy
formulation) to the analytical solution. Please note that the
simulation reported in this case is a transient simulation

Fig. 4 Case 1 study: finite element model for single-scale simulation
uses adaptive grids with refinement in the region of the moving interface

based on Eq. 7. Adaptive meshing is employed with grids
continuously refined in the region of the interface during the
simulation in order to accurately track the solidification front
as shown in Fig. 4. The interface velocities (solidification
front) and the temperature distribution is well predicted by
the model and compares favorably with the analytic solution.
Comparison of numerical results with the analytical solution
of the solidification front position and temperature time his-
tory at various locations is shown in Fig. 5a, b respectively.

4.3 Case 2. Multi-scale simulation

In the multi-scale simulation reported here, the micro-scale
is considered to be in steady state as given in Eq. 8 while the
time-dependence is incorporated at the macro-scale using
Eq. 20. The finite element model at the microscopic scale for
the multi-scale simulation is shown in Fig. 6.

The ability of the multi-scale model to capture the solid-
ification front accurately is dictated by the mesh density at
the macro-scale. Two meshes with increasing mesh density
were used to test the convergence behavior of the multi-scale
model. These meshes are depicted in Fig. 7.

Due to the tightly coupled nature of the macro- and micro-
scale problems, numerical convergence needs to be estab-
lished through careful control of mesh size and time steps.
In all cases, the time steps were carefully controlled so that
difference in enthalpy at the macro- and micro-scales at vari-
ous integration points are minimized. As discussed in Sect. 3,
energy balance dictates the choice of time steps used in the
multi-scale problem. In order to ascertain the time step size
needed to solve the multi-scale problem, the enthalpy differ-
ence between macro- and micro- at the integration points is
computed as below:

Mean square error =

√√√√√
∑(

Hi
M −H̄ i

Hi
M

)2

N
(31)

In the above equation, HM denotes the macro-scale enthalpy,
H̄ = 1

V

∫
V HdV is the volume average of enthalpy (H ) at

the micro-scale and N denotes number of integration points
in macro-scale FE model. As shown in the Fig. 8a, the error
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Fig. 5 a Position of the phase change interface versus time in single-scale simulation. b Comparison of numerical and analytic solution of
temperature history at x = 1, 2, 3 and 4 cms.

Fig. 6 Finite element mesh used in the micro level

increases rapidly as time step, �t increases beyond 8 seconds
for Case I. If a time step larger than 8 seconds is employed,
the simulation rapidly diverges during the non-linear itera-
tions. It is seen that the choice of time step is closely related to
the mesh density used at the macro-scale. The overall error in
enthalpy remains the same as the time step is reduced below
eight seconds. The percentage error at each integration point

calculated as 100(
Hi

M −H̄ i

Hi
M

) is plotted in Fig. 9a, b for the

coarse and fine macro-scale mesh, respectively. The enthalpy
difference between micro- and macro-scales are primarily
observed at elements that involve the evolving interface due
to a large jump in enthalpy at these locations.

During homogenization, the front is not as accurately
tracked as in a single scale simulation (where adaptive mesh-
ing was used to capture the interface details). It is to be
noted that the aim of homogenization is to obtain a homog-
enized description of the interface and capture fine scale
information at various points in the macro-mesh with lower

Fig. 7 Two FE models at the macro-level with different mesh sizes are
used in order to test convergence of the multi-scale simulation result

computational effort. The accuracy obtained during tracking
of the solid-liquid interface is dictated by the element size
in the macro-scale mesh. As the element size reduces, it is
expected that the interface is better represented in the macro-
scale model. As expected, it is seen from Fig. 9b that the
enthalpy errors between macro- and micro-scales decreases
as FE model with a finer macro-scale grid (Case II). A time
step of one second was used in this case based on the mean
square enthalpy error tests plotted in Fig. 8b.

The results of solidification front position and the temper-
ature-time history at various locations in the mesh are com-
pared with analytical solution for two cases in Figs. 10 and
11 respectively. It is clear that as finer grids are employed at
the macro-scale, the solid-liquid interface and temperature
distribution are captured in an increasingly better manner.
Multi-scale approach proposed here is computationally well
suited in problems where there is a clear scale separation
(e.g., dendritic microstructure formation) and it is computa-
tionally impossible to resolve the fine scale details at mac-
roscopic scales. Although the problem chosen here mimics
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Fig. 10 Comparison of predicted and analytical solution for interface positions computed using FE mesh from a case I, b case II. During homog-
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the figure
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Fig. 11 Comparison of predicted and analytical solution of temperature history at four different locations in the macro-scale mesh for a case I,
b case II

scale separation, the real purpose however, is to validate the
multi-scale homogenization with a known analytical solu-
tion. Future work in this area would involve development
of adaptive mesh refinement and time-stepping methods to
accelerate computation and address problems with large scale
separation.

5 Conclusion

In this paper, a non-linear coupled macro-micro finite ele-
ment model is presented for addressing fluid solidification
problems. Solidification problems involve evolution of sur-
faces coupled with flux jump boundary conditions across
interfaces that have not been addressed using homogeniza-
tion approaches. Homogenization of complex micro-scale
behavior including moving interfaces and flux jumps has
been performed. Based on the Hill’s macro-homogeneity
condition, macroscopic quantities are evaluated via consis-
tent averaging of the microscopic values. The micro-scale
model incorporates the physics associated with solidification
including moving interfaces and flux discontinuities, while
the macro-scale model needs to only model thermal con-
duction using continuous (homogenized) fields. The conver-
gence behavior of the coupled macro-micro finite
element scheme with respect to decreasing element size is
analyzed by comparing with a known analytical solution of
the Stefan problem. In this coupled non-linear multi-scale
problem, although good convergence is achieved at higher
mesh densities, the time steps need to be carefully controlled
to achieve macro-micro enthalpy balance and numerical
stability. The approach is expected to be computationally
superior in problems where there is a large scale separation
between micro and macro scales, e.g., in case of dendritic
growth.

Acknowledgments This work was sponsored by NASA Constellation
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as the project manager.

Appendix A: Volume average of heat flux
at the micro-scale

Using the governing equation at the micro-scale (Eq. 8), we
obtain the expression for ∇ · xq as:

∇ · (xq) = q + x∇ · q = q − x∇ · (ρcT v)

Using the above equation and application of the generalized
divergence theorem, we can obtain the volume average of
heat flux as:

1

V

∫
qdV = 1

V

∫

V

(∇ · (xq) + x∇ · (ρcT v))dV

= 1

V

∫

S

xqnd S + 1

V

∫

SI

x[|qn|]d SI

+ 1

V

∫

V

x∇ · (ρcT v)dV

The last term in the above equation can be rewritten as:

1

V

∫

V

x∇ · (ρcT v)dV = 1

V

∫

V

∇ · (ρcT x ⊗ v)dV

− 1

V

∫

V

ρcT vdV

= 1

V

∫

SI

x[|ρc|]T vnd SI
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In the above derivation, we have used the fact that particle
velocity is zero at all points in the domain except at the
interface to eliminate the terms involving volume integral
of velocity. The above equation can be used to obtain the
expression for volume average of heat flux as:

1

V

∫
qdV = 1

V

∫

S

xqnd S+ 1

V

∫

SI

x([|qn|]+[|ρc|]T vn)d SI

= 1

V

∫

S

xqnd S

As a consequence of this derivation, we prove that the vol-
ume averaged heat flux can be obtained using information on
the boundary of the microstructure.
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