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A B S T R A C T

In the present work, a physics-informed deep learning-based constitutive modeling approach
has been introduced, for the first time, to solve non-associative Drucker–Prager elastoplastic
solid governed by a linear isotropic hardening rule. A purely data-driven surrogate modeling
approach for representing complex and highly non-linear elastoplastic constitutive response
prevents accurate predictions due to the absence of prior physical information. To mitigate this,
we design an efficient physics-constrained training approach leveraging prior physics-driven
optimization procedures. It has been achieved by formulating a highly physics-augmented
multi-objective loss function that includes elastoplastic constitutive relations, Drucker–Prager
yield criterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various
boundary conditions. Utilizing multiple densely connected independent feed-forward deep
neural networks fed with high-fidelity numerical solutions in a data-driven loss function, the
model obtains the accurate elastoplastic solution by minimizing the proposed loss function.
The strength and robustness of the approach have been demonstrated by accurately solving the
benchmark problem where a plastically deformed isotropic shallow stratum has been subjected
to compressive pressure under plane strain Drucker–Prager yield condition. To optimize the
performance and trainability of the model, extensive experiments on network architecture and
various degrees of data-driven estimate shed light on significant improvement in terms of the
accuracy of the elastoplastic solution, particularly, that exhibits sharp, or very localized features.
Moreover, we propose a transfer learning-based PINNs modeling approach that elucidates the
possibility of predicting solutions for different sets of applied stress and material parameters.
Requiring significantly less training data, the framework can simultaneously enhance the
accuracy of the solution and adaptability of training by demonstrating rapid convergence in
critical loss components. The current study highlights a systematic development of a novel
physics-informed deep learning approach which is quite generic in nature, yet robust and highly
physics-augmented for transferability of known knowledge for vastly accelerated convergence
with improved accuracy of predicting an accurate description of non-associative elastoplastic
solution in the regime of continuum mechanics.
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1. Introduction

For several decades, continuum mechanics research has been focused on an accurate description of the behavior of materials
y developing constitutive models under various loading conditions (Khan and Huang, 1995; Chaboche, 2008). Recent progress
otivates one to properly formulate and parameterize these constitutive models. However, this can be a challenging task, particularly

or materials showing strong path-dependent (i.e., inelastic) behavior (Chaboche, 2008). In the regime of elastoplasticity, the goal
s to capture the plastic deformation caused by slips and dislocations which can be formulated by a system of ordinary/ partial
ifferential equations that describe the underlying physics of the problem (Chaboche, 2008; Ulloa et al., 2021) It provides the
tress–strain relations together with kinematic relations and conservation laws to formulate the governing equations that dictate
he material behaviors (Simo and Hughes, 2006; de Souza Neto et al., 2011). Among existing elastoplastic models (Borja, 2013),
on-associative models accounting for a realistic representation of pressure-dependency and dilation are particularly powerful
o capture a wide range of complex constitutive material behaviors that exhibit non-isochoric plastic deformation (Szabó and
ossa, 2012; Ulloa et al., 2021). These constitutive models utilize various yield criteria (Giraldo-Londoño and Paulino, 2020)
uch as Mohr–Coulomb (Jiang and Xie, 2011), Zienkiewicz–Pande (Zienkiewicz, 1977), Drucker–Prager (Drucker and Prager,
952), Williams–Warnke (Willam, 1975), that include pressure-dependent features into the yield function (Szabó and Kossa, 2012).
oteworthy to mention, these pressure-dependent solids typically exhibit different stress limits in compression and tension that can
e represented by a right-circular cone in the principal stress space (Luo and Kang, 2012).

To this end, the Drucker–Prager yield criterion (Drucker and Prager, 1952) has been defined in terms of stress invariant where
ydrostatic pressure affects the plastic deformation that has been a widely adopted model in soil plasticity (Chen et al., 1990;
ossa, 2012). Additionally, these materials often violate the associated flow rule which has been observed experimentally (Chen
t al., 1990; Ottosen and Ristinmaa, 2005). Thus, accurate prediction of the elastoplastic response requires the determination of
lastic flow direction employing non-associative flow rule (Kossa, 2012; Ulloa et al., 2021). These problems are generally modeled
s boundary-value problems (BVP), and typically, solved utilizing conventional numerical methods such as finite element method
FEM) (Liu et al., 2022b). Such a strategy requires obtaining the integration of the rate form-constitutive equation at all integration
oints for each element. Therefore, the global accuracy of the solution is strongly dependent on the adopted integration technique.
eedless to say, such a numerical procedure is computationally expensive and time-consuming due to the inherently complex, highly
on-linear nature of the underlying differential form, numerical integration schemes, and the iterative nature of the solver during
onvergence (Zienkiewicz and Taylor, 2005; Liu et al., 2022b).

In recent years, as an alternative to traditional models, deep learning (DL)-based data-driven techniques characterized by multi-
ayer neural networks (NN) (LeCun et al., 2015) have resulted in unprecedented advancements in its use in various disciplines such
s computer vision (Roy and Bhaduri, 2021; Roy et al., 2022b; Roy and Bhaduri, 2022), object detection (Roy et al., 2022a; Roy and
haduri, 2023), brain–computer interface (Roy, 2022b,a), etc. It have been shown to be a promising avenue that has the potential
o improve (or even replace) existing conventional numerical frameworks (Brunton et al., 2020). Leveraging the powerful universal
unction approximation capability of NNs, there is a growing research persuasion in data-driven modeling across diverse scientific
nd engineering disciplines such as surrogate modeling in fluid mechanics (Brunton et al., 2020; Brunton, 2022), reduced-order
odels in complex dynamical systems (Fernex et al., 2021; Fresca and Manzoni, 2022), aerodynamics and aeroelasticity surrogate
odeling (Kou and Zhang, 2021), etc. These techniques have also become increasingly popular in the domain of computational
echanics to solve complex partial differential equations (PDEs) (Montáns et al., 2019). However, the aforementioned DL-based

urrogate models do not take into consideration prior physical information dictated by governing differential equations and
onstitutive laws, and thus, cannot accurately extrapolate field variables due to the black-box nature of the models. In addition,
hey are heavily data-intensive in nature, requiring large amounts of data for engineering systems that are often quite expensive.

To circumvent these issues, more recently, a unified approach for NN-based constitutive modeling, known as Physics-Informed
eural Networks (PINNs) that integrate underlying physics from governing equations into data-driven machine learning frame-
ork (Raissi et al., 2019; Karniadakis et al., 2021). Such a construction of physically informed deep feed-forward neural networks

mproves the performance of a learning algorithm by incorporating governing physical laws, constitutive relations, and initial and
oundary conditions into various terms of the total loss function, and allows one to train massive neural networks with relatively
mall and sparse training datasets. Leveraging the automatic data-driven estimates of NN, their optimal parameters are then found
y minimizing the total loss functional over deep collocation sampling points (Raissi and Karniadakis, 2018; Karniadakis et al.,
021). Whilst the most popular neural network architecture used for PINNs is a vanilla feed-forward neural network, various other
rchitectures have also been explored in the literature (Lawal et al., 2022). In this context, PINNs have been extended to use
ultiple feed-forward neural networks (FFNNs) (Haghighat et al., 2021b; Moseley et al., 2021; Niu et al., 2023; Bose and Roy,
022, 2024), convolution neural networks (CNNs) (Gao et al., 2021; Fang, 2021), recurrent neural networks (RNNs) (Zhang et al.,
020b; Yucesan and Viana, 2021), physics-informed bayesian optimization approach (Khatamsaz et al., 2023), and Bayesian neural
etworks (BNNs) (Yang et al., 2021; Viana and Subramaniyan, 2021). In the regime of computational mechanics, PINNs have now
een applied to the solution and discovery for a variety of problems such as linear elasticity (Guo and Haghighat, 2020; Haghighat
t al., 2021b,a; Vahab et al., 2021; Roy et al., 2023b), hyperelasticity (Brodnik et al., 2023; Thakolkaran et al., 2022; Fuhg et al.,
022; Linden et al., 2023), continuum micromechanics (Henkes et al., 2022), von-Mises plasticity (Roy and Guha, 2023), elastic-
iscoplastic solids (Frankel et al., 2020; Goswami et al., 2022; Arora et al., 2022), inverse design (Jin et al., 2023; Liu et al., 2022a;
ang et al., 2023) etc.
However, the proper theoretical approach and corresponding computational development on the use of PINNs for building an
2

ccurate and robust deep learning-based framework in solving non-associative elastoplastic constitutive modeling has remained
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unattempted at the time of drafting this work. Noteworthy of mentioning, in our previous work (Roy and Guha, 2023), we
have initiated formulating a PINNs-based approach for solving elastoplastic constitutive modeling in general via an improved
multi-objective loss function. In the work, we illustrate promising prediction capabilities in constitutive response, nevertheless,
the applicability of our previous framework has only been limited to the application of von Mises perfectly plastic and isotropic
linear hardening models. We found that our PINNs perform exceptionally well in predicting the von Mises elastoplastic constitutive
response. However, using PINNs to solve the forward non-associative elastoplastic problems has proven to be very challenging,
particularly for the pressure-dependent Drucker–Prager type model considered herein. To this end, we further realized that, indeed,
a special theoretical treatment is essential to further generalize our theory for application in non-associative pressure-dependent
elastoplastic constitutive modeling. The extension of our previous theory requires significant theoretical development to thoughtfully
include loss contributions from the perspective of the non-associative flow rule and Drucker–Prager yield criterion into an improved
multi-objective loss function in a generic sense. In addition, it requires the inclusion of explicit total-form solutions of deviatoric and
hydrostatic parts into the physics-driven loss which is paramount in achieving the desired robustness and accuracy of the prediction.
These two parts essentially need to be effectively decoupled, and therefore, require careful addition to designing an efficient PINNs
framework.

To address these aforementioned issues, in this work, we present an accurate and efficient PINNs framework for solving
on-associative Drucker–Prager elastoplastic constitutive models for the first time to the best of the author’s knowledge. Based
n the fundamentals of PINNs, we present an improved multi-objective loss functional that can efficiently incorporate physical
nformation corresponding to the elastoplastic laws into the neural network. In the proposed loss function, physics-constrained
oss terms associated with the Drucker–Prager constitutive model including elastoplastic constitutive laws, Drucker–Prager yield
riterion, non-associative flow rule, Kuhn–Tucker consistency conditions, and various boundary conditions have been incorporated.
y incorporating the steady-state form of the deviatoric and hydrostatic part into the loss function, we have ensured the higher
ontent of physics included in the model corresponding to the pressure-dependent constitutive laws. In addition, various degrees
f data-driven physical knowledge fitting terms corresponding to elastoplastic field variables results in the construction of robust
nd accurate predictive capability of the neural network that demonstrates excellent agreement with ground truth high fidelity FEM
olution for all field variables. Moreover, we also emphasize the significance of various degrees in data-driven accuracy enhancement
tilizing the transfer learning-based strategy to further improve the efficiency and robustness of the predictive capability with less
raining data.

The resulting framework presented herein is accurate, robust, and highly physics-augmented for transferring known solutions
n solving for different loading conditions and material parameters which is not possible in traditional numerical algorithms. From
ur extensive study, we found that the proposed model allows for an accurate description of highly nonlinear pressure-dependent
lastoplastic relationships while taking into account the underlying physics and is easily trainable by using an efficient feed-
orward deep neural network. The present work highlights the importance of carefully including loss contributions from underlying
onstitutive laws into a customer-designed multi-objective loss function in a PINNs network that leverages physics-informed features
rom the data-driven solutions of the generic elastoplastic problems. By doing so, the proposed framework builds a solid foundation
or new promising avenues for future work in deep learning-based constitutive modeling approaches in the regime of solid mechanics.

The outline of the manuscript is as follows: generalized PINNs theory and formulation of multi-objective loss function for
onstitutive modeling have been discussed in Section 2. In Section 3, the overview of the non-associative Drucker–Prager constitutive
odel has been presented. In Section 4, our proposed PINNs theory for the non-associative Drucker Prager constitutive model has

een detailed. As proof of concept, the model has been applied for the solution of a benchmark problem of a plastically deformed
sotropic shallow stratum in Section 5. Whilst, Section 6 deals with the relevant findings and prospects of the current model, the
onclusions of the work are discussed in Section 7.

Regarding notations, bold-face characters denotes tensors; superposed dot represents time derivative or rate; superscript −1 stands
or inverse; the prefix 𝗍𝗋 indicates the trace; ⊗ denotes tensor product and following symbolic operations holds true: 𝒖 ∶ 𝒗 = 𝑢𝑖𝑗𝑣𝑖𝑗
nd (D ∶ 𝒖)𝑖𝑗 = D𝑖𝑗𝑘𝑙𝑢𝑘𝑙, with summation over repeated indices. The symbol ‖𝒖‖ =

√

𝒖 ∶ 𝒖 represents the norm of a second-order
symmetric tensor 𝒖. Moreover, the second-order and the fourth-order identity tensors are represented by 𝜹 and I, respectively.

2. Physics-Informed Neural Networks (PINNs)

Within the PINNs framework, the neural networks can be trained after properly formulating the loss function that is intended
to embed the underlying governing equations/ physics represented by the PDEs and associated various initial/boundary conditions
(.s/ .s) (Raissi et al., 2019; Roy et al., 2023b). Let us consider a non-linear PDE with differential operator ℱ imposed on the
variable 𝒖(𝑥, 𝑡) that satisfy the followings:

PDE ⇒ ℱ
[

𝒖̃(𝑥, 𝑡), 𝜕𝒖̃∕𝜕𝑡, 𝜕𝒖̃∕𝜕𝒙,…;𝜙
]

= 0; 𝒙 ∈ 𝛺, 𝒕 ∈ 𝛤𝑡 (1)

. ⇒ 𝒞
[

𝒖̃(𝑥, 𝑡), 𝜕𝒖̃∕𝜕𝑡,…; 𝜕𝒖̃𝑛∕𝜕𝑡𝑛
]

= 0; 𝒕 ∈ 𝛤𝑡 (2)

. ⇒ ℬ
[

𝒖̃(𝑥, 𝑡), 𝜕𝒖̃∕𝜕𝑥,…; 𝜕𝒖̃𝑛∕𝜕𝑥𝑛
]

= 0; 𝒙 ∈ 𝛤𝐵 (3)

where, 𝒙 ∈ R𝑛 and 𝒕 are the spatial coordinate and time, respectively; 𝒖̃(𝑥, 𝑡) denotes the solution of the PDE in the domain 𝛺 that
satisfies the initial condition 𝒞

(

𝒖̃, 𝜕𝑡𝒖̃
)

= 0 in the boundary 𝛤𝑡 and boundary conditions ℬ
(

𝒖̃, 𝜕𝑥𝒖̃
)

= 0 in the boundary 𝛤𝐵 . ℱ may
̃ ̃
3

contains various differential terms (i.e. 𝜕𝑥𝒖, 𝜕𝑡𝒖, ⋯) with coefficients 𝜙 = [𝜙𝛼 , 𝜙𝛽 ,…𝜙𝛾 ].
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Following the implementation of PINNs theory (Roy et al., 2023b; Roy and Guha, 2023), let us consider a feed-forward neural
etwork (FFNN) defined by :

𝛩𝑛(𝛩𝑛−1) = ϝ𝑛
[

𝑾 𝑛−1 ⋅ 𝛩𝑛−1 + 𝒃𝑛−1
]

(4)

here 𝛩𝑛 and ϝ𝑛 represents nonlinear transformation and corresponding activation function for layer 𝑛 ∈ (0, 1,… , 𝐾). For 𝑝th-
hidden layer (HL-𝑝), 𝛩𝑝(𝒙̂𝑝) ∶= ϝ𝑝(𝑾 𝑝 ⋅ 𝒙𝑝 + 𝒃𝑝) where 𝑾 𝑝 and 𝒃𝑝 are the weights and biases associated with this transformation,
respectively. Thus, 𝑛 = 0 corresponds to the input layer (IL) of FFNN that takes the input 𝒙0. Let us assume, the solution of ℱ in
Eq. (1) is 𝒖̃(𝑥, 𝑡) which is subjected to 𝒞

(

𝒖̃, 𝜕𝑡𝒖̃
)

= 0 and ℬ
(

𝒖̃, 𝜕𝑥𝒖̃
)

= 0 can be approximated as 𝜱NN
𝒖̃ (𝒙, 𝜃𝒖̃) for an input to the neural

network 𝛩0(𝒙) ∶= 𝒙0 by constructing a feed-forward deep neural networks (Roy et al., 2023b; Roy and Guha, 2023), such that

𝜱NN
𝒖̃ (𝒙, 𝜃𝒖̃) = 𝛩𝐾 ⊚𝛩𝐾−1 ⊚⋯⊚𝛩0(𝒙) (5)

where ⊚ denotes the general compositional construction of the NN; Following Eqs. (1) and (3), if 𝑾 𝑖 and 𝒃𝑖 are all collected in
𝜃𝒖̃ =

⋃𝐾
𝑛=0 (𝑾 𝑛, 𝒃𝑛), the output layer (OL) 𝛩𝐾 contains the approximate solution, given by Roy et al. (2023b) :

𝒖̃(𝑥, 𝑡) ≊ 𝜱NN
𝒖̃ (𝒙, 𝜃𝒖̃) = 𝛩𝑛 [𝒙, 𝜃] = [𝛩̂1, 𝛩̂2,… , 𝛩̂𝑚] (6)

oteworthy to mention, the spatiotemporal dependency of 𝒖̃(𝑥, 𝑡) can be implicitly captured in neural network parameter 𝜃𝒖̃ upon
physics-constrained training. In the hidden layers of the deep network, various activation functions such as hyperbolic-tangent,
sigmoid, and rectified linear unit (ReLU) can be used depending on the complexity of the problem. Whereas, for regression-type
problems considered herein, the activation is generally prescribed to be linear in the final layer.

2.1. Physics-constrained training in DNN

In order to incorporate the underlying governing equation/ physics as represented by PDE in Eq. (1), we can formulate the
following constrained optimization problem by imposing Eq. (1) as hard manner in 𝒙 ∈ 𝛺 ∈ R𝑛, such that Krishnapriyan et al.
(2021) :

min
𝜽𝒖̃

(𝒙;𝜽𝒖̃) s.t. ℱ [𝒖̃(𝑥, 𝑡),…;𝜙] = 0. (7)

where (𝒙;𝜽𝒖̃) is the multi-objective loss functional that can be formulated based on physics-constrained training embedding
governing PDE and associated .s and .s (Roy et al., 2023b). The loss functional (𝒙;𝜽𝒖̃) imposes the constraint which is the
residual of PDE that ensures the embedding of the physical knowledge from the main governing PDE. After completion of training,
𝑾 𝑘 ∈ R𝑛𝑘×𝑛𝑘+1 and 𝒃𝑘 ∈ R𝑛𝑘 of each layer are optimized. Subsequently, for given input (i.e., coordinates and material parameters)
𝛩0(𝒙), the output 𝛩𝑘+1(𝒙) such as elastoplastic field variables can be predicted from Eq. (5). Note, that compared to conventional
numerical simulation, the computational speed for predicting elastoplastic field variables from the trained PINNs model would be
exceptionally faster.

2.2. Data-driven loss

Without any prior physical information in the DNN framework, one can obtain the solution of elastoplastic problem 𝒖̃(𝒙, 𝜰 ) as
𝜱NN

𝒖̃ (𝒙,𝜰 ;𝜽𝐷𝒖̃ ) from the traditional surrogate model, such that (Roy and Guha, 2023) :

𝒖̃(𝒙, 𝜰 ) ≈ 𝒖̃𝐷(𝒙, 𝜰 ) ≜ 𝜱NN
𝒖̃ (𝒙,𝜰 ;𝜽𝐷𝒖̃ ) (8)

where 𝜰 is the elastoplastic intrinsic parameter that may depend on internal state variables, material parameters, various constitutive
relationships, temperature, strain gradient, strain rate, etc; 𝒖̃𝐷(𝒙, 𝜰 ) is the elastoplastic solution field; 𝜱NN

𝒖̃ (𝒙,𝜰 ;𝜽𝐷𝒖̃ ) denotes the
DNN prediction from purely data-driven training. Generally, such an approach provides a set of (sub)optimal DNN parameters
𝜽̆𝐷𝒖̃ ∶=

⋃𝑁
𝑘=0 (𝑾̆ 𝐷

𝑘 , 𝒃̆𝐷𝑘 ) that locally minimize the difference between 𝒖̃𝐷(𝒙, 𝜰 ) and 𝜱NN
𝒖̃ (𝒙,𝜰 ;𝜽𝐷𝒖̃ ). In mathematical form, we can

express such an optimization problem as

𝐷(𝒙,𝜰 ;𝜽𝐷𝒖̃ ) =
‖

‖

‖

‖

𝒖̃𝐷(𝒙, 𝜰 ) −𝜱NN
𝒖̃ (𝒙,𝜰 ;𝜽𝐷𝒖̃ )

‖

‖

‖

‖𝛺

𝜽̆𝐷𝒖̃ = 𝑾̆ 𝐷, 𝒃̆𝐷 = argmin
𝑾 , 𝒃

𝐷(𝒙,𝜰 ;𝜽𝐷𝒖̃ )
(9)

here ‖⊚ ‖𝛺 denotes L2 norm. In Eq. (9), 𝐷(𝒙,𝜰 ;𝜽𝐷𝒖̃ ) represents purely data-driven loss functional; 𝑾̆ 𝐷 and 𝒃̆𝐷 are DNN weights
nd biases from data-driven network training.

.3. Physics-driven loss

The DNN prediction capability from a purely data-driven approach 𝒖̃𝐷(𝒙, 𝜰 ), in general, requires a substantially large amount
f training data. However, such a requirement does not always guarantee the accuracy and robustness of the solution, particularly,
or inherently complex elastoplastic problems (Roy and Guha, 2023). Needless to say, during DNN training, purely data-driven
4

rameworks incur large computational requirements (Roy et al., 2023b). Therefore, to improve the accuracy of the solution with
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relatively less training data, we employed a prior physics-driven optimization procedure by formulating multi-objective physics-
driven loss functional 𝑃 (𝒙,𝜰 ;𝜽𝑃𝒖̃ ) that enables the inclusion of known governing PDEs and ..s/ ..s. Note that due to the
quasi-static nature of the elastoplastic problem considered herein, the loss contribution from the  can be ignored. For the
accurate representation of the elastoplastic solution, such loss function can minimize the deviation of DNN prediction 𝜱NN

𝒖̃ (𝒙,𝜰 ;𝜽𝑃𝒖̃ )
from physics-guided solution field 𝒖̃𝑃 (𝒙, 𝜰 ) over the domain of interests. Therefore, based on a constrained optimization theory,
physics-aware multi-objective loss functional can be constructed as,

𝑃 (𝒙,𝜰 ;𝜽𝑃𝒖̃ , 𝜙𝐶 , 𝜙𝐸 , 𝜙𝐾𝑇 , 𝛽𝛤𝑡 , 𝛽𝛤𝐵 ) = 𝜙𝐶𝑃𝐶 (𝒙,𝜰 ;𝜽𝐶𝒖̃ )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Constitutive loss

+𝜙𝐸 𝑃𝐸 (𝒙,𝜰 ;𝜽𝐸𝒖̃ )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

PDE loss

+𝜙𝐾𝑇 𝑃𝐾𝑇 (𝒙,𝜰 ;𝜽𝐾𝑇𝒖̃ )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

KT loss

+ 𝛽𝛤𝑡
‖

‖

‖

‖

𝒞 (𝒙,𝜽𝒞 , 𝒖𝑝, 𝒕𝑝) − 𝒞 𝛺(𝒙, 𝒖̂𝑝, 𝒕̂𝑝)
‖

‖

‖

‖

𝑡=𝑡0

𝛤𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

..s loss

+ 𝛽𝛤𝐵
‖

‖

‖

‖

ℬ(𝒙,𝜽ℬ , 𝒖𝑝, 𝒕𝑝) − ℬ̄ 𝛤 (𝒙, 𝒖̄𝑝, 𝒕̄𝑝)
‖

‖

‖

‖

𝑡

𝛤
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

..s loss

(10)

here 𝑃𝐶 (𝒙,𝜰 ;𝜽𝐶𝒖̃ ), 
𝑃
𝐸 (𝒙,𝜰 ;𝜽𝐸𝒖̃ ), 

𝑃
𝐾𝑇 (𝒙,𝜰 ;𝜽𝐾𝑇𝒖̃ ) denotes constitutive, PDE loss, Kuhn–Tucker (KT) inequality loss from underlying

lastoplastic model with corresponding weights 𝜙𝐶 , 𝜙𝐸 , and 𝜙𝐾𝑇 that regularizing the emphasis on each loss components,
espectively; 𝒖𝑝 and 𝒕𝑝 are the neural network predictions for displacement and applied traction; 𝒖̄ and 𝒕̄ denote the prescribed
isplacement and traction in 𝜕𝑢𝛤 and 𝜕𝜎𝛤 , respectively with 𝜕𝛤 = 𝜕𝑢𝛤 + 𝜕𝜎𝛤 ; 𝒖̂ and 𝒕̂ are the initial conditions at 𝑡 = 𝑡0 in 𝛺. Various
artial differentials in the proposed loss function in Eq. (10) can be accurately obtained using graph-based automatic differentiation
AD) (Baydin et al., 2018).

.4. Combined physics and data-driven loss:

Combining both data-driven loss 𝐷(𝒙,𝜰 ;𝜽𝐷𝒖̃ ) from Eq. (9) and physics-driven loss 𝑃 (𝒙,𝜰 ;𝜽𝑃𝒖̃ , 𝜙𝐶 , 𝜙𝐸 , 𝜙𝐾𝑇 𝛽𝛤𝑡 , 𝛽𝛤𝐵 ) from
Eq. (10), we can then construct an efficient multi-objective loss function leveraging physics-inform deep learning approach in a
semi-supervised manner for the solution of pressure-dependent elastoplastic problem considered herein.

(𝒙,𝜰 ;𝜽𝒖̃) = 𝑃 (𝒙,𝜰 ;𝜽𝑃𝒖̃ , 𝜙𝐶 , 𝜙𝐸 , 𝜙𝐾𝑇 𝛽𝛤𝑡 , 𝛽𝛤𝐵 ) + 𝐷(𝒙,𝜰 ;𝜽𝐷𝒖̃ ) (11)

In Fig. 1, the schematic of the proposed physics-infused DL framework for elastoplastic material modeling has been illustrated. In
the framework, by optimizing the loss function in Eq. (11), we can obtain optimal network parameters 𝜽̄𝒖̃ as

𝜽̄𝒖̃ = (𝑾̄ 𝒖̃, 𝒃̄𝒖̃) = arg min
𝜽⊂R𝑁𝑡

( ̄𝑿,𝜰 ;𝑾 𝒖̃, 𝒃𝒖̃) (12)

where, 𝑁 𝑡 and 𝑁𝑐 denote the total number of trainable parameters and collocation points, respectively; 𝑿̄ ∈ R𝑁𝑐×𝑁 𝑡 training set
used for optimization; 𝜽̄𝒖̃ ∶=

⋃𝑁
𝑖=0 (𝑾̄ 𝑖

𝒖̃, 𝒃̄𝑖𝒖̃) represents optimized network parameters from physics-informed neural network training.
Note, PINNs can exactly satisfy the elastoplastic equations for (𝒙,𝜰 ;𝜽𝒖̃) = 0.

3. Non-associative Drucker–Prager constitutive model :

In the present work, we have implemented a non-associative Drucker–Prager elastoplastic constitutive model (Drucker and
Prager, 1952) into PINNs framework. Let us consider 𝛺 ⊂ R𝑛 (1 ≤ 𝑛 ≤ 3) is the undeformed continuum configuration where the
displacement field be 𝒖 with respect to reference position 𝑿 ∈ 𝛺. The infinitesimal strain tensor 𝜺 can be defined by the symmetric
part of the displacement gradient, such that

𝜺 = ∇𝑠𝒖 ∶= 1
2
[

∇𝒖 + ∇(𝒖)𝖳
]

(13)

Whereas, the stress tensor can be expressed as 𝝈 ∶= 𝜎𝑖𝑗 𝒆𝒊 ⊗ 𝒆𝒋 . Let us consider 𝜕𝛤 = 𝜕𝑢𝛤 + 𝜕𝜎𝛤 and 𝜕𝑢𝛤 ∩ 𝜕𝜎𝛤 = ∅ where 𝜕𝑢𝛤 and
𝜎𝛤 denote the Dirichlet and Neumann boundaries, respectively that satisfy

𝒖 ∣𝜕𝑢𝛤 = 𝒖̄; 𝝈 ∣𝜕𝜎𝛤 𝒏̂ = 𝒕̄ (14)

here 𝒖̄ and 𝒕̄ represents the prescribed displacement and traction, respectively; 𝒏̂ is the unit normal to 𝜕𝜎𝛤 . If 𝒃 (𝑿, t) is the body
orce/ mass with mass density 𝜌, the equilibrium equations can then be written as

𝜕2𝒖
𝜕𝑡2

= 𝛁 ⋅ 𝝈 + 𝜌𝒃; 𝝈 = 𝝈𝖳 (15)

The total strain tensor 𝜺 in Eq. (13) can be expressed as the sum of an elastic 𝜺𝑒 and a plastic 𝜺𝑝 strain measures

𝜺 = 𝜺𝑒 + 𝜺𝑝 (16)
5
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Fig. 1. Schematic of the proposed PINNs framework that combines physics and data-driven training by designing multi-objective loss function (𝒙,𝜰 ;𝜽𝒖̃) consists
of physics-based loss 𝑃 (𝒙,𝜰 ;𝜽𝑃𝒖̃ , 𝜙𝐶 , 𝜙𝐸 , 𝜙𝐾𝑇 , 𝛽𝛤𝑡 , 𝛽𝛤𝐵 ) and data-driven loss 𝐷(𝒙,𝜰 ;𝜽𝐷𝒖̃ ) with independent variable 𝒙 = (𝑥, 𝑦) as input features.

For linear elastic material, through generalized Hooke’s law (Nemat-Nasser, 2004), the Cauchy stress tensor 𝝈 can be related to the
𝜺𝑒, given by :

𝝈 = C𝑒 ∶ 𝜺𝑒 = C𝑒 ∶ (𝜺 − 𝜺𝑝) (17)

where C𝑒 denotes the fourth-order elasticity tensor. For isotropic linear elasticity, we can then write

C𝑒 = 2𝐺T +𝐾 𝜹 ⊗ 𝜹 (18)

where 𝐾 = 𝐸∕3(1 − 2𝜇) and 𝐺 = 𝐸∕2(1 + 𝜇) are the bulk and shear moduli, respectively; 𝜈 and 𝐸 are Poisson’s ratio and Young’s
modulus, respectively; T = I − 1

3𝜹 ⊗ 𝜹 is the fourth-order deviatoric operator tensor. The stress state 𝝈 can be decomposed into
deviatoric stress 𝒔 = T ∶ 𝝈 and hydrostatic stress 𝜎̃𝑚𝜹. We can express deviatoric stress tensor 𝒔 as :

𝒔 = 𝝈 − 𝜎̃𝑚𝜹 (19)

where 𝜎̃𝑚 = 1∕3 𝗍𝗋𝝈 is the hydrostatic pressure. Similarly, the strain tensor can be decomposed into spherical part associated with
change in volume (𝜀𝑣 = 𝜀𝑘𝑘) and a deviatoric part 𝒆 = T ∶ 𝜺 associated with a change in shape, given by

𝜺 = 𝒆 + 1
3
𝗍𝗋 𝜺𝜹 (20)

3.1. Drucker–Prager yield condition

In Drucker and Prager model (Drucker and Prager, 1952), the influence of hydrostatic stress on the shearing resistance has been
incorporated by including the first stress invariant (i.e. pressure-dependency) of the stress tensor. The yield surface 𝐹𝑦(𝝈, 𝜉) for the
Drucker–Prager criterion is given by :

𝐹𝑦(𝝈, 𝜎𝑌 , 𝜉) =
1
√

2
ℛ + 3𝛼𝜎̃𝑚 − 𝑘(𝜉) = 0 (21)

where 𝛼 is a material constant; 𝜎𝑌 is the yield stress; ℛ ∶= ‖𝒔‖ =
√

𝒔 ∶ 𝒔. The parameter 𝑘(𝜉) has been taken as a function of the
scalar plastic state variable 𝜉 defining the size of the yield surface. Additional material constants 𝛼 and 𝑘 can be related to frictional
and cohesive strengths the material, respectively. For purely cohesive material (i.e, 𝛼 = 0), Eq. (21) reduces to the von Mises’ yield
surface 𝐹𝑦(𝐽2) =

√

𝐽2 − 𝑘 = 0 where 𝐽2 ∶= 1
2 𝒔 ∶ 𝒔 = 1

2 𝑠𝑖𝑗𝑠𝑗𝑖. In principal stress space, it is a right circular cylinder. For 𝛼 > 0
corresponds to Drucker–Prager yield surface, as shown in Fig. 2-(a), describes a right-circular cone in the principal stress space
where the central axis lies in the line of hydrostatic stress with its apex in the tension octant. The projection of the Drucker–Prager
6
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Fig. 2. Schematic of (a) Drucker–Prager yield function plotted in principal stress space with (b) compressive and tensile meridians (outer and inner circles)
where Lode angle 𝜃 has been shown in the 𝜋 -plane compared to the cross-section of the Mohr–Coulomb criterion.

yield surface in the 𝜋 plan showing the tensile meridian (inner circle) and compressive meridian (outer circles) has been depicted
in Fig. 2-(b). For 𝐹𝑦(𝝈, 𝜉) < 0 in Eq. (21), the material undergoes elastic deformation. Whilst, the material would flow plastically
for 𝐹𝑦(𝝈, 𝜉) ≥ 0. For isotropic hardening material, the function 𝑘(𝜉) can be expressed as 𝑘(𝜉) = 𝑘0 +ℋ 𝜉 (Genna and Pandolfi, 1994)
where 𝑘0 is a constant material parameter that can be related to cohesive strength 𝑐 and the angle of internal friction 𝜑; ℋ is
hardening modulus. For 2-D plane strain condition, the Drucker–Prager criterion matches the Mohr–Coulomb criterion where the
material parameters 𝛼 and 𝑘 in Eq. (21) can be expressed in terms of 𝑐 and 𝜑 as follows (Chen, 1994):

𝛼 =
tan𝜑

√

(12 tan2 𝜑 + 9)
; 𝑘 =

3𝑐 cos𝜑
√

(12 tan2 𝜑 + 9)
(22)

𝑘 can be expressed in terms of yield stress as (Chen and Han, 2007; Szabó and Kossa, 2012) :

𝑘(𝜀̄𝑝) =
(

𝛼 + 1
√

3

)

𝜎𝑌 (𝜀̄𝑝) (23)

where 𝜀̄𝑝 is the accumulated plastic strain, given by Chen and Han (2007) :

𝜀̄𝑝 =
√

2
3 ∫

𝑡

0
‖𝜺̇𝑝‖𝑑𝜏 (24)

3.2. Non-associative flow rule:

The direction of the plastic strain rate 𝜺̇𝑝 can be defined according to the non-associative plastic flow rule, given by Szabó and
Kossa (2012)

𝜺̇𝑝 = 𝜆𝜃
𝜕 𝒢 (𝝈)
𝜕𝝈

, (25)

where 𝜆𝜃 ≥ 0 is the plastic multiplier; 𝒢 is the plastic potential function which can be commonly adopted as (Chen and Han, 2007)
:

𝒢 (𝝈) = 1
√

2
ℛ + 3𝛽 𝜎̃𝑚 (26)

where 𝛽 is an additional material parameter. From Eqs. (21) and (26), we can then define gradient of yield function  ∶=
𝜕 𝐹𝑦(𝝈, 𝜉)∕𝜕𝝈 and plastic potential function  ∶= 𝜕 𝒢 (𝝈)∕𝜕𝝈, respectively as

 =
𝜕 𝐹𝑦(𝝈, 𝜉)

𝜕𝝈
= 1

√

2ℛ
𝒔 + 𝛼𝜹;  =

𝜕 𝒢 (𝝈)
𝜕𝝈

= 1
√

2ℛ
𝒔 + 𝛽𝜹 (27)

Assuming scalar plastic state variable 𝜉 is defined by the path integral of the plastic multiplier as 𝜉 = ∫ 𝑡0 𝜆𝜃 𝑑𝑡. For linear isotropic
hardening behavior, we can then write

𝜎 (𝜀̄𝑝) = 𝜎 +ℋ 𝜀̄𝑝 (28)
7

𝑌 𝑌 0
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𝜺

where ℋ is a constant hardening modulus. The (un)loading conditions can be expressed in the Kuhn–Tucker (KT) form as (de
Souza Neto et al., 2011; Simo and Hughes, 2006) :

𝜆𝜃 ≥ 0, 𝐹𝑦(𝝈, 𝜉) ≤ 0, 𝜆𝜃𝐹𝑦(𝝈, 𝜉) = 0 (29)

Using the plastic consistency condition 𝐹̇𝑦(𝝈, 𝜉) = 0, the plastic multiplier 𝜆𝜃 can be expressed as (Szabó and Kossa, 2012; Kossa,
2012)

𝜆̇𝜃 =
1
ℎ
𝑸 ∶ C𝑒 ∶ 𝜺̇ ≡ 1

ℎ

(

2𝐺
√

2ℛ
𝒔 ∶ 𝒆̇ + 3𝛼𝐾 𝗍𝗋 𝜺̇

)

(30)

where ℎ and 𝑗 are the scalar parameters, given by Kossa (2012)

ℎ = 𝐺 + 9𝐾𝛼𝛽 + 𝑗; 𝑗 = ℋ
(

𝛼 + 1
√

3

)
√

1
3
+ 2𝛽2 (31)

The elastoplastic constitutive relation, combining Eqs. (16), (17), and (25) can be defined by

𝝈 = C𝑒𝑝 ∶ 𝜺 (32)

where C𝑒𝑝 is fourth-order elastoplastic continuum tangent modulus tensor, given by

C𝑒𝑝 = C𝑒 − 1
ℎ
C𝑒 ∶  ⊗  ∶ C𝑒 (33)

Substituting  and  from Eqs. (27) into Eq. (33), we obtain

C𝑒𝑝 = C𝑒 − 1
ℎ

(

2𝐺2

ℛ2
𝒔 ⊗ 𝒔 + 6𝐾𝐺𝛼

√

2ℛ
𝒔 ⊗ 𝜹 +

6𝐾𝐺𝛽
√

2ℛ
𝜹 ⊗ 𝒔 + 9𝑘2𝛼𝛽𝜹 ⊗ 𝜹

)

(34)

Finally, the elastoplastic constitutive relation in Eq. (32), can be separated into deviatoric and hydrostatic parts as follows

𝒔̇ = 2𝐺𝒆̇ − 2𝐺2

ℎℛ2

(

𝒔 ∶ 𝒆̇ + 3𝐾ℛ𝛼 𝗍𝗋 𝜺̇
√

2𝐺

)

(35)

̇̃𝜎𝑚 = 𝐾𝗍𝗋 𝜺̇ −
3
√

2𝛽𝐾𝐺
ℎℛ

(

𝒔 ∶ 𝒆̇ + 3𝐾ℛ𝛼 𝗍𝗋 𝜺̇
√

2𝐺

)

(36)

In the present study, we assume a proportional and monotonic loading prevails in order to simplify our PINNs model development.
Therefore, incremental deviatoric and hydrostatic parts in Eqs. (35)–(36) can be expressed by a total form as follows

𝒔 = 2𝐺𝒆 − 2𝐺2

ℎℛ2

(

𝒔 ∶ 𝒆 + 3𝐾ℛ𝛼 𝗍𝗋 𝜺
√

2𝐺

)

(37)

𝜎̃𝑚 = 𝐾𝗍𝗋 𝜺 −
3
√

2𝛽𝐾𝐺
ℎℛ

(

𝒔 ∶ 𝒆 + 3𝐾ℛ𝛼 𝗍𝗋 𝜺
√

2𝐺

)

(38)

4. PINNs formulation for Drucker–Prager elastoplastic problem:

In the present work, we approximate elastoplastic field variables by multiple densely connected independent feed-forward deep
neural networks (NN𝑖 ∀ 𝑖 = 1, 𝑘) where each NN𝑖 provides single output (Roy and Guha, 2023). Such construction of network
architecture was found to be superior to the other formulation in terms of accuracy and the trainability of the network (Haghighat
et al., 2021b). The choice of separate networks is, in fact, similar to the choice that is made in classical numerical methods for the
solution of PDEs. Noteworthy to mention, the weights and biases of a neural network play a similar role to the degrees of freedom
in finite-element or meshfree methods, which are defined independently for each solution variable. Therefore, for plane-strain two-
dimensional elastoplastic problem considering the symmetry of stress and strain tensor, we can approximate 𝒖(𝒙), stress 𝝈(𝒙), strain
(𝒙), and plastic strain 𝜺𝑝(𝒙) tensors as :

𝒖(𝒙) ≃ 𝜱NN
𝒖 (𝒙, 𝜃𝒖) =

[

𝑢̄NN𝑥 (𝒙, 𝜃𝑢𝑥 )
𝑢̃NN𝑦 (𝒙, 𝜃𝑢𝑦 )

]

(39)

𝜺(𝒙) ≃ 𝜱NN
𝜺 (𝒙, 𝜃𝜺) =

[

𝜀̄NN𝑥𝑥 (𝒙, 𝜃𝜀𝑥𝑥 ) 𝜀̄NN𝑥𝑦 (𝒙, 𝜃𝜀𝑥𝑦 )

𝜀̄NN𝑦𝑥 (𝒙, 𝜃𝜀𝑦𝑥 ) 𝜀̄NN𝑥𝑦 (𝒙, 𝜃𝜀𝑦𝑦 )

]

(40)

𝜺𝑝(𝒙) ≃ 𝜱NN
𝜺𝑝 (𝒙, 𝜃𝜺𝑝 ) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜀̄𝑝
NN
𝑥𝑥 (𝒙, 𝜃𝜀𝑝𝑥𝑥 ) 𝜀̄𝑝

NN
𝑥𝑦 (𝒙, 𝜃𝜀𝑝𝑥𝑦 ) 0

𝜀̄𝑝
NN
𝑦𝑥 (𝒙, 𝜃𝜀𝑝𝑦𝑥 ) 𝜀̄𝑝

NN
𝑦𝑦 (𝒙, 𝜃𝜀𝑝𝑦𝑦 ) 0

0 0 𝜀̄𝑝
NN
𝑧𝑧 (𝒙, 𝜃𝜀𝑝𝑧𝑧 )

⎤

⎥

⎥

⎥

⎥

⎦

(41)

𝝈(𝒙) ≃ 𝜱NN
𝝈 (𝒙, 𝜃𝝈 ) =

⎡

⎢

⎢

⎢

𝜎̄NN𝑥𝑥 (𝒙, 𝜃𝜎𝑥𝑥 ) 𝜎̄NN𝑥𝑦 (𝒙, 𝜃𝜎𝑥𝑦 ) 0

𝜎̄NN𝑦𝑥 (𝒙, 𝜃𝜎𝑦𝑥 ) 𝜎̄NN𝑦𝑦 (𝒙, 𝜃𝜎𝑦𝑦 ) 0
NN ̃

⎤

⎥

⎥

⎥

(42)
8

⎣
0 0 𝜎̃𝑧𝑧 (𝒙, 𝜃𝜎𝑧𝑧 )⎦
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Fig. 3. The schematic of PINNs network architecture consisting of multiple FFNN (NN𝑖 ∀ 𝑖 = 1, 𝑘) for each output elastoplastic field variables : displacements
(𝑢̄NN𝑥 , 𝑢̄NN𝑦 ); total strain (𝜀̄NN𝑥𝑥 , 𝜀̄NN𝑥𝑦 , 𝜀̄NN𝑦𝑦 ); plastic strain (𝜀̃𝑝

𝒩

𝑥𝑥 , 𝜀̃𝑝
𝒩

𝑥𝑦 , 𝜀̃𝑝
𝒩

𝑦𝑦 , 𝜀̃𝑝
𝒩

𝑧𝑧 ); and stress (𝜎̃NN𝑥𝑥 , 𝜎̃NN𝑥𝑦 , 𝜎̃NN𝑦𝑦 , 𝜎̃NN𝑧𝑧 ) for input features 𝒙 = (𝑥, 𝑦).

where 𝜱NN
𝒖 (𝒙, 𝜃𝒖), 𝜱NN

𝜺 (𝒙, 𝜃𝜺), 𝜱NN
𝜺𝑝 (𝒙, 𝜃𝜺𝑝 ), and 𝜱NN

𝝈 (𝒙, 𝜃𝝈 ) are the NN approximation for 𝒖(𝒙), 𝜺(𝒙), 𝜺𝑝(𝒙), and 𝝈(𝒙), respectively. The
schematic of the PINNs network is shown in Fig. 3. Such construction of network architecture was found to be optimum in terms
of accuracy and the trainability of the network (Roy and Guha, 2023).

4.1. Multi-objective loss function for Drucker–Prager constitutive model

As previously mentioned, a purely data-driven approach for predicting elastoplastic field variables does not always guarantee the
accuracy and robustness of the solution. Therefore, to improve the accuracy of the prediction with relatively less training data, we
employed a prior physics-driven optimization procedure by formulating multi-objective loss functional (𝒙,𝜰 ;𝜽𝒖̃). To incorporate
physical information for the elastic–plastic problem, main governing equations that include Drucker Prager constitutive relations,
non-associative flow rule, Kuhn–Tucker conditions, and various boundary conditions have been imposed in generalized physics-based
loss 𝑃 (see Section 4.2) In addition, a data-driven approach for the various elastoplastic field variables has been incorporated in
data-driven loss 𝐷 (see Section 4.3) for the construction of the total loss function.

4.2. Physics-based loss:

The generalized multi-object physics-based loss functional 𝑃 for the solution of the Drucker–Prager Constitutive model can have
the following form:

𝑃 = 𝜙𝐶 𝑃𝐶 + 𝜙𝐸 𝑝𝐸 + 𝜙𝐸𝑃 𝑃𝐸𝑃 + 𝜙𝐾𝑇 𝑃𝐾𝑇 + 𝜙𝐵 𝑃𝐵 (43)

Following constitutive law in Eq. (17), constitutive loss 𝑝𝐶 can be formulated as

𝑃𝐶 = 1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑚=1

‖

‖

‖

‖

𝜱NN
𝝈 (𝒙𝑚, 𝜃𝝈 ) −C𝑒 ∶

[

𝜱NN
𝜺 (𝒙𝑚, 𝜃𝜺) −𝜱NN

𝜺𝑝 (𝒙𝑚, 𝜃𝜺𝑝 )
] ‖

‖

‖

‖

(44)

where ϝ𝛺𝑁 ∶=
{

𝒙1∣𝛺 ,… ,𝒙𝑁𝛺
𝑐 ∣𝛺

}

are chosen collocation points over the domain 𝛺. In various boundaries,

ϝ𝜕𝑢𝛤 ∶= |

|

{

𝒙 ,… ,𝒙
}

|

| and ϝ𝜕𝜎𝛤 ∶= |

|

{

𝒙 ,… ,𝒙
}

|

| are the total number of collocation points along 𝜕 𝛤 and 𝜕 𝛤 ,
9

𝑁
|

1∣𝜕𝑢𝛤 𝜕𝑢𝛤 ∣𝜕𝑢𝛤
|

𝑁
|

1∣𝜕𝜎𝛤 𝜕𝜎𝛤 ∣𝜕𝜎𝛤
|

𝑢 𝜎
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respectively. For quasi-static condition (i.e., 𝜕2𝒖
𝜕𝑡2

= 0), we can define PDE loss 𝑃𝐸 correspond to the satisfaction of equilibrium
condition in Eq. (15) that can be expressed as :

𝑝𝐸 = 1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑚=1

‖

‖

‖

‖

𝜱NN
𝝈 (𝒙𝑚, 𝜃𝝈 ) + 𝜌 𝒃(𝒙𝑚)

‖

‖

‖

‖

(45)

Note, in the absence of body force, 𝒃 = 0 should be prescribed. Next, we can write the loss term corresponding to elastoplastic
constitutive relations from Eqs. (37) and (38)

𝑃𝐸𝑃 = 𝑃𝒔 + 𝑃𝜎̃𝑚 (46)

The term 𝑃𝐸𝑃 can be separated into loss contributions from deviatoric 𝑃𝒔 and hydrostatic 𝑃𝜎̃𝑚 parts as :

𝑃𝒔 = 1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑚=1

‖

‖

‖

‖

𝜱NN
𝒔 (𝒙𝑚, 𝜃𝝈 ) − 2𝐺𝜱NN

𝒆 + 2𝐺2

ℎℛ2

(

𝜱NN
𝒔 ∶ 𝜱NN

𝒆 +
3𝐾ℛ𝛼 𝗍𝗋𝜱NN

𝜺
√

2𝐺

)

‖

‖

‖

‖

(47)

𝑃𝜎̃𝑚 = 1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑚=1

‖

‖

‖

‖

𝜱NN
𝜎̃𝑚

(𝒙𝑚, 𝜃𝝈 ) −𝐾𝗍𝗋𝜱NN
𝜺 +

3
√

2𝛽𝐾𝐺
ℎℛ

(

𝜱NN
𝒔 ∶ 𝜱NN

𝒆 +
3𝐾ℛ𝛼 𝗍𝗋𝜱NN

𝜺
√

2𝐺

)

‖

‖

‖

‖

(48)

or the Drucker–Prager type constitutive model, the inequalities in the Kuhn–Tucker (KT) complementarity conditions in Eq. (29)
an be associated in KT loss term 𝑃𝐾𝑇 , given by

𝑃𝐾𝑇 = 𝑃𝜆𝜃 + 𝑃𝐹𝑦 + 𝑃𝜆𝜃𝐹𝑦 (49)

here the terms 𝑃𝜆𝜃 , 
𝑃
𝐹𝑦

, and 𝑃𝜆𝜃𝐹𝑦 associated with the respective inequalities 𝜆𝜃 ≥ 0, 𝐹𝑦(𝝈, 𝜉) ≤ 0, 𝜆𝜃𝐹𝑦(𝝈, 𝜉) = 0 which are
then can be formulated as :

𝑃𝜆𝜃 = 1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑚=1
𝛩𝜆𝜃

‖

‖

‖

‖

(

1 −
𝜆NN𝜃 (𝒙𝑚)

|𝜆NN𝜃 (𝒙𝑚)|

)

|𝜆NN𝜃 (𝒙𝑚)|
‖

‖

‖

‖

(50)

𝑃𝐹𝑦 =
1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑚=1
𝛩𝐹𝑦

‖

‖

‖

‖

(

1 +
𝐹NN
𝑦 (𝒙𝑚, 𝜃𝝈 )

|𝐹NN
𝑦 (𝒙𝑚, 𝜃𝝈 )|

)

|𝐹NN
𝑦 (𝒙𝑚, 𝜃𝝈 )|

‖

‖

‖

‖

(51)

𝑃𝜆𝜃𝐹𝑦 =
1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑚=1
𝛩𝜆𝜃𝐹𝑦

‖

‖

‖

‖

𝐾𝛾𝑓𝜆
NN
𝜃 (𝒙𝑚)𝐹NN

𝑦 (𝒙𝑚, 𝜃𝝈 )
‖

‖

‖

‖

(52)

where the penultimate weighting coefficients 𝛩𝜆𝜃 , 𝛩𝐹𝑦 , and 𝛩𝜆𝜃𝐹𝑦 ∈ R+ penalize the deviation of KT conditions by imposing positive
penalty in the loss function. Therefore, during constraint optimization, a larger deviation from KT inequality can be tackled by
prescribing relatively higher values of the penultimate weighting coefficients (Roy and Guha, 2023). Finally, the loss contribution
from the Dirichlet boundary 𝜕𝑢𝛤 and the Neumann boundary 𝜕𝜎𝛤 can be included in the total boundary loss 𝑃𝐵

𝑃𝐵 = 𝜕𝑢𝛤𝐵 + 𝜕𝜎𝛤𝐵 (53)

where 𝜕𝑢𝛤𝐵 and 𝜕𝜎𝛤𝐵 represents the loss components for the Dirichlet and Neumann boundary conditions in Eq. (14), respectively.
These loss terms can be expressed as

𝜕𝑢𝛤𝐵 = 1
ϝ𝜕𝑢𝛤𝑁

ϝ𝜕𝑢𝛤𝑁
∑

𝑖=1

‖

‖

‖

‖

𝜱NN
𝒖 (𝒙𝑖, 𝜃𝒖) − 𝒖̄(𝒙𝑖)

‖

‖

‖

‖

(54)

𝜕𝜎𝛤𝐵 = 1
ϝ𝜕𝜎𝛤𝑁

ϝ𝜕𝜎𝛤𝑁
∑

𝑗=1

‖

‖

‖

‖

𝜱NN
𝝈 (𝒙𝑗 , 𝜃𝝈 )𝒏̂ − 𝒕̄(𝒙𝑗 )

‖

‖

‖

‖

(55)

where ϝ𝜕𝑢𝛤𝑁 ∶= |

|

|

{

𝒙1∣𝜕𝑢𝛤 ,… ,𝒙𝜕𝑢𝛤 ∣𝜕𝑢𝛤
}

|

|

|

and ϝ𝜕𝜎𝛤𝑁 ∶= |

|

|

{

𝒙1∣𝜕𝜎𝛤 ,… ,𝒙𝜕𝜎𝛤 ∣𝜕𝜎𝛤
}

|

|

|

are the total number of collocation points along the
boundaries 𝜕𝑢𝛤 and 𝜕𝜎𝛤 , respectively.

4.3. Data-driven loss:

Finally, the predictive capability of the NN can be further enhanced by incorporating data-driven loss 𝐷(𝒙,𝜰 ;𝜽𝐷𝒖̃ ) from
contributions of various elastoplastic field variables into multi-objective loss function (see Section 2.3), such that

𝐷(𝒙,𝜰 ;𝜽𝐷) = 𝐷 + 𝐷 + 𝐷 + 𝐷 (56)
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where, for data-driven approach, 𝐷𝒖̂ , 𝐷𝜺̂ , 𝐷
𝜺𝑝

, and 𝐷𝝈̂ are the loss contributions from displacement 𝒖(𝒙), total strain 𝜺(𝒙), plastic
train 𝜺𝑝(𝒙), and stress 𝝈(𝒙), respectively. We can express these terms as:

𝐷𝒖̂ = 1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑘=1

‖

‖

‖

‖

𝜱NN
𝒖 (𝒙, 𝜃𝒖) − 𝒖̂𝐷(𝒙𝑘)

‖

‖

‖

‖

(57)

𝐷𝜺̂ = 1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑘=1

‖

‖

‖

‖

𝜱NN
𝜺 (𝒙, 𝜃𝜺) − 𝜺̂𝐷(𝒙𝑘)

‖

‖

‖

‖

(58)

𝐷
𝜺𝑝

= 1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑘=1

‖

‖

‖

‖

𝜱NN
𝜺𝑝 (𝒙, 𝜃𝜺𝑝 ) − 𝜺𝑝𝐷(𝒙𝑘)

‖

‖

‖

‖

(59)

𝐷𝝈̂ = 1
ϝ𝛺𝑁

ϝ𝛺𝑁
∑

𝑘=1

‖

‖

‖

‖

𝜱NN
𝝈 (𝒙, 𝜃𝝈 ) − 𝝈̂𝐷(𝒙𝑘)

‖

‖

‖

‖

(60)

where the terms 𝒖̂𝐷(𝒙𝑘), 𝜺̂𝐷(𝒙𝑘), 𝜺𝑝
𝐷(𝒙𝑘), and 𝝈̂𝐷(𝒙𝑘) are the target elastoplastic field variable that can be obtained from either

analytical solution (if available), experimental data, or high-fidelity numerical simulation. In the current work, we are primarily
concerned about the forward problem where various elastoplastic field variables are predicted considering constant material
parameters. For our model, we have used a high-level Keras wrapper SciANN (Haghighat et al., 2021b; Haghighat and Juanes, 2021)
framework leveraging its high-level scientific computations capability with TensorFlow (Abadi et al., 2016) backend. Noteworthy
to mention, the loss function in Eq. (11) can also be used for inverse problems (i.e., finding parameters). However, building a robust
inverse framework for the elastoplastic problem needs special attention due to the inherent complexity of the pressure-dependent
elastoplastic constitutive model which would be scope for a separate study elsewhere in the future.

5. Benchmark problem: shallow stratum under vertical load

For our benchmark problem, we consider a plastically deformed 10 m wide and 5 m high isotropic shallow stratum of soil
under prescribed compressive pressure along the midsection of the free top edge 2AE= 5 m. Due to the symmetry in the loading
condition, the right half of the domain has been modeled prescribing symmetry boundary condition (i.e., roller support 𝑢𝑥 = 0) at
the right vertical boundary BC as shown in Fig. 4-(a). A fixed constraint 𝒖 = 0 on the lower horizontal boundary has been applied
assuming the stratum is supported by a perfectly rigid base. In the problem, top edge AE has been subjected to homogeneous
compressive pressure along 𝑦-axis 𝑝𝑦 = 0.3 MPa. Part of the top edge EB is traction free 𝑡𝑗 = 𝜎𝑖𝑗𝑛𝑖 = 𝜎𝑦𝑦 = 0. Under the state
f the plane-strain condition, we design the material response of the stratum considering Drucker–Prager elastoplastic constitutive
odel with the following isotropic material properties: mass density 𝜌= 2700 kg/m3; Young’s modulus of elasticity 𝐸 = 207 MPa;
oisson’s ratio 𝜈 = 0.3; cohesion 𝑐 = 69 MPa; and angle of internal friction 𝜑 = 20◦. For ground truth solution, high fidelity FEM
imulations (COMSOL, 2022) have been performed utilizing free triangular mesh that consists of 78,402 domain and 1,874 boundary
lements. Refined mesh has been used nearby to the edge AE to accurately capture sharp change in elastoplastic field responses.

5.1. PINNs solution for elastoplastic field variables:

Initially, we have trained our baseline PINNs model on synthetic data considering Lagrange 𝐶0 free triangular discretization
schemes. Unless otherwise stated, loss coefficients described in Eq. (43) prescribed as 𝜙𝐶 = 1, 𝜙𝐸 = 1.5, 𝜙𝐸𝑃 = 2, 𝜙𝐾𝑇 = 𝜙𝐵 = 1
or optimal solutions of the elastoplastic problem considered herein. Additionally, the penultimate weighting coefficients 𝛩𝜆𝜃 = 2.5,
𝐹𝑦 = 2, and 𝛩𝜆𝜃𝐹𝑦 = 1.5 has been set to penalize the deviation of KT conditions in the loss function. During training, the model
as been run for 5,000 epochs with shuffling, and patience of 100 with an initial learning rate of 𝜂 = 0.001, batch size of 32 has
een prescribed for optimal accuracy and faster convergence. To ensure the better trainability of the NN, a standard normalization
ethod has been applied where inputs have been scaled to obtain a range of either [−1, 1] or [0, 1] depending on activation function

used (Kim et al., 2022; Li et al., 2022). We further explore the accuracy of the model’s predictive capability for different combinations
of network architecture by varying the total number of hidden layers ℒ𝑛 and the number of neurons in each layer 𝜓𝑛 (see Section 5.3).
In addition, we have further explored the accuracy and robustness of the framework that has been trained on various degrees of
data-driven estimate of elastoplastic solution (see Section 5.4)

For the baseline model, we prescribe 𝜓𝑛 = 60 and ℒ𝑛 = 5 that has been trained in (200×200) grid of ϝ𝑁 = 40,000. Subsequently,
we train our model considering two different activation functions 𝗌𝗂𝗀𝗆𝗈𝗂𝖽 and 𝗍𝖺𝗇𝗁. The high-fidelity FEM solutions evaluated in
Gauss points for various elastoplastic field variables are shown in Figs. 4–5. The corresponding PINNs prediction and the degree
of accuracy in terms of absolute errors have been shown in Figs. 4–5 for these two activation function. In general, the comparison
illustrates excellent agreement with FEM solutions for most of the field variables. Relatively small error values between ground truth
and the model’s prediction for all field variables further elucidate the efficacy and robustness of the proposed model. Noteworthy
to mention, the prediction result from our framework has no sign of visible artifacts in the distribution of field variables indicating
a high degree of robustness. Between two different activation functions, 𝗍𝖺𝗇𝗁 activation yields the best performance by inducing
better smoothness in output distribution and exhibiting small absolute error in the model prediction compared to 𝗌𝗂𝗀𝗆𝗈𝗂𝖽. This
can be attributed to its better inherent adaptability in the non-linear complex nature of underlying constitutive law. However, for
11
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.

Fig. 4. (First row; left to right) FEM solutions : 𝑢𝑥, 𝑢𝑦 (in mm) and 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, and 𝜎𝑥𝑦 (in MPa); (second and fourth rows) corresponding PINNs predictions:
𝑢̄NN𝑥 , 𝑢̄NN𝑦 , 𝜎̄NN𝑥𝑥 , 𝜎̄NN𝑦𝑦 , 𝜎̄NN𝑧𝑧 , and 𝜎̄NN𝑥𝑦 ; (Third and fifth rows) absolute error between FEM and PINNs : |𝑢𝑥 − 𝑢̄NN𝑥 |, |𝑢𝑦 − 𝑢̄NN𝑦 |, |𝜎𝑥𝑥 − 𝜎̄NN𝑥𝑥 |, |𝜎𝑦𝑦 − 𝜎̄NN𝑦𝑦 |, |𝜎𝑧𝑧 − 𝜎̄NN𝑧𝑧 |, and
|𝜎𝑥𝑦 − 𝜎̄NN𝑥𝑦 | for 𝑁𝑐 = 40,000 and [𝜓𝑛 = 60,ℒ𝑛 = 5].

Table 1
Final normalized loss components (in 10−04) and corresponding training time T𝜉 (in 𝑚𝑖𝑛) for various combinations of network architectures and activation functions

[ℒ𝑛 , 𝜓𝑛] AF 𝑃𝐶 𝑃𝐸 𝑃𝐸𝑃 𝑃𝐾𝑇 𝑃 𝐷  T𝜉
[5, 60] 𝗌𝗂𝗀 323.11 278.19 656.28 2.63 1973.19 99.45 2072.64 10.9
[5, 60] 𝗍𝖺𝗇𝗁 271.28 302.71 434.31 4.92 1803.21 112.71 1915.92 11.8
[5, 80] 𝗌𝗂𝗀 256.71 199.88 270.69 1.77 1561.77 71.83 1633.61 17.8
[5, 80] 𝗍𝖺𝗇𝗁 176.92 313.18 473.15 3.01 1398.61 87.98 1486.59 21.2
[8, 60] 𝗌𝗂𝗀 87.47 278.19 456.28 26.32 × 10−1 973.19 83.45 1056.64 26.7
[8, 60] 𝗍𝖺𝗇𝗁 75.12 245.82 406.17 76.32 × 10−1 890.20 95.21 985.41 31.7
[8, 80] 𝗌𝗂𝗀 78.48 198.17 492.29 96.18 × 10−1 756.17 55.39 811.56 33.3
[8, 80] 𝗍𝖺𝗇𝗁 58.36 98.78 522.31 58.49 × 10−1 456.69 89.35 546.04 39.6
[10, 60] 𝗌𝗂𝗀 13.22 78.28 416.45 84.29 × 10−2 273.78 13.01 286.79 61.6
[10, 60] 𝗍𝖺𝗇𝗁 11.37 101.22 320.17 35.22 × 10−3 217.11 2.56 219.67 71.2
[10, 80] 𝗌𝗂𝗀 9.17 88.58 101.61 7.56 × 10−2 198.48 6.97 205.45 95.7
[10, 80] 𝗍𝖺𝗇𝗁 8.86 13.67 56.11 18.35 × 10−2 121.46 3.49 124.95 102.7

the majority of the field variables, there is a relatively large error in PINNs prediction vicinity of stress localization, in particular,
nearby to the top edge AE and midsection of DC. For example, we have noticed a relatively large deviation of PINNs prediction
for the field variables such as deformation fields 𝑢̄NN𝑥 , 𝑢̄NN𝑦 and stress components 𝜎̄NN𝑦𝑦 , 𝜎̄NN𝑧𝑧 around the applied pressure as shown
in Fig. 4. Such error also propagates to the solutions of strain and plastic strain components, in particular, 𝜀̄NN𝑥𝑥 , 𝜀̄NN𝑥𝑦 , 𝜀̄𝑝

NN
𝑥𝑥 , and 𝜀̄𝑝

NN
𝑧𝑧

which can be seen in Fig. 5. In addition, we observe the non-smooth solution and localized error around these areas due to the sharp
feature changes. However, such deviations do not sufficiently influence the far-field solution which is reflected in the result. Overall,
our PINNs approximation attains satisfactory performance with accurate prediction away from the prescribed pressure. From our
initial study, we could conclude that, perhaps, the baseline model may not be sufficiently deep enough to accurately capture the
complex behavior of the Drucker–Prager constitutive response. Therefore, we conduct an extensive ablation study to explore optimal
network configurations in terms of the accuracy and trainability of the model in Section 5.3. Noteworthy to mention, the increasing
degree of data-driven training reduces the error and, therefore, significantly improves the performance of the predictive capability
of the framework (see Section 5.4). Overall, the prediction from our baseline model is in good agreement with the ground truth
high-fidelity FEM solutions both qualitatively and quantitatively.
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Fig. 5. (First row; left to right) FEM solutions : total strains 𝜀𝑥𝑥, 𝜀𝑦𝑦, and 𝜀𝑥𝑦; plastic strains 𝜀𝑝𝑥𝑥, 𝜀𝑝𝑦𝑦, 𝜀𝑝𝑧𝑧, and 𝜀𝑝𝑥𝑦; (second and fourth rows) corresponding
PINNs predictions: 𝜀̄NN𝑥𝑥 , 𝜀̄NN𝑦𝑦 , 𝜀̄NN𝑥𝑦 , 𝜀̄𝑝

NN

𝑥𝑥 , 𝜀̄𝑝
NN

𝑦𝑦 , 𝜀̄𝑝
NN

𝑧𝑧 , and 𝜀̄𝑝
NN

𝑥𝑦 ; (Third and fifth rows) Absolute error between FEM and PINNs: |𝜀𝑥𝑥 − 𝜀̄NN𝑥𝑥 |, |𝜀𝑦𝑦 − 𝜀̄NN𝑦𝑦 |, |𝜀𝑥𝑦 − 𝜀̄NN𝑥𝑦 |,
|𝜀𝑝𝑥𝑥 − 𝜀̄

𝑝NN
𝑥𝑥 |, |𝜀𝑝𝑦𝑦 − 𝜀̄𝑝

NN

𝑦𝑦 |, |𝜀𝑝𝑧𝑧 − 𝜀̄𝑝
NN

𝑧𝑧 |, and |𝜀𝑝𝑥𝑦 − 𝜀̄
𝑝NN
𝑥𝑦 | for ϝ𝑁 = 40,000 and [𝜓𝑛 = 60,ℒ𝑛 = 5].

5.2. Optimal network architecture

Noteworthy to mention, PINNs predictions for solving constitutive laws can be quite sensitive to network architectures,
particularly, the total number of neurons, depth of the hidden layers, and activation function used (Roy et al., 2023b; Roy and
Guha, 2023). To this end, we perform an extensive ablation study on the various combinations of 𝜓𝑛 and ℒ𝑛 to identify the
optimum model architecture for improving the accuracy of the solution. For a fair comparison, we trained each variant of the
model in (200 × 200) grid. Both 𝗍𝖺𝗇𝗁 and 𝗌𝗂𝗀𝗆𝗈𝗂𝖽 activation functions are considered for the experiments. The performance of the
model has been compared in terms of various normalized loss components and training time T𝜉 (in 𝑚𝑖𝑛) at the end of training as
listed in Table 1. In general, we observe 𝗍𝖺𝗇𝗁 perform better than 𝗌𝗂𝗀𝗆𝗈𝗂𝖽 in terms of final loss which is consistent with our analysis
in Section 5.2. However, it increases the training time for a particular model. From the experiments, one can see relatively shallow
network architectures [𝜓𝑛 = 60,ℒ𝑛 = 5] induce a larger error, and thus, may not be suitable for accurate prediction. This is due to
the fact that relatively fewer network parameters may not be fully sufficient to capture the complex and highly non-linear nature
of the elastoplastic solution space considered herein. However, with increasing ℒ𝑛 = 8, we observe significant reduction in both
𝑃𝐶 and 𝑃𝐸𝑃 . It is worth mentioning that, the minimization of these two critical loss components indicates the improvement of
the predictive accuracy of the model. Relatively higher depth of the network ℒ𝑛 = 10 with increasing 𝜓𝑛 = 60, there is further
improvement of model performance by minimizing overall loss, in particular, constitutive loss, KT consistency loss, and data-driven
loss as shown in Table 1. Interestingly, fixing the same depth of the NN with increasing 𝜓𝑛 = 80, the accuracy of the model in terms
of overall loss slightly degrades which can be attributed to over-fitting (Bilbao and Bilbao, 2017; Jabbar and Khan, 2015). From
the overall comparison, we found that [𝜓𝑛 = 10,ℒ𝑛 = 60] with 𝗍𝖺𝗇𝗁 activation provides the best performance. However, training
time in such a deep architecture is much higher compared to a shallow network due to a significantly larger number of network
parameters. Thus, from the computational perspective, deep PINNs architectures lack efficacy in training where the elastoplastic
FEM solution can be obtained in much shorter time frame. In addition, the epoch evolution of two critical loss components 𝑃𝐶 and
𝑃𝐸𝑃 has been compared for some selected network architectures as shown in Fig. 6.

As seen in Table 1, the total loss values for all these cases in the range below 10−3 to 10−4 within 3,000 epochs which
are negligible. Therefore, if these models are trained sufficiently long, chosen activation functions are quite adaptable for the
elastoplastic PINNs formulation considered herein. The comparison demonstrates the efficiency of a relatively deep network with
moderately faster training in the proposed PINN framework. Comparing the loss evolution, the convergence characteristics of 𝗍𝖺𝗇𝗁
is better with fewer fluctuations and rapid decrease in loss values for both 𝑃𝐶 and 𝑃𝐸𝑃 as shown in Fig. 6. Notably, 𝗍𝖺𝗇𝗁 illustrates
better adaptability in the constitutive loss with an improved convergence rate. While 𝗍𝖺𝗇𝗁 provides better performance in terms of
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Fig. 6. Evolution of normalized (a) constitutive loss 𝑃𝐶 ; (b) elastoplastic constitutive loss 𝑃𝐸𝑃 for network architectures - (i) [𝜓𝑛 = 80,ℒ𝑛 = 5]; (ii)
[𝜓𝑛 = 60,ℒ𝑛 = 8]; and (iii) [𝜓𝑛 = 60,ℒ𝑛 = 10].

Table 2
Degree of data-driven estimate on final loss components (in 10−05) and training time utilizing 𝗍𝖺𝗇𝗁 activation function.

Grid [ℒ𝑛 , 𝜓𝑛] 𝑃𝐶 𝑃𝐸 𝑃𝐸𝑃 𝑃𝐾𝑇 𝑃 𝐷  T𝜉
200 × 200 [5, 60] 271.28 302.71 434.31 4.92 1803.21 112.71 1915.92 11.8

[5, 80] 176.92 313.18 473.15 3.01 1398.61 87.98 1486.59 21.2
[10, 60] 11.37 101.22 320.17 35.22 × 10−3 217.11 2.56 219.67 71.2
[10, 80] 8.86 13.67 56.11 18.35 × 10−2 121.46 3.49 124.95 102.7

225 × 225 [5, 60] 221.17 284.13 389.21 3.31 1571.19 89.89 1661.08 32.9
[5, 80] 113.12 278.93 323.17 1.19 1098.61 77.29 1175.91 43.2
[10, 60] 8.01 113.3 226.39 23.17 × 10−3 176.35 1.09 177.44 125.8
[10, 80] 4.21 9.28 43.38 11.49 × 10−2 101.21 2.48 103.69 135.2

250 × 250 [5, 60] 177.34 198.68 297.19 2.19 1378.89 72.18 1451.07 32.9
[5, 80] 95.67 156.97 216.87 1.29 879.22 56.13 935.35 43.2
[10, 60] 4.33 89.67 145.22 9.87 × 10−3 137.21 0.78 137.99 125.8
[10, 80] 1.77 6.94 21.88 05.37 × 10−2 56.85 0.89 57.74 167.2

function for better adaptability. It can be concluded that although 𝗍𝖺𝗇𝗁 is relatively better in terms of accuracy, however, 𝗌𝗂𝗀𝗆𝗈𝗂𝖽
may be an optimal choice for performance in terms of both accuracy and training time for our PINNs framework. However, in the
subsequent sections, we used 𝗍𝖺𝗇𝗁 to solely focus on the accuracy of the model prediction.

5.3. Degree of data-driven training on prediction accuracy :

In this section, we further perform an in-depth study on the influence of the degree of data-driven training on the prediction
accuracy of our model depicted in Figs. 7–8. As previously mentioned in Section 5.2, we found that the baseline model is not
quite accurate in capturing the solution field in the zone of stress concentration and induces a relatively large error with localized
artifacts. To mitigate such issues, we consider various degrees of data-driven training where the range of relatively shallow to deep
PINNs architecture has been utilized to identify the optimum PINNs architecture that can enhance the predictive quality of our
framework. To this end, we have utilized three sets of synthetic FEM data with varying degrees of grids (200× 200), (225× 225), and
(250 × 250) considering Lagrange 0 free triangular elements. In addition, four different network architectures including relatively
shallow [ℒ𝑛 = 5, 𝜓𝑛 = 60], [ℒ𝑛 = 5, 𝜓𝑛 = 80] and relatively deep [ℒ𝑛 = 10, 𝜓𝑛 = 60], [ℒ𝑛 = 10, 𝜓𝑛 = 80] have been trained on
these datasets with 𝗍𝖺𝗇𝗁 activation function. The final values of different normalized loss components and training time have been
reported in Table 2. As expected, with a higher degree of the data-driven estimate, in general, , 𝑃𝐶 , and 𝑃𝐸 reduces irrespective
of network architecture indicating accuracy improvement of the framework as shown in Fig. 9. Noteworthy to mention, with a
higher degree of data-driven training, relatively deep architecture [ℒ𝑛 = 10, 𝜓𝑛 = 60] improves the predictive capability compared
to shallow network, particularly, by reducing 𝑃𝐸 , 𝑃𝐾𝑇 , and data-driven loss 𝐷 indicating better adaptability. However, such a
strategy can drastically increase the computational overhead due to significantly longer training time.

To analyze the accuracy of various degrees of data-driven estimate in the vicinity of localized solution fields, the absolute error
for different field variables has been shown in Figs. 7–8. For fair comparison, relatively deep architecture [𝜓𝑛 = 60,ℒ𝑛 = 10] has
been considered. Evidently, the results indicate that training on a relatively large grid improves the predictive quality by minimizing
relative error, particularly in the zone of localized solution where sharp feature change incur. The small error values for all field
14
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Fig. 7. Influence of degree of data-driven estimation on the accuracy of PINNs predictions-(first row; left to right) FEM solutions: 𝑢𝑥, 𝑢𝑦 (in mm) and 𝜎𝑥𝑥, 𝜎𝑦𝑦,
𝜎𝑧𝑧, and 𝜎𝑥𝑦 (in MPa) ; (second to fourth rows) absolute error between FEM and PINNs: |𝑢𝑥 − 𝑢̄NN𝑥 |, |𝑢𝑦 − 𝑢̄NN𝑦 |, |𝜎𝑥𝑥 − 𝜎̄NN𝑥𝑥 |, |𝜎𝑦𝑦 − 𝜎̄NN𝑦𝑦 |, |𝜎𝑧𝑧 − 𝜎̄NN𝑧𝑧 |, and |𝜎𝑥𝑦 − 𝜎̄NN𝑥𝑦 |

for grid sizes (200 × 200), (225 × 225), and (250 × 250) with [𝜓𝑛 = 100,ℒ𝑛 = 5].

Fig. 8. Influence of degree of data-driven estimation on the accuracy of PINNs predictions-(first row; left to right) FEM solutions: total strains 𝜀𝑥𝑥, 𝜀𝑦𝑦, and 𝜀𝑥𝑦;
plastic strains 𝜀𝑝𝑥𝑥, 𝜀𝑝𝑦𝑦, 𝜀𝑝𝑧𝑧, and 𝜀𝑝𝑥𝑦; (second to fourth rows) absolute error between FEM and PINNs: |𝜀𝑥𝑥 − 𝜀̄NN𝑥𝑥 |, |𝜀𝑦𝑦 − 𝜀̄NN𝑦𝑦 |, |𝜀𝑥𝑦 − 𝜀̄NN𝑥𝑦 |, |𝜀

𝑝
𝑥𝑥 − 𝜀̄

𝑝NN
𝑥𝑥 |, |𝜀𝑝𝑦𝑦 − 𝜀̄𝑝

NN

𝑦𝑦 |,
|𝜀𝑝𝑧𝑧 − 𝜀̄

𝑝NN
𝑧𝑧 |, and |𝜀𝑝𝑥𝑦 − 𝜀̄

𝑝NN
𝑥𝑦 | for grid sizes (200 × 200), (225 × 225), and (250 × 250) with [𝜓𝑛 = 100,ℒ𝑛 = 5].

variables further emphasize the effectiveness of increasing data-driven estimates in order to enhance the efficacy and robustness of
the proposed framework. The result illustrates that increasing the training grid improves the accuracy of the solution significantly,
particularly, in the solution space which exhibits sharp, or very localized, features. Thus, for highly localized problems, our strategy
can be effective for predicting an accurate and robust elastoplastic solution. Overall, the increasing grid considering relatively deep
networks improves the accuracy significantly, however, there is a bottleneck in terms of computational overhead and prolonged
training time. Such an obstacle could be resolved utilizing known knowledge (i.e. pre-trained weights) that can be utilized to
accelerate the training process with a higher degree of data-driven estimate that can converge faster. Such a strategy has been
explored in Section 5.4. Overall, with increasing ϝ𝑁 , PINNs prediction improves significantly by minimizing the least absolute error
distribution in the zone of localized solution space.
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.

Fig. 9. Evolution of normalized (a) constitutive loss 𝑃𝐶 ; (b) elastoplastic constitutive loss 𝑃𝐸𝑃 for network architectures (i) [𝜓𝑛 = 100,ℒ𝑛 = 5] (ii)
[𝜓𝑛 = 100,ℒ𝑛 = 5], and (iii) [𝜓𝑛 = 100,ℒ𝑛 = 5].

Table 3
Grid size, number of epochs for training, final values of various normalized loss components (in 10−05), and training time for different transfer learning models

Model ϝ𝑁 Epochs 𝑃𝐶 𝑃𝐸 𝑃𝐸𝑃 𝑃𝐾𝑇 𝑃 𝐷 T𝜉
BL 40,000 5,000 3.19 1.16 × 10−1 7.23 × 10−3 10.43 0.94 11.37 15.2
PT-1 32,400 2,000 0.18 4.39 × 10−2 8.53 × 10−4 3.13 0.08 3.21 6.4
PT-2 22,500 2,000 0.01 7.29 × 10−3 1.69 × 10−4 0.56 0.01 0.57 3.2
PT-3 14,400 2,000 0.01 7.29 × 10−3 1.69 × 10−4 0.56 0.01 0.57 3.2

5.4. Transfer learning approach for computational enhancement :

Finally, we have utilized the transfer learning (TL) approach (Tan et al., 2018) in order to predict the solution of the elastoplastic
problem for different prescribed displacements and material parameters with pre-trained weights obtained from the baseline models
(Zhuang et al., 2020). Such an approach could be beneficial in terms of improvement of accuracy in the model prediction capability
and computational acceleration in terms of the trainability of the model. Initially, the baseline model (BL) with optimal network
parameter [𝜓𝑛 = 100,ℒ𝑛 = 5] has been trained with ϝ𝑁 = 40,000 considering homogeneous compressive pressure 𝑝𝑦 = 0.3 MPa,
cohesion 𝑐 = 69 MPa, and angle of internal friction 𝜑 = 20◦ as shown in Figs. 7–8. Then, utilizing the pre-trained weights from
BL, our first transfer learning model (PT-1) has been trained for relatively less ϝ𝑁 = 32,400 for increasing 𝑝𝑦 = 0.5 MPa. However,
material parameters 𝑐 and 𝜑 are kept unchanged (see Fig. 10). We then use the pre-trained weights of PT-1 to train the second
model PT-2 with ϝ𝑁 = 22,500 for the same 𝑝𝑦 =0.5 MPa with a different set of material parameters 𝑐 = 73 MPa and 𝜑 = 22◦.
Finally, we trained our third model PT-3 considering even less ϝ𝑁 = 14,400 for the case 𝑝𝑦 = 0.7 MPa, 𝑐 = 75 MPa, and 𝜑 = 25◦.
All three pre-trained models have been trained for 2,000 epochs. For different sets of applied pressure and material parameters,
the comparison between the ground truth solution and transfer learning-based PINNs prediction has been shown in Figs. 10–11.
With the negligible value of absolute error, particularly, in the vicinity of stress localization, such an approach predicts an accurate
representation of all elastoplastic field variables. In addition, the epoch evolution of constitutive loss 𝑃𝐶 and elastoplastic constitutive
loss 𝑃𝐸𝑃 have been plotted in Fig. 12. From the comparison, one can see that transfer learning-based models induce much less
fluctuation in the loss profile due to initialization with pre-trained weights. Thus, such a model can converge significantly faster, and
hence, reduces the time required to train our relatively deep network architecture. The acceleration in training can be observed in
Figs. 12 -(a, b) when the convergence of two important loss components 𝑃𝐶 and 𝑃𝐸𝑃 converges within 2,000 epochs corresponding
to relatively low ϝ𝑁 compared to the BL model for relatively high ϝ𝑁 = 40,000. In addition, the superior speed-up can also be
reflected in Table 3, where T𝜉 corresponding to the transfer learning-based model reduces significantly compared to BL. Thus, such
a strategy can significantly enhance computational acceleration. Following the transfer learning strategy, we observe improved
prediction accuracy compared to the conventional PINNs approach for the spatial distribution of elastoplastic solution. Moreover,
with significantly fewer grid data points, the transfer learning-based PINNs model demonstrates better adaptability and trainability
by demonstrating rapid convergence in critical loss components. Therefore, during network retraining, we demonstrate a possibility
for vastly accelerated convergence with improved accuracy of prediction via transfer-learning-based models for the elastoplastic
constitutive model considered herein.
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Fig. 10. Transfer learning enhanced PINNs prediction for various elastoplastic field variables corresponding to set of prescribed pressure and material parameters:
(a) PT-1 for 𝑝𝑦 = 0.5 MPa, 𝑐 = 69 MPa, 𝜑 = 20◦; (a) PT-2 for 𝑝𝑦 = 0.5 MPa, 𝑐 = 73 MPa, 𝜑 = 22◦; (a) PT-3 for 𝑝𝑦 = 0.7 MPa, 𝑐 = 75 MPa, 𝜑 = 25◦.

6. Discussions

In this work, we present a novel deep neural network-based generalized constitutive modeling framework for solving the
pressure-dependent non-associative Drucker–Prager elastoplastic problem. In the approach, the physical information corresponding
to elastoplastic constitutive theory has been infused into the neural network by developing an improved multi-objective loss function
where elastoplastic constitutive relations, Drucker–Prager yield criterion, non-associative flow rule, Kuhn–Tucker consistency
conditions, and various boundary conditions have been incorporated as physics-driven loss. Furthermore, a high-fidelity FEM
solution has been supplemented into the data-driven loss function for more accurate and robust prediction. The efficacy of the
proposed model has been numerically validated for a benchmark problem where a plastically deformed isotropic shallow stratum
has been subjected to compressive pressure under plain strain conditions. To this end, we extensively studied various combinations
of network architecture and activation to optimize the performance of the model in terms of accuracy and trainability. We further
17
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Fig. 11. Transfer learning enhanced PINNs prediction for various elastoplastic field variables corresponding to set of prescribed pressure and material parameters:
(a) PT-1 for 𝑝𝑦 = 0.5 MPa, 𝑐 = 69 MPa, 𝜑 = 20◦; (a) PT-2 for 𝑝𝑦 = 0.5 MPa, 𝑐 = 73 MPa, 𝜑 = 22◦; (a) PT-3 for 𝑝𝑦 = 0.7 MPa, 𝑐 = 75 MPa, 𝜑 = 25◦.

improve the predictive power of our model by considering various degrees of data-driven estimate during training. The comparison
reveals that our optimal model prediction is in excellent agreement with the numerical solution for all elastoplastic field variables.
Moreover, we have demonstrated the possibility of predicting solutions for the different applied stress and material parameters
via a transfer learning approach which not only improves the accuracy of the model but is also, much faster to train due to the
requirement of significantly less training data. Therefore, our model sheds light on building a framework that is quite flexible,
yet robust and highly physics-augmented for the transferability of known solutions for other problems which is not possible in
traditional numerical algorithms. From our extensive study, we found that the proposed model allows one to accurately describe
highly nonlinear pressure-dependent Drucker–Prager elastoplastic constitutive response while taking into account the underlying
physics and is trainable by using an efficient feed-forward deep neural network.

However, the strength and robustness of the predictive capability of the model can be further tested for noisy elastoplastic
data. In addition, for highly non-linear deformation states, extensive model characterization is necessary in terms of extrapolation
capability. As previously mentioned, compared to the FEM algorithm, our PINNs approach is not particularly lucrative in terms
of computational speed gain due to the longer training time requirement for forward elastoplasticity problems considered herein.
However, for an inverse problem that deals with finding parameters (Jagtap et al., 2022a; Chen et al., 2020; Shukla et al., 2021a),
18
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Fig. 12. Evolution of normalized (a) constitutive loss 𝑃𝐶 ; (b) elastoplastic constitutive loss 𝑃𝐸𝑃 from baseline model-(i) BL; various pre-trained models - (ii)
PT-1; (iii) PT-2; (iv) PT-3.

our proposed framework can be employed efficiently. In the context of the inverse design in the regime of continuum mechanics,
the goal is to formulate a loss function that is dependent on material parameters, and therefore, optimize the set of material
parameters for specific solution fields (Chen and Gu, 2021; Amini et al., 2023). Since our PINNs model can resolve complicated
non-linear elastoplastic solution fields, the predictive capability of the current model can be further enhanced by proper formulation
of loss function for the inverse design (Patel et al., 2019; Zhang et al., 2020b). To further generalize our framework for the
highly nonlinear elastoplastic problem, additional constitutive laws can be included that might require various state-of-the-art
PINNs techniques (Jagtap et al., 2022a). For example, parallel cPINN (Jagtap et al., 2020c), extended PINNs (XPINNs) (Jagtap and
Karniadakis, 2021), parallel-PINNs (Shukla et al., 2021b), causal sweeping strategies for PINNs (Penwarden et al., 2023), augmented
PINNs (APINNs) (Hu et al., 2023), deep Kronecker neural networks (Jagtap et al., 2022b) could be employed by leveraging their
applicability to large, multi-scale problems. Notably, XPINNs could be a powerful extension to the cPINN that can significantly
improve the predictive efficiency for highly non-linear problems. Whereas, for multi-scale problems, parallel PINNs allow one to
update weights simultaneously for multi-network architectures which can be an effective approach to increase the accuracy and
robustness of the NN approximation capability. In addition, implementation of adaptive activation functions (Jagtap and Karniadakis,
2022) such as scaleable hyper-parameter technique (Jagtap et al., 2020b), Kronecker neural networks (KNNs) (Jagtap et al., 2022b),
and locally adaptive activation functions (Jagtap et al., 2020a) could be an effective strategy for improving solution accuracy as well
optimize learning capabilities and convergence characteristics. Moreover, multilayer extreme learning machines (ML-ELM) (Zhang
et al., 2020a) can be utilized by leveraging its efficient random feature mapping mechanism for faster training. Furthermore, second-
order optimization techniques (Tan and Lim, 2019) can be implemented to optimize weighting coefficients of multi-objective loss
functional for better trainability of the model.

Elaborate studies on the aforementioned topics can be the future scope of current work to characterize the accuracy gains and
computational speed compared to traditional numerical algorithms. Nevertheless, the present framework can be applied to various
constitutive modeling approaches such as soil plasticity (Chen and Baladi, 1985; Bousshine et al., 2001), hyperelasticity (Linden
et al., 2023), crystal plasticity (Roy et al., 2023a, 2024), strain-gradient plasticity (Guha et al., 2013, 2014), micromechanics (Henkes
et al., 2022), electro-elasticity (Klein et al., 2022), composite modeling (Roy, 2021c), supersonic flow problems (Jagtap et al.,
2022a), chemical kinetics (Goswami et al., 2024), and various others (Fuhg and Bouklas, 2022; Rosenkranz et al., 2023). Moreover,
an extension to the three-dimensional time-dependent general case for finite strains can be formulated considering anisotropic
behavior (Guo et al., 2023; As’ ad et al., 2022). Furthermore, the present model can be employed to predict microstructure evolution
in the phase-field (PF) approach including various solid–solid phase transitions (PTs) (Levitas et al., 2013; Levitas and Roy, 2015;
Roy, 2020b,a), solid–solid PT via intermediate melting (Levitas and Roy, 2016; Roy, 2021a,f,e,d,b) as well as texture/ precipitate
evolution in polycrystalline material (Solomon et al., 2019; Roy et al., 2023a).

7. Conclusions

In summary, the present work proposed an efficient and robust data-driven physics-infused DL framework for the solving
Drucker–Prager elastoplastic constitutive model which can be extended in various applications in solid mechanics. In the framework,
we designed an improved multi-objective loss function that incorporates physics related to elastoplastic constitutive theory with a
data-driven estimation of various elastoplastic variables from a high-fidelity numerical solution that leads to reliable (i.e., physically
sensible) model predictions. The applicability and efficacy of our physics-augmented neural network constitutive model have been
illustrated in the benchmark problem that is in excellent agreement with the reference FEM solution. The current work illustrated the
19
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capability and flexibility of NN for an accurate description of complex inelastic behavior that has the potential to replace the classical
numerical solver and incorporate inverse design (i.e., parameters identification from data) in an automated fashion. Furthermore,
when applied to unknown load paths with the pre-trained model, the excellent extrapolation capability can lead to accelerated, yet
accurate solutions for all elastoplastic field variables. By incorporating the steady-state form of the deviatoric and hydrostatic part
into the loss function, we have ensured the higher content of physics corresponding to the pressure-dependent constitutive included
in the model. The present work highlights the importance of carefully formulating loss contributions from underlying constitutive
laws into a customer-designed multi-objective loss function in a PINNs network that leverages physics-informed features from the
data-driven solutions of the generic elastoplastic problems. By doing so, the proposed framework builds a solid foundation for new
promising avenues for future work in deep learning-based constitutive modeling approaches in the regime of solid mechanics. The
full potential of the proposed model is yet to be explored, leaving room for further investigations such as parameter identification
and inverse problems.

CRediT authorship contribution statement

Arunabha M. Roy: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visual-
zation, Writing – original draft, Writing – review & editing. Suman Guha: Conceptualization, Investigation, Methodology, Writing

– review & editing. Veera Sundararaghavan: Conceptualization, Investigation, Methodology, Project administration, Resources,
Supervision, Writing – review & editing. Raymundo Arróyave: Conceptualization, Funding acquisition, Investigation, Methodology,
roject administration, Resources, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

The support of the National Science Foundation (NSF) through Grant No. 2119103 is gratefully acknowledged.

eferences

badi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. Tensorflow: A system for large-scale
machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation. {OSDI} 16, pp. 265–283.

mini, D., Haghighat, E., Juanes, R., 2023. Inverse modeling of nonisothermal multiphase poromechanics using physics-informed neural networks. J. Comput.
Phys. 490, 112323.

rora, R., Kakkar, P., Dey, B., Chakraborty, A., 2022. Physics-informed neural networks for modeling rate-and temperature-dependent plasticity. arXiv preprint
arXiv:2201.08363.

s’ ad, F., Avery, P., Farhat, C., 2022. A mechanics-informed artificial neural network approach in data-driven constitutive modeling. Internat. J. Numer. Methods
Engrg. 123 (12), 2738–2759.

aydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M., 2018. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res. 18.
ilbao, I., Bilbao, J., 2017. Overfitting problem and the over-training in the era of data: Particularly for artificial neural networks. In: 2017 Eighth International

Conference on Intelligent Computing and Information Systems. ICICIS, IEEE, pp. 173–177.
orja, R.I., 2013. Plasticity, vol. 2, Springer.
ose, R., Roy, A., 2022. Accurate deep learning sub-grid scale models for large eddy simulations. Bull. Am. Phys. Soc..
ose, R., Roy, A.M., 2024. Invariance embedded physics-infused deep neural network-based sub-grid scale models for turbulent flows. Eng. Appl. Artif. Intell.

128, 107483.
ousshine, L., Chaaba, A., De Saxce, G., 2001. Softening in stress–strain curve for Drucker–Prager non-associated plasticity. Int. J. Plast. 17 (1), 21–46.
rodnik, N., Muir, C., Tulshibagwale, N., Rossin, J., Echlin, M., Hamel, C., Kramer, S., Pollock, T., Kiser, J., Smith, C., et al., 2023. Perspective: Machine learning

in experimental solid mechanics. J. Mech. Phys. Solids 173, 105231.
runton, S.L., 2022. Applying machine learning to study fluid mechanics. Acta Mech. Sin. 1–9.
runton, S.L., Noack, B.R., Koumoutsakos, P., 2020. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508.
haboche, J.-L., 2008. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24 (10), 1642–1693.
hen, W.-F., 1994. Constitutive Equations for Engineering Materials-Volume 1: Elasticity and Modeling. Elsevier, pp. 257–259.
hen, W.-F., Baladi, G.Y., 1985. Soil Plasticity: Theory and Implementation. Elsevier.
hen, C.-T., Gu, G.X., 2021. Learning hidden elasticity with deep neural networks. Proc. Natl. Acad. Sci. 118 (31), e2102721118.
hen, W.-F., Han, D.-J., 2007. Plasticity for Structural Engineers. J. Ross Publishing.
hen, Y., Lu, L., Karniadakis, G.E., Dal Negro, L., 2020. Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express

28 (8), 11618–11633.
hen, W.-F., Mizuno, E., et al., 1990. Nonlinear Analysis in Soil Mechanics. Elsevier Amsterdam, Number BOOK.
OMSOL, 2022. COMSOL multiphysics® 5.6. COMSOL Multiphysics, Burlington, MA. (Accessed 14 February 2022). 9. www.comsol.com.
e Souza Neto, E.A., Peric, D., Owen, D.R., 2011. Computational Methods for Plasticity: Theory and Applications. John Wiley & Sons.
rucker, D.C., Prager, W., 1952. Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10 (2), 157–165.
ang, Z., 2021. A high-efficient hybrid physics-informed neural networks based on convolutional neural network. IEEE Trans. Neural Netw. Learn. Syst..
20

http://refhub.elsevier.com/S0022-5096(24)00036-X/sb1
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb1
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb1
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb2
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb2
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb2
http://arxiv.org/abs/2201.08363
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb4
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb4
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb4
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb5
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb6
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb6
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb6
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb7
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb8
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb9
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb9
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb9
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb10
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb11
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb11
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb11
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb12
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb13
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb14
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb15
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb16
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb17
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb18
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb19
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb19
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb19
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb20
https://www.comsol.com
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb22
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb23
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb24


Journal of the Mechanics and Physics of Solids 185 (2024) 105570A.M. Roy et al.

F

F

F
G

G
G

G

G

G

G
G
G

H

H

H

H
H

J

J

J

J

J

J

J

J

J
J

K
K
K

K

K

K

K
K

L

L
L
L

L

L

Fernex, D., Noack, B.R., Semaan, R., 2021. Cluster-based network modeling—From snapshots to complex dynamical systems. Sci. Adv. 7 (25), eabf5006.
Frankel, A., Tachida, K., Jones, R., 2020. Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural

network model. Mach. Learn.: Sci. Technol. 1 (3), 035005.
resca, S., Manzoni, A., 2022. POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal

decomposition. Comput. Methods Appl. Mech. Engrg. 388, 114181.
uhg, J.N., Bouklas, N., 2022. On physics-informed data-driven isotropic and anisotropic constitutive models through probabilistic machine learning and

space-filling sampling. Comput. Methods Appl. Mech. Engrg. 394, 114915.
uhg, J.N., Bouklas, N., Jones, R.E., 2022. Learning hyperelastic anisotropy from data via a tensor basis neural network. J. Mech. Phys. Solids 168, 105022.
ao, H., Sun, L., Wang, J.-X., 2021. PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs

on irregular domain. J. Comput. Phys. 428, 110079.
enna, F., Pandolfi, A., 1994. Accurate numerical integration of Drucker-Prager’s constitutive equations. Meccanica 29 (3), 239–260.
iraldo-Londoño, O., Paulino, G.H., 2020. A unified approach for topology optimization with local stress constraints considering various failure criteria: von

Mises, Drucker–Prager, Tresca, Mohr–Coulomb, Bresler–Pister and Willam–Warnke. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 476 (2238), 20190861.
oswami, S., Jagtap, A.D., Babaee, H., Susi, B.T., Karniadakis, G.E., 2024. Learning stiff chemical kinetics using extended deep neural operators. Comput. Methods

Appl. Mech. Engrg. 419, 116674.
oswami, S., Yin, M., Yu, Y., Karniadakis, G.E., 2022. A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials. Comput.

Methods Appl. Mech. Engrg. 391, 114587.
uha, S., Sangal, S., Basu, S., 2013. Finite element studies on indentation size effect using a higher order strain gradient theory. Int. J. Solids Struct. 50 (6),

863–875.
uha, S., Sangal, S., Basu, S., 2014. On the fracture of small samples under higher order strain gradient plasticity. Int. J. Fract. 187 (2), 213–226.
uo, M., Haghighat, E., 2020. An energy-based error bound of physics-informed neural network solutions in elasticity. arXiv preprint arXiv:2010.09088.
uo, H., Zhuang, X., Fu, X., Zhu, Y., Rabczuk, T., 2023. Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally

graded materials. Comput. Mech. 1–12.
aghighat, E., Bekar, A.C., Madenci, E., Juanes, R., 2021a. A nonlocal physics-informed deep learning framework using the peridynamic differential operator.

Comput. Methods Appl. Mech. Engrg. 385, 114012.
aghighat, E., Juanes, R., 2021. Sciann: A keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural

networks. Comput. Methods Appl. Mech. Engrg. 373, 113552.
aghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R., 2021b. A physics-informed deep learning framework for inversion and surrogate modeling in solid

mechanics. Comput. Methods Appl. Mech. Engrg. 379, 113741.
enkes, A., Wessels, H., Mahnken, R., 2022. Physics informed neural networks for continuum micromechanics. Comput. Methods Appl. Mech. Engrg. 393, 114790.
u, Z., Jagtap, A.D., Karniadakis, G.E., Kawaguchi, K., 2023. Augmented physics-informed neural networks (APINNs): A gating network-based soft domain

decomposition methodology. Eng. Appl. Artif. Intell. 126, 107183.
abbar, H., Khan, R.Z., 2015. Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study). Comput. Sci., Commun. Instrum.

Dev. 70.
agtap, A.D., Karniadakis, G.E., 2021. Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning

framework for nonlinear partial differential equations. In: AAAI Spring Symposium: MLPS.
agtap, A.D., Karniadakis, G.E., 2022. How important are activation functions in regression and classification? A survey, performance comparison, and future

directions. arXiv preprint arXiv:2209.02681.
agtap, A.D., Kawaguchi, K., Em Karniadakis, G., 2020a. Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks.

Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 476 (2239), 20200334.
agtap, A.D., Kawaguchi, K., Karniadakis, G.E., 2020b. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J.

Comput. Phys. 404, 109136.
agtap, A.D., Kharazmi, E., Karniadakis, G.E., 2020c. Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to

forward and inverse problems. Comput. Methods Appl. Mech. Engrg. 365, 113028.
agtap, A.D., Mao, Z., Adams, N., Karniadakis, G.E., 2022a. Physics-informed neural networks for inverse problems in supersonic flows. J. Comput. Phys. 466,

111402.
agtap, A.D., Shin, Y., Kawaguchi, K., Karniadakis, G.E., 2022b. Deep kronecker neural networks: A general framework for neural networks with adaptive

activation functions. Neurocomputing 468, 165–180.
iang, H., Xie, Y., 2011. A note on the Mohr–Coulomb and Drucker–Prager strength criteria. Mech. Res. Commun. 38 (4), 309–314.
in, T., Cheng, X., Xu, S., Lai, Y., Zhang, Y., 2023. Deep learning aided inverse design of the buckling-guided assembly for 3D frame structures. J. Mech. Phys.

Solids 179, 105398.
arniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L., 2021. Physics-informed machine learning. Nat. Rev. Phys. 3 (6), 422–440.
han, A.S., Huang, S., 1995. Continuum Theory of Plasticity. John Wiley & Sons.
hatamsaz, D., Neuberger, R., Roy, A.M., Zadeh, S.H., Otis, R., Arróyave, R., 2023. A physics informed Bayesian optimization approach for material design:

Application to NiTi shape memory alloys. npj Comput. Mater. 9 (1), 221.
im, Y., Choi, Y., Widemann, D., Zohdi, T., 2022. A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder.

J. Comput. Phys. 451, 110841.
lein, D.K., Ortigosa, R., Martínez-Frutos, J., Weeger, O., 2022. Finite electro-elasticity with physics-augmented neural networks. Comput. Methods Appl. Mech.

Engrg. 400, 115501.
ossa, A., 2012. Analytical strain solution for the Drucker-Prager elastoplasticity model with linear isotropic hardening. Period. Polytech. Mech. Eng. 56 (1),

27–31.
ou, J., Zhang, W., 2021. Data-driven modeling for unsteady aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 125, 100725.
rishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., Mahoney, M.W., 2021. Characterizing possible failure modes in physics-informed neural networks. Adv. Neural

Inf. Process. Syst. 34.
awal, Z.K., Yassin, H., Lai, D.T.C., Che Idris, A., 2022. Physics-informed neural network (PINN) evolution and beyond: A systematic literature review and

bibliometric analysis. Big Data Cogn. Comput. 6 (4), 140.
eCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
evitas, V.I., Roy, A.M., 2015. Multiphase phase field theory for temperature-and stress-induced phase transformations. Phys. Rev. B 91 (17), 174109.
evitas, V.I., Roy, A.M., 2016. Multiphase phase field theory for temperature-induced phase transformations: Formulation and application to interfacial phases.

Acta Mater. 105, 244–257.
evitas, V.I., Roy, A.M., Preston, D.L., 2013. Multiple twinning and variant-variant transformations in martensite: Phase-field approach. Phys. Rev. B 88 (5),

054113.
i, L., Li, Y., Du, Q., Liu, T., Xie, Y., 2022. ReF-nets: Physics-informed neural network for Reynolds equation of gas bearing. Comput. Methods Appl. Mech.

Engrg. 391, 114524.
21

http://refhub.elsevier.com/S0022-5096(24)00036-X/sb25
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb26
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb26
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb26
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb27
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb27
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb27
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb28
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb28
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb28
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb29
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb30
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb30
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb30
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb31
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb32
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb32
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb32
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb33
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb33
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb33
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb34
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb34
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb34
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb35
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb35
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb35
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb36
http://arxiv.org/abs/2010.09088
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb38
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb38
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb38
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb39
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb39
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb39
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb40
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb40
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb40
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb41
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb41
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb41
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb42
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb43
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb43
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb43
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb44
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb44
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb44
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb45
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb45
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb45
http://arxiv.org/abs/2209.02681
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb47
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb47
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb47
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb48
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb48
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb48
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb49
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb49
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb49
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb50
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb50
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb50
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb51
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb51
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb51
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb52
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb53
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb53
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb53
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb54
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb55
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb56
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb56
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb56
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb57
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb57
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb57
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb58
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb58
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb58
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb59
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb59
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb59
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb60
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb61
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb61
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb61
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb62
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb62
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb62
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb63
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb64
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb65
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb65
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb65
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb66
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb66
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb66
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb67
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb67
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb67


Journal of the Mechanics and Physics of Solids 185 (2024) 105570A.M. Roy et al.

L

L
L
M
M

N
N

O
P

P

R
R

R

R

R
R

R

R
R

R

R
R

R

R

R
R

R

R

R
R

R

R

S

S
S
S

S

T

T

T

U
V

V

Linden, L., Klein, D.K., Kalina, K.A., Brummund, J., Weeger, O., Kästner, M., 2023. Neural networks meet hyperelasticity: A guide to enforcing physics. arXiv
preprint arXiv:2302.02403.

iu, Y., Chen, Y., Ding, B., 2022a. Deep learning in frequency domain for inverse identification of nonhomogeneous material properties. J. Mech. Phys. Solids
168, 105043.

iu, W.K., Li, S., Park, H.S., 2022b. Eighty years of the finite element method: Birth, evolution, and future. Arch. Comput. Methods Eng. 1–23.
uo, Y., Kang, Z., 2012. Topology optimization of continuum structures with Drucker–Prager yield stress constraints. Comput. Struct. 90, 65–75.
ontáns, F.J., Chinesta, F., Gómez-Bombarelli, R., Kutz, J.N., 2019. Data-driven modeling and learning in science and engineering. C. R. Méc. 347 (11), 845–855.
oseley, B., Markham, A., Nissen-Meyer, T., 2021. Finite basis physics-informed neural networks (FBPINNs): A scalable domain decomposition approach for

solving differential equations. arXiv preprint arXiv:2107.07871.
emat-Nasser, S., 2004. Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials. Cambridge University Press.
iu, S., Zhang, E., Bazilevs, Y., Srivastava, V., 2023. Modeling finite-strain plasticity using physics-informed neural network and assessment of the network

performance. J. Mech. Phys. Solids 172, 105177.
ttosen, N.S., Ristinmaa, M., 2005. The Mechanics of Constitutive Modeling. Elsevier.
atel, D., Tibrewala, R., Vega, A., Dong, L., Hugenberg, N., Oberai, A.A., 2019. Circumventing the solution of inverse problems in mechanics through deep

learning: Application to elasticity imaging. Comput. Methods Appl. Mech. Engrg. 353, 448–466.
enwarden, M., Jagtap, A.D., Zhe, S., Karniadakis, G.E., Kirby, R.M., 2023. A unified scalable framework for causal sweeping strategies for physics-informed

neural networks (PINNs) and their temporal decompositions. arXiv preprint arXiv:2302.14227.
aissi, M., Karniadakis, G.E., 2018. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141.
aissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707.
osenkranz, M., Kalina, K.A., Brummund, J., Kästner, M., 2023. A comparative study on different neural network architectures to model inelasticity. arXiv

preprint arXiv:2303.03402.
oy, A.M., 2020a. Effects of interfacial stress in phase field approach for martensitic phase transformation in NiAl shape memory alloys. Appl. Phys. A 126 (7),

1–12.
oy, A.M., 2020b. Influence of interfacial stress on microstructural evolution in NiAl alloys. JETP Lett. 112 (3), 173–179.
oy, A.M., 2021a. Barrierless melt nucleation at solid-solid interface in energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine. Materialia 15,

101000.
oy, A.M., 2021b. Energetics and kinematics of undercooled nonequilibrium interfacial molten layer in cyclotetramethylene-tetranitramine crystal. Physica B

615, 412986.
oy, A.M., 2021c. Finite element framework for efficient design of three dimensional multicomponent composite helicopter rotor blade system. Eng 2 (1), 69–79.
oy, A.M., 2021d. Formation and stability of nanosized, undercooled propagating intermediate melt during 𝛽 → 𝛿 phase transformation in HMX nanocrystal.

Europhys. Lett. 133 (5), 56001.
oy, A.M., 2021e. Influence of nanoscale parameters on solid–solid phase transformation in octogen crystal: Multiple solution and temperature effect. JETP Lett.

113 (4), 265–272.
oy, A.M., 2021f. Multiphase phase-field approach for solid–solid phase transformations via propagating interfacial phase in HMX. J. Appl. Phys. 129 (2), 025103.
oy, A.M., 2022a. Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain–computer

interface. Eng. Appl. Artif. Intell. 116, 105347.
oy, A.M., 2022b. An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces.

Biomed. Signal Process. Control 74, 103496.
oy, A.M., Arróyave, R., Sundararaghavan, V., 2023a. Incorporating dynamic recrystallization into a crystal plasticity model for high-temperature deformation

of Ti-6Al-4V. Mater. Sci. Eng. A 145211.
oy, A.M., Bhaduri, J., 2021. A deep learning enabled multi-class plant disease detection model based on computer vision. AI 2 (3), 413–428.
oy, A.M., Bhaduri, J., 2022. Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4. Comput. Electron. Agric.

193, 106694.
oy, A.M., Bhaduri, J., 2023. DenseSPH-YOLOv5: An automated damage detection model based on DenseNet and swin-transformer prediction head-enabled

YOLOv5 with attention mechanism. Adv. Eng. Inform. 56, 102007.
oy, A.M., Bhaduri, J., Kumar, T., Raj, K., 2022a. WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated

endangered wildlife detection. Ecol. Inform. 101919.
oy, A.M., Bose, R., Bhaduri, J., 2022b. A fast accurate fine-grain object detection model based on YOLOv4 deep neural network. Neural Comput. Appl. 1–27.
oy, A.M., Bose, R., Sundararaghavan, V., Arróyave, R., 2023b. Deep learning-accelerated computational framework based on physics informed neural network

for the solution of linear elasticity. Neural Netw. 162, 472–489.
oy, A.M., Ganesan, S., Acar, P., Arróyave, R., Sundararaghavan, V., 2024. Combining crystal plasticity and phase field model for predicting texture evolution

and the influence of nuclei clustering on recrystallization path kinetics in Ti-alloys. Acta Mater. 119645.
oy, A.M., Guha, S., 2023. A data-driven physics-constrained deep learning computational framework for solving von mises plasticity. Eng. Appl. Artif. Intell.

122, 106049.
hukla, K., Jagtap, A.D., Blackshire, J.L., Sparkman, D., Karniadakis, G.E., 2021a. A physics-informed neural network for quantifying the microstructural properties

of polycrystalline nickel using ultrasound data: A promising approach for solving inverse problems. IEEE Signal Process. Mag. 39 (1), 68–77.
hukla, K., Jagtap, A.D., Karniadakis, G.E., 2021b. Parallel physics-informed neural networks via domain decomposition. J. Comput. Phys. 447, 110683.
imo, J.C., Hughes, T.J., 2006. Computational Inelasticity, vol. 7, Springer Science & Business Media.
olomon, E.L., Natarajan, A.R., Roy, A.M., Sundararaghavan, V., Van der Ven, A., Marquis, E.A., 2019. Stability and strain-driven evolution of 𝛽 ′ precipitate in

Mg-Y alloys. Acta Mater. 166, 148–157.
zabó, L., Kossa, A., 2012. A new exact integration method for the Drucker–Prager elastoplastic model with linear isotropic hardening. Int. J. Solids Struct. 49

(1), 170–190.
an, H.H., Lim, K.H., 2019. Review of second-order optimization techniques in artificial neural networks backpropagation. IOP Conf. Ser.: Mater. Sci. Eng. 495

(1), 012003.
an, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C., 2018. A survey on deep transfer learning. In: International Conference on Artificial Neural Networks.

Springer, pp. 270–279.
hakolkaran, P., Joshi, A., Zheng, Y., Flaschel, M., De Lorenzis, L., Kumar, S., 2022. NN-EUCLID: Deep-learning hyperelasticity without stress data. J. Mech.

Phys. Solids 169, 105076.
lloa, J., Alessi, R., Wambacq, J., Degrande, G., Francois, S., 2021. On the variational modeling of non-associative plasticity. Int. J. Solids Struct. 217, 272–296.
ahab, M., Haghighat, E., Khaleghi, M., Khalili, N., 2021. A physics-informed neural network approach to solution and identification of biharmonic equations

of elasticity. J. Eng. Mech. 148 (2), 04021154.
iana, F.A., Subramaniyan, A.K., 2021. A survey of Bayesian calibration and physics-informed neural networks in scientific modeling. Arch. Comput. Methods

Eng. 28 (5), 3801–3830.
22

http://arxiv.org/abs/2302.02403
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb69
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb69
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb69
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb70
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb71
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb72
http://arxiv.org/abs/2107.07871
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb74
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb75
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb75
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb75
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb76
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb77
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb77
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb77
http://arxiv.org/abs/2302.14227
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb79
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb80
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb80
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb80
http://arxiv.org/abs/2303.03402
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb82
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb82
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb82
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb83
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb84
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb84
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb84
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb85
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb85
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb85
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb86
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb87
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb87
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb87
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb88
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb88
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb88
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb89
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb90
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb90
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb90
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb91
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb91
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb91
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb92
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb92
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb92
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb93
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb94
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb94
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb94
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb95
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb95
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb95
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb96
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb96
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb96
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb97
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb98
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb98
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb98
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb99
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb99
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb99
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb100
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb100
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb100
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb101
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb101
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb101
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb102
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb103
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb104
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb104
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb104
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb105
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb105
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb105
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb106
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb106
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb106
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb107
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb107
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb107
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb108
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb108
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb108
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb109
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb110
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb110
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb110
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb111
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb111
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb111


Journal of the Mechanics and Physics of Solids 185 (2024) 105570A.M. Roy et al.

W
Y

Y

Z
Z

Z
Z
Z

Wang, J., Zhu, B., Hui, C.-Y., Zehnder, A.T., 2023. Determination of material parameters in constitutive models using adaptive neural network machine learning.
J. Mech. Phys. Solids 177, 105324.

illam, K.J., 1975. Constitutive model for the triaxial behaviour of concrete. Proc. Intl. Assoc. Bridge Structl. Engrs. 19, 1–30.
ang, L., Meng, X., Karniadakis, G.E., 2021. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J.

Comput. Phys. 425, 109913.
ucesan, Y.A., Viana, F.A., 2021. Hybrid physics-informed neural networks for main bearing fatigue prognosis with visual grease inspection. Comput. Ind. 125,

103386.
hang, J., Li, Y., Xiao, W., Zhang, Z., 2020a. Non-iterative and fast deep learning: Multilayer extreme learning machines. J. Franklin Inst. B 357 (13), 8925–8955.
hang, R., Liu, Y., Sun, H., 2020b. Physics-informed multi-LSTM networks for metamodeling of nonlinear structures. Comput. Methods Appl. Mech. Engrg. 369,

113226.
huang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q., 2020. A comprehensive survey on transfer learning. Proc. IEEE 109 (1), 43–76.
ienkiewicz, O., 1977. Some useful forms of isotropic yield surfaces for soil and rock mechanics. Finite Element Geomech. 179–190.
ienkiewicz, O.C., Taylor, R.L., 2005. The Finite Element Method for Solid and Structural Mechanics. Elsevier.
23

http://refhub.elsevier.com/S0022-5096(24)00036-X/sb112
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb112
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb112
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb113
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb114
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb114
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb114
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb115
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb115
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb115
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb116
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb117
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb117
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb117
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb118
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb119
http://refhub.elsevier.com/S0022-5096(24)00036-X/sb120

	Physics-infused deep neural network for solution of non-associative Drucker–Prager elastoplastic constitutive model
	Introduction
	Physics-Informed Neural Networks (PINNs)
	Physics-constrained training in DNN
	Data-driven loss
	Physics-driven loss
	Combined physics and data-driven loss:

	Non-associative Drucker–Prager Constitutive model : 
	Drucker–Prager yield condition
	Non-associative flow rule:

	PINNs formulation for Drucker–Prager elastoplastic problem:
	Multi-objective loss function for Drucker–Prager constitutive model
	Physics-based loss:
	Data-driven loss:

	Benchmark problem: shallow stratum under vertical load
	PINNs solution for elastoplastic field variables:
	Optimal network architecture
	Degree of data-driven training on prediction accuracy :
	Transfer learning approach for computational enhancement :

	Discussions
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


