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Methodology for estimation of intrinsic dimensions and state variables of microstructures
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According to the manifold hypothesis, real data can be compressed to lie on a low-dimensional manifold. This
paper explores the estimation of the dimensionality of this manifold with an interest in identifying independent
degrees of freedom and possibly identifying state variables that would govern materials systems. The challenges
identified that are specific to materials science are (i) accurate estimation of the number of dimensions of the
data, (ii) coping with the intrinsic random and low-bit-depth nature of microstructure samples, and (iii) linking
noncompressed domains such as processing to microstructure. Dimensionality estimates are made with the
maximum-likelihood-estimation method with the Minkowski p-norms being used as a measure of the distance
between microstructural images. It is found that, where dimensionality estimates are required to be accurate, it is
necessary to use the Minkowski 1-norm (also known as the L1-norm or Manhattan distance). This effect is found
to be due to image quantification and proofs are given regarding the distortion produced by quantization. It is
also found that homogenization is an effective way of estimating the dimension of random microstructure image
sets. An estimate of 40 dimensions for the fibers of a SiC/SiC fiber composite is obtained. It is also found that,
with images generated from a sparse domain (surrogate to the process domain), it is possible to infer the nature
of the process manifold from images alone.
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I. INTRODUCTION

It is widely accepted that controlling the microstructure of
a material will enable control of its properties. However, it
is less clear which, or even how many, of the features of the
microstructure represent its variability. Recently, Chen et al.
[1] identified intrinsic dimensions in complex and chaotic
dynamical systems, using only short videos of their behavior,
and proposed that state variables of complex systems may be
identified in this way. This suggests the tantalizing prospect
of identification of a minimal set of microstructural state vari-
ables, equal in number to the intrinsic dimension, that would
govern the material’s behavior. This minimum number of
features would encode all of the dimensions in the microstruc-
ture necessary to make design decisions, much like when the
Wright brothers “invented the airplane” by discovering how to
control all dimensions of rotation. Finding and controlling all
dimensions of the microstructure could enable a completely
new way of exploiting design spaces.

Recent advances in characterization techniques and com-
puting have led to the generation and analysis of large data
sets, enabling an improved understanding of microstructure.
Much work has been done to quantify various aspects of the
microstructure, such as particle size and shape distributions,
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orientation distributions, and n-point statistics among others
[2–5], enabling significant advancements in the understanding
of processing structure properties. However, this has relied on
domain experts manually identifying which features should be
characterized. While advancing understanding, this approach
still leaves uncertainty about whether all of the important
variation in the structure was captured and quantified. Re-
cently, deep learning generative methods have shown promise
towards capturing the key variables accounting for most of
the variation in image-based data sets [6,7] using latent space
representations, which are low-dimensional representations of
image data. Such models have been trained on microstructural
data [8–11]. Deep learning methods often leverage the fact
that although each microstructure image can be represented
as a vector of size n, the actual dimensionality is expected to
be much lower.

In formal terms, a data set containing points of dimension-
ality n is said to have intrinsic dimensionality (ID) equal to
μ < n if every point lies entirely within an μ-dimensional
manifold of Rn. The methods of dimensionality estimation
can be categorized as local and global approaches. Global
methods for ID estimation rely on the spread of the entire data
set, as exemplified by projection methods such as principal
component analysis (PCA). Linear methods such as PCA and
multidimensional scaling were explored for microstructural
data in Refs. [12–14]. However, it is known that such meth-
ods tend to fail on nonlinear manifolds [15]. Other global
approaches to dimension reduction such as Isomap and its
variants treat nonlinear manifolds using geodesic distances
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[16] and have been used to reduce the dimensionality of
microstructures [15,17]. Local approaches use the local ge-
ometry of the high-dimensional space to estimate the intrinsic
dimension and tend to be more computationally efficient [18].
Levina and Bickel [19] developed such an estimate by choos-
ing an optimal dimension in which the local neighborhood
of points would be uniformly spaced. Pope et al. [20] ap-
plied this methodology to estimate the dimensionality of some
well-known benchmark data sets such as the MNIST [21] and
CIFAR [22] data sets and found that the information in those
had a surprisingly low number of dimensions, i.e., degrees of
freedom. Estimates ranged from 10 to 25 dimensions from
the simplest to the most complex data set. Much of the prior
work relies on human judgment as to the reasonableness of the
dimensionality estimates and did not have any ground truths
by which to evaluate such reasonableness. Consequently, as-
sessing the validity of the methods becomes problematic.

Materials science has specific challenges that lead to con-
siderations over and above the above approaches, which are
heavily centered around natural images.

(a) In other fields, intrinsic dimensionality is applied to
reduce the size of a search space and a factor of 2 is an
acceptable error. When using the intrinsic dimensionality to
actually identify the state variables, it is desirable to have a
much more accurate estimate.

(b) In natural images, the feature of interest is usually local
in the image: A human or animal face, an animal’s profile, or a
tree all have a place in the image where they can be found with
high probability. With microstructures, the features of interest
are nonlocal. Correlations, size distributions, and orientations
have all been used in an attempt to circumvent this problem.
This is normally treated with homogenization theory, where
an estimator can be made arbitrarily precise by requiring the
system size to be above a threshold value.

(c) In materials science, decisions are often made in three
domains: (i) processing, (ii) microstructure, and (iii) property.
These are linked to one another and used for control, inspec-
tion, and production, respectively. More to the point, they are
all sparse, in that their ambient dimensionality is much higher
than their intrinsic dimensionality.

This paper addresses these by (i) testing the methodol-
ogy on a set of phantom image sets whose dimensionality is
known by construction (we use the MLE method of Levina
and Bickel [19] using different Minkowski p-norms), (ii) ap-
plying the methods to real (random) microstructures to show
evidence of a homogenization limit, and (iii) doing some
exploratory work in a generator domain, which maps onto an
image domain. Each domain is sparse, but could be linked
through a dense latent domain. With these approaches, it is
found that there is a potential overestimate by a factor of
2 in the dimensionality in low-bit-depth images, particularly
prevalent in materials sciences. A real SiC/SiC reinforced
fiber composite matrix is used as an example, showing a
homogenization in the dimensionality estimate. It is possible
to infer some geometric features of generator domains for
a synthetic so-called Swiss roll generator of images as well
as for phase field data sets of sequences of images of grain
evolution.

The layout of this paper is as follows. Section II describes
the basic mathematical details of our approach. Section III

describes the maximum-likelihood-estimation (MLE) method
used for dimensionality estimation in this paper. Section IV
describes our methodology in this work. Section V presents
the results of our investigation, followed by a more detailed
discussion in Sec. VI, including the additional mathematical
treatment necessary to obtain consistent estimations. The con-
clusions of the paper are summarized in Sec. VII.

II. MICROSTRUCTURES, MANIFOLDS, AND DISTANCES

In the above, a qualitative description of the concept of mi-
crostructures, manifolds, and their dimensionality was given.
This section makes these concepts more quantitative. The
main concepts to be developed here are (a) a more precise
definition of microstructure and how this will be used in this
paper, (b) manifolds, and (c) distance measures.

A. Microstructures as random variables

The concept of microstructure in material sciences is fa-
miliar and tends to go without definition. A practitioner can
examine a series of micrographs and feel some confidence
that they understand what the microstructure is. With the
development of machine learning, it is important to define the
microstructure in a more operational way. We start by assert-
ing that a microstructure is a latent state of a materials system,
from which only examples of images may be observed. This is
analogous to the concept in probability of a random variable,
which can have outcomes of observations that form a sample
set on which the analysis is performed [23]. Many statements
about the (latent) random variable may be proven, but the
only thing that can actually be observed is the outcomes.
In this analogy, the representation of the microstructure is
analogous to the random variable and the observations made
in a microscope with the outcomes of the experiment. This
distinction allows us to directly utilize the concepts developed
in sampling theory [24].

At this point, it is noted that practitioners use the word
microstructure to represent two things: (i) the abstract descrip-
tion of the structural state of the material and (ii) the observed
image of a specific area of the material. Practitioners who seek
to change material properties tend to use microstructure to
describe the first of these and microscopists the second. In
everything that follows in this paper, when we use the word,
we will italicize it if we mean the first of these and use roman
font if we mean the second. So equiaxed grain structure is an
example of a microstructure, while a picture of an equiaxed
grain structure would be an example of a microstructure. For
the mathematical description in this paper, we will use M
to describe the former and m to represent the latter. Since
our approach is data driven, this will require that we work
on samples of microstructure. We will represent a set of such
samples with a capital M.

A final note on the distinction between microstructure and
microstructure is available in machine learning, specifically,
the variational autoencoder [25], where the latent space itself
forms a representation of the microstructure and the images
generated (or used for training) are examples of microstruc-
tures.
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(a) (b)

FIG. 1. (a) Swiss roll manifold containing image data represented as points. Nearest-neighbor shells around a data point are illustrated
which can be used to estimate the intrinsic dimensionality. (b) Manifold representation of binary images with n pixels, which exist on vertices
of a cube of dimension n. The space of three pixel images is shown with a 2D domain representing images (marked a, b, and c) with pixel
values that sum to 2.

B. Manifolds

The concept of lower-dimensional manifolds is familiar to
the machine learning community. Its familiarity in the ma-
terials community is inconsistent. This section gives a brief
discussion of what a manifold is and why it is important.

With microstructure observations as images, each pixel
can be viewed as a separate dimension in some very large
dimensional space. As sensors improve, the pixel density in-
creases, expanding this space further. Beyond the resolution of
the beam and lens system of the machine though, this added
dimensionality does not present any additional information.
More importantly, elements in a microstructure image are
generally correlated, so knowledge of one element can be
used to infer things about another. This dependence between
pixels reduces the size of the space needed to represent the
microstructure image. So, for example, a 1280 × 720 photo-
graph formally contains 921 600 dimensions. However, actual
microstructures, we assert, require much less than this, shown
for natural images in [20].

This is a well-known property of data and is known as
the manifold hypothesis: The actual data lie on a lower-
dimensional manifold that is embedded in the ambient space.
Though not known by that word, most people are familiar
with the manifold concept. We know that the surface of the
earth is spherical. However, it looks like a two-dimensional
plane. We view the surface of the earth as a manifold that
has the property that, so long as the distance between two
observations is not too great, the surface may be represented
by a two-dimensional Euclidean space R2, that is, the sur-
face of the earth is a two-dimensional (2D) Euclidean space
embedded in the three-dimensional ambient space in which
we live. Figures 1(a) and 1(b) show other examples of mani-
folds in R3. Figure 1(a) is known as the Swiss roll manifold.
Essentially, this is a plane that contains all of the data, but
has been “rolled up” into a spiral so that it exists in R3, but
the points themselves only occupy R2. Figure 1(b) shows a
manifold embedded in R3 that would be referred to in crystal-
lography as a (111̄) plane, i.e., one that intercepts coordinate
axes at [1,0,0], [0,1,0], and [0, 0,−1]. This can, for example,

represent a three-pixel image, where the intercepts of the axes
correspond to images consisting of one black pixel and two
white ones. The shaded area of the plane represents interpola-
tions between these points.

In the same sense, the manifold hypothesis asserts that data
lie in a lower-dimensional space that appears to be Euclidean
for small displacements. The aim of this paper is to estimate
the dimension of the manifolds that represent specific mi-
crostructures in material systems.

C. Minkowski distance measures

The discussion above of manifolds implicitly referenced
the concept of distance by asserting that, so long as distances
between two observations are not too great, etc. This work
builds on the work by Levina and Bickel [19], which uses the
Euclidean distance for dimensionality estimation. We general-
ize this approach by using the Minkowski distance measures.
We had expected all the Minkowski distance measures to give
the same answer for the intrinsic dimensionality. Indeed, for
nonquantized images, we find this to be correct, but significant
errors appear when too few gray levels are used to make
the dimensionality estimate. This is explored and discussed
extensively in Sec. VI. The concept of Minkowski distance
measures is introduced here.

Formally, if distance between vectors x and y is denoted
by d (x, y), then the distance has the following properties:
(1) d (x, y) > 0, (2) d (x, y) = 0 if and only if x = y, (3)
d (x, y) = d (y, x), and (4) d (x, y) � d (x, z) + d (y, z) for any
z. The Euclidean distance (p = 2) obeys all of these proper-
ties. An extension of this is the Minkowski distance

d (x, y) �
(∑

i

|xi − yi|p

)1/p

, (1)

where p is the Minkowski distance parameter. In this work,
we extend the estimation to Minkowski distances.

Particular cases of the Minkowski distance family are the
Manhattan distance (p = 1), or the L1-norm, and Euclidean
distance (p = 2), or the L2-norm. Only metric p-norms are
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FIG. 2. Minkowski circle geometric representation of a 2D circle
for p = 1, 2, 4, and ∞.

considered here (p � 1) since triangle inequality (property 4
above) is violated for p < 1. A geometric representation of a
2D circle for p = 1, 2, 4, and ∞ is shown in Fig. 2(a), where
the surface describes all points equidistant from the origin
under the respective p-norm.

III. DIMENSIONALITY ESTIMATION

There are a number of methods in use for estimating the
dimensionality of data, including PCA, isometric feature map-
ping, local linear embedding, multidimensional scaling, and
correlation-based methods [26]. Among the most popular is
the maximum-likelihood-estimation approach [19], which is
the one used here. In this section we describe the approach.
The maximum-likelihood-estimation approach is built on the
nearest-neighbor (NN) method, published by Pettis et al. [27],
which is a geometric estimator of the intrinsic dimensionality
of the manifold on which the data lie. The assumptions behind
this approach are that (i) the samples are independent and
identically distributed from some distribution, (ii) in a space
of proper dimension the samples will be uniformly distributed
locally, (iii) the mapping between the latent space and the
ambient space is continuous, and (iv) the distance between
two points in the ambient space is the same as that in the latent
space locally. The importance of the data being uniformly
distributed is that there would be no bias towards one region
over another in the space. In practice, it is not always possible
to populate an entire space this way, so a local uniformity as-
sumption is used, that the points are uniformly spread in some
neighborhood of each point. Representative samples may be
drawn randomly in this case. The unique point process that
will ensure such a uniform distribution is the Poisson process
[28]. The intuitive meaning of continuous is that neighboring
points in the latent space correspond to neighboring points
in the ambient space, a notion more rigorously defined in
topology [29].

There is one subtle complication that arises because data
are generally not on a linear manifold but may be on one that

is curved and twisted. The distance between two points on a
curved manifold would be measured as its geodesic distance,
whereas in the ambient space it would be measured as a
Euclidean distance or similar. Since differentiable manifolds
are approximately Euclidean for small distances, this amounts
to a requirement that the distance between points be made
small, and thus the fourth assumption is also made locally.
With these assumptions, the dimensionality estimate of a data
set may be made, knowing only a distance between the points.

A. Nearest-neighbor method

The NN method aims to estimate the intrinsic dimension-
ality using the number of nearest neighbors of each data
point [19]. The data are modeled as having been produced
by a set of independent and identically distributed samples
from a uniform probability density in some low-dimensional
latent space. Here we use the denotation that μ is the true
dimensionality, n is the dimension of the ambient space, and
k is the number of neighbors of each data point (when mea-
sured by a Minkowski distance, for example). Note that, since
the intrinsic dimension is lower than the ambient dimension,
μ � n. The latent space is in Rμ.

Let the set M � {m1, m2, . . . , ms} ⊂ Rn be the mi-
crostructure samples. Under these assumptions, the average
number of data points k that fall into a hypersphere in Rμ

around a point mi will be proportional to the volume of the
hypersphere

ki = f (mi )V2(μ), (2)

where the proportionality constant f (mi ) defines the uniform
probability density defining number of points per unit volume
about point i in Rμ. Here V2(μ) refers to the volume of the
hypersphere of dimensionality μ that has an expected number
k of nearest neighbors with distances represented using an
L2-norm. The volume of the hypersphere is given by the
particular choice of the distance measure. The volume is given
by the formula

V2(μ) = V2(μ)[Tk]μ, (3)

where V2(μ) is the volume of a hypersphere of unit radius
in Rμ and Tk is the distance from a fixed point mi to its kth
nearest neighbor in the ambient space. By the locally isomet-
ric assumption, this is the same as the distance that would be
measured in the latent space. Equation (3) is presented in the
Euclidean norm. Later, we show that this relation holds for all
p-norms, with only V2(μ) being a function of p.

Using Eqs. (2) and (3), the expected number of points
within a distance Tk from a point mi can be written as

ki = c2,i[Tk]μ, (4)

where c2,i = f (mi )V2(μ) is a constant, with the subscript 2
indicating the use of Euclidean distance. Equation (4) can be
solved for μ as a function of the average number of points
within Tk of point i. This could be used to estimate μ, but this
requires us to fix a radius about point i and count the number
of data points lying within that range. When the data are
sparse, this can easily result in erroneous estimates because
of the sparsity of the data. In practice, it makes more sense to
fix the number of points about point i on which this estimate is
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made, that is, we are changing the independent variable from
Tk to k, so now Tk is dependent on point i; Tki is the distance
of the kth nearest neighbor of point i.

The relationship in Eq. (4) can be used to estimate the
dimension by linear regression of ln Tk on ln k over a suitable
range of k (e.g., from k = kai to k = kbi , where kai and kbi are
the ath and bth nearest neighbors of point i) for every point i.
The intrinsic dimension is obtained as the slope

μi = ln kbi − ln kai

ln Tkbi
− ln Tkai

= ln

(
kbi

kai

)(
ln

Tkbi

Tkai

)−1

. (5)

B. Maximum-likelihood-estimation method

Equation (5) can be used to estimate the dimensionality of
the data, but makes that estimate, pair by pair, of the data.
The MLE method uses multiple points to make a single, more
precise estimate. The data are modeled as having come from
a Poisson process and the parameters of this process, μ and λ,
are estimated from a maximum-likelihood algorithm [30].

In the nearest-neighbor method, the data are modeled as
having been produced by a set of independent and identically
distributed samples from a uniform probability density in
some low-dimensional latent space. This is true if and only
if the data are produced by a Poisson process [24], that is, the
points are placed with the μ-dimensional Poisson process

P(k − 1) = k
k−1

�(k)
e−k, (6)

where k is the expected value of the Poisson process.
From the preceding section, ki can be written as

ki = f (mi )V2(μ) = f (mi )V2(μ)[Tk]μ. (7)

By definition, the rate of the Poisson process is

λi = dk

dV2(μ)
= f (mi ). (8)

Levina and Bickel’s approach uses a one-dimensional equiv-
alent of the Poisson rate with respect to the radius of the
hypervolume. Changing variables to take the derivative with
respect to Tk (μ), we obtain

λ∗
i (Tk ) = dki

dTk
= dki

dV2(μ)

dV2(μ)

dTk
. (9)

Substituting Eq. (3), we obtain
dV2(μ)

dTk
= V2(μ)μT μ−1

k , (10)

λ∗
i (Tk ) = f (mi )V2(μ)μTk

μ−1, (11)

where λ∗(Tk ) corresponds to Levina and Bickel’s λ(t ) in
Eq. (3) [19], which represents a one-dimensional equivalent of
the Poisson rate. The log-likelihood of the 1D Poisson process
can be written as [24]

L(μR(mi ), θi ) =
∫ R

0
ln(λ∗)dN (r) −

∫ R

0
λ∗dr, (12)

where μR(mi ) is the estimate of the dimensionality estimate
about point mi, using points within a radius R from that
point, θi = ln f (mi ), and N (r) is the number of points within

a distance r from point mi. Specifically, L is parametrized
by μ, the dimensionality we wish to recover, and f (m), the
unknown probability density in the neighborhood of point mi,
which is a nuisance parameter that we may need to evaluate
to do the problem but otherwise do not need.

Maximizing the likelihood with respect to μ and θ about
each data point gives the optimal values of these parameters.
A detailed derivation of this is given in Appendix C and yields,
for μ,

μka (mi) = (ka − 1)

⎡
⎣ka−1∑

j=1

ln

(
Tka

Tj

)⎤
⎦

−1

, (13)

where ka is a choice of radius in terms of nearest neighbors
made by the user. Comparing the ID estimators, i.e., Eqs. (5)
and (13), both formulas use the inverse logarithm of the ratio
of distances.

C. Minkowski generalized distance estimates

The results of the preceding section are specialized for
the Euclidean distance between data points. There is nothing
in the analysis that requires this, only that the distance be
measured with a distance metric. Since we do not have ground
truth values for empirical data, we wish to have multiple
ways of evaluating the dimensionality and use the consistency
between those as a measure of our confidence of the answer.
For this purpose, we use the Minkowski p-norms, each of
which can provide a separate estimate of the dimensionality.

The preceding section reiterated the development of the
MLE estimate for the Euclidean norm. Inspection of all of the
equations indicates that the only place where dimensionality
enters the problem is the constant V2, which multiplies T μ

k
to give the volume of a ball of radius Tk about a point [see
Eq. (12)]. This is a simple constant, representing a hyper-
sphere of unit radius, measured with the Euclidean norm. So
the change to Minkowski norms amounts to changing this
constant only.

To extend the notation to include the parameter p, we use
either subscripts, such as Vp as an extension of V2 for the
Euclidean norm, or parentheses, such as Tk (p) as an extension
of Tk in the preceding section. Equation (3) shows that, for
the Euclidean norm, the volume of a hypersphere of radius
Tk varies as T μ

k , with a proportionality constant we reported
as V2. This property is general: The volume of a hypersphere
with any of the p-norms is also a homogeneous function
of degree μ, but the proportionality constant changes and is
dependent on p. In this section we show that this is the only
consideration in the equations for making p-norm estimates of
the dimensionality.

For the Euclidean distance, the volume of a unit hyper-
sphere is πμ/2

�(μ/2+1) [19], where �(x) is Euler’s � function
equal to (x − 1)! if x is an integer and a smooth interpolation
between integer points if it is not. The general formula for the
volume of a unit hypersphere with the p-norm is [31]

Vp(μ) = 2μ[�(1/p + 1)]μ

�(μ/p + 1)
(14)
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and, by the assertion above, the volume of a hypersphere in
Rμ is

Vp(μ) = Vp(μ)[Tk (p)]μ. (15)

Similar to Eq. (4), the expected number of points within a
distance Tk from a point mi can be generalized based on a
p-norm distance as

ki = cp,i[Tk (p)]μ, (16)

where cp,i = f (mi )Vp(μ) is a constant with the subscript
p now indicating the use of the Minkowski p-norm dis-
tance. The equations of dimensionality estimation (5) and
(13) remain unchanged except Tk now represents the distance
measured using the Minkowski p-norm. The MLE estimate is
given by (see Appendix C for the derivation)

μka (mi, p) = (ka − 1)

⎡
⎣ka−1∑

j=1

ln

(
Tka (p)

Tj (p)

)⎤
⎦

−1

. (17)

Note that this is a direct consequence of the assumption that
the data could be modeled as having originated from a Poisson
point process. Accordingly, the data points will be distributed
evenly in space [24], so the expected number of points occur-
ring within a region will be proportional to the hypervolume
of that region. In this case, this is the hypervolume within our
μ-dimensional space in which the data may be obtained by
uniform sampling.

More specifically, upon examination, we should find that
the expected number of data points occurring within a thin
shell of distance rp of our target image scales as the vol-
ume within that shell, from the properties of a Poisson point
process. For an accurate estimate of μ̂, that uniform density
assumption would hold and the expected number of points
would scale as rμ̂

p [see Eq. (14)]. On the other hand, for an
underestimate of (μ̂ < μ) the expected number of points in
the model would be an underestimate of that observed in the
data and the density of empirical data points would have to
increase with rp in order for all to be accounted for. The
data would have a tendency to accumulate on the surface of
a hypersphere of radius of rp in Rμ̂. Were an overestimate
of μ̂ obtained, the data would appear to concentrate near the
origin. It is only at the “correct” value of μ̂ that the data would
uniformly spread in the space.

IV. METHODS

The MLE estimates of dimensionality were made on sev-
eral data sets. The method was proved out with phantom data
sets, that is, synthetic data sets for which we knew the ground
truth by construction. It was then applied to two materials
data sets: one from a phase field simulation and the other
from fibers segmented from a continuously reinforced fiber
composite. The details of this are explained below.

A. MLE

Dimensionality estimation was performed with Eq. (17) for
a range of p values on each of the data sets. It was expected
that the dimensionality estimates would be consistent over
p. This proved to be incorrect, so exploratory investigations

were undertaken to produce a reliable best practice approach
to providing the best estimates of dimensionality.

In Eq. (17), every data point m ∈ M gives a dimension
estimate for every neighbor count k, yielding k × |D| dimen-
sion estimates, where |D| is the number of images in the data
set. The intrinsic dimension was estimated as the mean of the
values in the dimension estimate matrix and the full histogram
typically reported for inspection.

Equation (17) has two free parameters, i.e., the minimum
and maximum k values, to use for the estimate. Too small
a range may lead to underestimation of the dimensionality
due to counting statistics or local variations, while too large
a k range may lead to overestimation due to global curvature
and jumps across layers in a manifold (consider, e.g., a Swiss
roll). In practice, it was possible to find a range of k values in
which the dimensionality estimation was fairly insensitive to
the exact range and the estimates made in these range consti-
tuted the high peak in the histogram of estimates. It should be
appreciated that the range of k also depends implicitly on the
size of the data set, since large-k values are generally inappro-
priate in small data sets due to severe sparsity of points. The
actual ranges of k values chosen for each data set are listed in
Table II.

One further complication was encountered. Because of the
quantization in the center position of the features in some
of the data sets, it often happened that duplicate distances
occurred during sampling. If these positions were sampled
from R2, instead of on a quantized grid in Z2, almost al-
ways the distance between sample points would be unique.
However, forming a pixel grid made it a common occurrence
that some near neighbors had the exact same distance and
Eq. (17) would have a 0 in the denominator. We adopted one
of two strategies in this case: (i) simply set the minimum
k value high enough that this problem was avoided and (ii)
construction of the phantom image at ten times the resolution
and rescaling with a bicubic interpolation. In practice, each
approach worked equally well, so we did not attempt to docu-
ment exactly which was used.

B. Data sets

The method was proved with data sets that were con-
structed having a known ground truth dimensionality and
then applied to materials data for which the ground truth was
not known but for which some sanity checks could be made
to show that our results were reasonable. The ground truth
data sets were constructed from synthetic images containing
a single particle, for which the ground truth dimensionality
could be listed from the independent variables pertaining to
locations of particles and their size and shape. Methods were
developed for reliably reproducing the ground truth dimen-
sionality on these data sets before the more complex materials
data sets were attempted.

Materials data sets were used in which there were more
than single particles. We examined the dimensionality of an
evolving grain system, using phase field simulations, and of
a real SiC/SiC continuously reinforced composite. A dimen-
sionality of 1 was expected from the phase field simulations
because each image was closest to the neighbors on either side
in a temporal sequence.
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The composite structure was not as straightforward. For
these data, we expected that the number of dimensions would
not be able to exceed (the number of particles) × (the di-
mensionality of the space where each particle center could be
placed) × (the number of geometric degrees of freedom of
the particles). On further reflection, the actual dimensionality
was expected to be lower than this number because of the
correlations induced by the requirement that they not overlap
and larger than this because of the unknown true number
of shape and orientation parameters on the particles. So we
estimated the upper bound dimensionality by constructing
a surrogate data set with the same numbers of fiber cross
sections but of constant orientation that were placed according
to a Poisson point process [24]. This was expected to produce
larger than the true dimensionality, but not strictly an upper
bound because not all geometric degrees of freedom were
used.

1. Ground truth: Single-particle tests

Phantom data sets (DSs) were created for simplified,
single-particle images, for which a ground truth dimensional-
ity was known. The DS Circles consisted of circles of constant
radius that were placed at random horizontal (x) and vertical
(y) positions in the image. Here random means sampled from
a uniform random variate. Since the radius was fixed, this
data set had two degrees of freedom, by construction. The
estimate of the dimensionality of this data set should be 2.
In DS Rectangles, we produced, for example, images of a
single square in the matrix. In this case, there were three
degrees of freedom: x, y, and the width a. We also relaxed the
square constraint and allowed the aspect ratio to vary, giving
a rectangle. This gave us a known dimensionality of 4. Other
tests were conducted with this data set as well.

The DS Rectangles and DS Circles were sampled directly
from Euclidean manifolds of known dimensionality. Real data
points are generally not acquired from a latent manifold but
from a low-dimensional manifold embedded in a higher-
dimensional space. For example, strain components during
processing would theoretically occupy a six-dimensional
space, since the strain matrix has six independent components.
However, a real process is not expected to be able to sample
every point in some subset of R6. More likely, some manifold
within that space would be all that could be practically sam-
pled. For this reason, we produced a data set DS SwissRoll,
with a latent space with the ubiquitous Swiss roll data set [32].
Here we sampled from a plane rolled up into a spiral.

These data sets are described in greater detail in the follow-
ing section. In all of these, we define the following spaces: G,
the generator space for sampling; L, the dense latent space in
which the data points are assumed to be uniformly distributed;
and A, the ambient space of image pixels M set of samples
used for dimensionality estimation. The following data sets
are used for single-particle tests.

(i) DS Circles : randomly centered circles of a constant
radius in a matrix. Here we used G = L ∈ R2 to generate
points that were embedded in A with an embedding func-
tion that mapped these points into 256 × 256 images with
circles of a fixed radius, centered at the x and y coordinates
of each point in M. We constructed four data sets with r ∈

TABLE I. Test cases used in Fig. 4. Here η represents a random
quantity and c represents a fixed one. Subscripts on η mean that
the random variables are independent. Those on fixed quantities
mean they may have different values but are still fixed. Column 6
(Dimensionality) is simply a counting of the number of independent
η values in each case. In the header, x and y refer to the (x, y) centers
of the objects and rx and ry are the dimensions of the objects in the x
and y directions, respectively

Case x y rx ry Dimensionality

Rectangles
A η1 η2 η3 η4 4
B η1 η2 c1 c2 2
C η1 c η2 η3 3
D η c1 c2 c3 1
E c1 c2 η1 η2 2

Squares
F η1 η2 η3 η3 3
G η1 η2 c c 2
H η1 c η2 η2 2
I η c1 c2 c2 1
J c1 c2 η η 1

{24, 36, 48, 58} pixels. These are referred to as DS Circles A,
DS Circles B, DS Circles C, and DS Circles D, respectively.
In order to avoid contact with the boundaries of the images by
the circles, M was sampled from the set

M ∈ {(η1, η2} ∈ L|r < η1 < 256 − r, r < η2 < 256 − r}.
(18)

(ii) DS Rectangles: rectangles and squares in a matrix. Ten
different synthetic data sets were tested containing rectangular
and square shapes in a matrix following different size and po-
sitional constraints which dictate the intrinsic dimensionality.
The ground truth dimensionality could be calculated from the
number of independent variables, which are shown in Table I.

Images of size 128 × 128 were constructed from each
point in a Euclidean space Rμ, where μ was taken from
column 6 of Table I. More formally, we has a generator space
G in Rμ, from which we sampled points and embedded them
in an ambient space A, which in this case was R128×128. We
constructed a set of samples

M = {(η1, η2, . . . , ημ)1, (η1, η2, . . . , ημ)2,

(η1, η2, . . . , ημ)3, . . . , (η1, η2, . . . , ημ)n} ∈ G. (19)

Like DS Circles, G was taken to be the same as L.
The samples drawn from G were then embedded in the

ambient space with

f : G → A, (20)

where f maps each point of M to a 128 × 128 image. These
images have pixel values of 1 for a rectangle (as described in
Table I) and 0 for the background. Examples of these images
are shown in Table I.

By construction, the ground truth dimensionality of these
image data sets is given in column 6 (Dimensionality) in
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Table I. The task of this work is to recover this as μ from
the set of images.

(iii) DS SwissRoll: a Swiss roll. A data set was prepared,
in which the generator space G was a larger space in which
the latent space was embedded. This is the case we would
anticipate, where processing determines a structure but the
processing variables would not form a dense space. For this
purpose we defined a latent space

L = {(η1, η2) ∈ R2|η1, η2 ∈ [0, 1]}. (21)

This was deformed into a Swiss roll, where the spiral was
viewed edge on in the x-z plane and the axis along the y axis,
as shown in Fig. 5(a). The 2D space was expanded into a space
of size 3π

2 × 30 with the transformation

t � 3π

2
(1 + 2η1), (22)

where t is physically the distance traveled from a reference
point around the axis of the Swiss roll. This was mapped onto
the x-z plane with the transformations

x = t cos t + c1,

z = t sin t + c3, (23)

where c1 and c3 were offset values placing the center of the
Swiss roll in the x-z plane. In addition, η2 was stretched and
translated according to

y = 30η2 + c2, (24)

where c2 was an offset of the zero point of η2 to the zero point
of y. In this, the parameters c1, c2, and c3 were assigned the
values of 62, 50, and 20, respectively. The reason for these
extra parameters is to allow for large enough objects in the
images that aliasing effects are minimized.

Once embedded in this space, (x, y, z) ∈ R3, the coordi-
nates were defined as the x center and y center of a circle of
radius z. This description was embedded into A ∈ Z128×128,
where each coordinate represented pixels of an image, with
0 being assigned to the background and 1 to the interior and
boundary of the circle [see Fig. 5(a)]. The η1 and η2 were
sampled from a uniform random variate and given the trans-
formations above to construct DS SwissRoll with a ground
truth dimensionality of 2.

2. Microstructure tests

We performed MLE estimates of dimensionality in two
microstructure examples: phase field simulations of grain
growth and of the fibers in a SiC/SiC fiber composite. For this
purpose, we prepared two additional data sets. The DS Phase-
Field was produced by phase field simulations and represented
a synthetic data set over which we had control through its
parameters. The DS SiC/SiC was a real microstructure con-
sisting of the commercial S200 SiC/SiC fiber composite. The
data were taken from the Globus archive of Sherman et al.
[33] of the data used in their publication [34]. This consisted
of a set of segmented ellipses of the fiber cross sections and
was reported as (x, y, r1, r2, α) values, where x and y were
the centers of the fibers, r1 and r2 were the principle axes of
the ellipses, and α was the orientation angle of the ellipses
with the horizontal. Note that to go along with the real fiber

microstructure data set, a synthetic fiber microstructure data
set was also created to explore the difference between real and
synthetic microstructures.

These microstructure data sets are described in more detail
in the following.

(i) DS PhaseField: a phase field. This DS contains results
from a phase field simulation of grain growth based on the
Allen-Cahn equation following the numerical formulation of
Fan and Chen [35]. The data are in the form of binary im-
ages (128 × 128) containing grain boundaries at different time
steps of a single simulation. Since all the model parameters
are fixed at the start of the simulation and images are only
a function of time, the intrinsic dimensionality of all images
from a single simulation run is expected to be one. The data
set contains results from three different simulation runs. Ten
order parameters were used and kinetic parameters in the
simulation were all taken to be one, including the relaxation
coefficient, coefficients in the free-energy density, and the
gradient energy coefficients, and the simulation was run for
1000 time steps with a time step of 1.

(ii) DS SiC/SiC: a S200 SiC/SiC fiber composite. Here we
present microstructures that represent fibers in a matrix. We
use both simulated and real (segmented) data sets.

(a) DS SiC/SiC A: experimental data containing elliptical
fibers. We hypothesized that the dimensionality of a random
structure was a homogenous property and that the estimates
of the dimensionality would stabilize as larger and larger win-
dow sizes were used. Data were sampled from the published
S200 fiber data set [33] containing 30 slices of composite
tows from a 3D composite. In that study, the fiber center and
radii were reported in microns. Circular windows were placed
randomly in this data set and the fibers whose centers were
contained in the interior of the window were selected. These
were placed in a square image of size twice the window radius
plus 30 µm on each side such that the fibers did not intersect
the edges of the image [as shown in Fig. 7(a)]. To study the
effect of window size on dimensionality estimate, window
radii of 40–240 µm were chosen in increments of 20 µm. All
images were resized to 128 × 128 pixels.

(b) DS SiC/SiC B: synthetic circles. Since real data do not
have a ground truth, we resorted to idealized estimates of the
dimensionality of this data set with a surrogate data set con-
sisting of circles that were placed according to a Poisson point
process [24]. The mean number of fibers per unit area was
estimated from the real data set of Sherman et al. and was used
as λ to generate the number of circles, according to a Poisson
distribution. The circle radii were generated according to a
Poisson distribution with mean 12 µm but including a max-
imum cutoff at 1.4 × 12 µm, mirroring the maximum cutoff
observed in real data. The centers of the circles were generated
according to a nonoverlapping Poisson point process on a win-
dow of changing size in microns. These {x, y, r} values were
then embedded in an ambient space A ∈ Z1000×1000, where the
interior and boundaries of the circles were assigned a value of
1 and the background a value of 0. From here the images were
downsampled to the final ambient space of A ∈ Z128×128, with
bicubic interpolation, resulting in 32-bit float images. Because
the window radius in microns changed (to match the data in
data set DS SiC/SiC A) but the image size in pixels stayed the
same, the pixel size increased with increasing window size. A
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TABLE II. Data and simulation parameters.

Data set index Size (unique images) Sets k range

Circles A 984 2 (binary, Gaussian) 10–40
Circles B 983 2 (binary, Gaussian) 10–40
Circles C 982 2 (binary, Gaussian) 10–40
Circles D 969 2 (binary, Gaussian) 10–40
Rectangles A 1998 1 10–40
Rectangles B 1598 1 10–40
Rectangles C 1869 1 10–40
Rectangles D 73 1 6–12
Rectangles E 284 1 6–12
Squares F 1960 1 10–40
Squares G 1593 1 10–40
Squares H 880 1 10–40
Squares I 65 1 6–12
Squares J 17 1 6–12
SwissRoll 840 1 10–40
PhaseField 181–216 3 (three runs) 6–12
SiC/SiC experiment 913–1000 11 (window sizes) 10–40

15-µm buffer was included for each window radius to ensure
particles did not touch the edge. At each window size, 1000
images were generated for a dimensionality estimate.

V. RESULTS

All the data sets and simulation parameters, i.e., the sizes of
the data sets (unique images) and the ranges of k values used
in the MLE estimator, are listed in Table II. To give a quick
preview of the results, this study produced the unexpected re-
sult that, for binary images, the MLE estimate of the intrinsic
dimension varied linearly with p, the Minkowski parameter.
This is shown in Fig. 3(a). For this reason, we expanded the
original intended scope of the work to investigate the effects
of image quantization and Minkowski parameter on the MLE

estimate; we use the L1-norm for the distance measure for
MLE dimensionality estimates. These results are presented in
the next section and extensively discussed in Sec. VI.

A. Single-particle studies

1. DS Circles: Circles of constant radius

Figure 3(a) shows the variation of the estimate of the in-
trinsic dimension with the choice of Minkowski parameter
for binary image DS Circles D. In the case of the binary
image, this resulted in our estimates being a function of p.
The intrinsic dimension is, by construction, 2, corresponding
to the (x, y) coordinates of the center of the circle. This effect
was less pronounced as the number of quantization levels in
the image increased.

(a) (b) (c)

(d) (e)

FIG. 3. Variation of intrinsic dimension with the choice of Minkowski parameter for a circle with varying position, represented as binary
and grayscale images. The ground truth dimensionality is 2. (a) As the number of grayscale levels increases, the dimensionality estimates
for higher-p values converge toward the ground truth value. (b) Microstructure and (c) intensity profile for binary quantization cases.
(d) Microstructure and (e) intensity profile for nonbinary quantization cases. In (e) intensities outside of the vertical lines are clipped to
zero to allow for different-size particles (see the text for details).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 4. Variation of MLE-based intrinsic dimension for a variety of synthetic data sets using the L1-norm. The predicted dimension for
various data points is shown as a histogram. The numbers in red indicate mean predictions for each case. The numbers in green are the expected
dimensionality. In all these cases, while the L1-norm provides excellent ID estimates, the use of the L2-norm provides exactly twice the obtained
mean ID estimate, consistent with the discussion in Sec. VI A.

The images in DSs 2 A–2 D consisted of circles (unit
intensity) and background (zero intensity). In order to investi-
gate the effects of quantization, the circles were replaced with
Gaussian point spread functions with a standard deviation
of 20 pixels, centered at the same positions. To capture the
effects of different radii, the intensities were clipped to zero
intensity outside the radii of 24, 36, 48, and 58 for DSs 2 A,
2 B, 2 C, and 2 D, respectively. This gave the number of
unique grayscale levels for these data sets of 201, 419, 706,
and 1001, respectively.

As the number of grayscale levels increased, the intrinsic
dimension obtained from the use of higher Minkowski p-norm
distance measures converged toward the ground truth value.
This point is explored more fully in Sec. VI.

2. DS Rectangles: Rectangles and squares

Using the results of Sec. V A 1, the dimensionality esti-
mates of the DS for rectangles and squares were made with the
L1-norm. Selected test cases were run, according to Table I.
The results are shown in Fig. 4. In this figure, a histogram
of values in the dimension estimates from each data point is
also plotted and the standard deviation of the histogram is
reported in addition to the mean. As seen from these results,
the MLE approach with the L1-norm gives a sound estimate
of the intrinsic dimension in all cases.

3. DS SwissRoll: Swiss roll data set

The dimensionality of the image data in DS SwissRoll is
expected to be 2, given the images were sampled using data
from the Swiss roll. Both MLE and NN methods furnish the
correct dimensionality of 2 with the L1-norm as seen in Fig. 5.
However, the dimensionality predicted using the L2-norm is 4
and subsequent norms show linear scaling of the dimensional-
ity with the p value in the p-norm. The MLE and NN estimates
of dimensionality are close at p = 1 and the difference gets
amplified with the increase in Minkowski parameter.

4. DS PhaseField: Phase field data

Snapshots from phase field simulations [Fig. 6(a)] in
time form a highly statistically dependent sequences of im-
ages. This violates one of the assumptions of the MLE
approach, namely, that the data are independent and identi-
cally distributed. Rather than giving the dimensionality of the
microstructures, it gives the dimensionality of one trajectory
through L of a given process. The intrinsic dimensionality
is expected to be 1, the time dimension, which is confirmed
by the results of the MLE algorithm with the L1-norm in
Fig. 6(b). However, the dimensionality again shows linear
scaling with the p-norm, with both the mean and the standard
deviation of the dimensionality doubling when using the L2-
norm.
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FIG. 5. (a) Swiss roll data set containing images of circles whose centers and radii are sampled from the coordinates of a Swiss roll.
(b) Comparison of predicted dimensionality versus the Minkowski parameter for both MLE and NN estimates. In both cases, the linear scaling
is evident. The L1-norm identifies the correct dimensionality of 2.

5. DS SiC/SiC: Dimensionality of a SiC/SiC composite

In this study we investigated the intrinsic dimension of an
experimental microstructure containing elliptical SiC fibers
as a function of window size [Fig. 7(a)]. The window size
represents the length scale at which the microstructure is
observed and analyzed. We extracted fibers from within ran-
domly placed circular windows that contained all fibers whose
centers fell within them. As the window size increased, the
number of fibers also increased, leading to a higher intrinsic
dimension as shown in Fig. 7(b). However, we found that the
intrinsic dimension converged to a constant value of about 40
when the window size reached 140 µm.

VI. DISCUSSION

The significant findings of this work may be summarized
as follows.

(i) While it was possible to make rational estimates of all
data sets, there was an inconsistency in the results obtained

from different Minkowski norms. We attribute this to the
effects of image quantization: For unquantized analog images,
the estimates are consistent, but for any level of quantiza-
tion, inconsistencies appear. We explain this below, including
proofs of our assertions.

(ii) The dimensionality of the real microstructure images
in this study homogenized, that is, it was possible to identify
a representative volume element, where the dimensionality
estimate became insensitive to the actual images used. So
long as the images were collected within a sufficiently large
window, the dimensionality estimates were consistent.

(iii) For the dual sparse domain example of points selected
from a (sparse) Swiss roll embedded in R3 and used to con-
struct images in the (sparse) image domain of Z128×128, it was
possible to recover the geometry of the Swiss roll domain
from the images. This suggests the possibility of recovering
the processing domain from a set of example microstructures.
Specifically, we recovered the manifold of the original sam-
pled data from the images, which suggests that we could

(a) (b)

FIG. 6. (a) Images from a single phase field simulation. (b) Histograms of dimensionality from MLE estimation. The L1-norm computes the
ground truth dimensionality of 1 (mean d is 1.17), corresponding to the variable time, and the estimated dimensionality increases proportionally
to the p-norm used (the 2-norm gives d = 2.34 and the 4-norm gives d = 4.68).
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(a) (b)

FIG. 7. (a) Intrinsic dimension of the microstructure as a function of window size compared with (b) the expected dimension based on the
mean number of ellipses.

recover the processing conditions of an out-of-specification
environmental event, for example, where the microstructure
was altered by this event. These results are preliminary, of
course, but they do suggest a unique application of these
techniques in materials science.

These three points are discussed in greater detail in what
follows.

A. Effects of quantization on dimensionality estimation

We summarize the findings from the examples as follows.
(i) Figure 3 shows that where there is minimal effect of

image quantization, i.e., q is large, the dimensionality estimate
is independent of the Minkowski parameter p.

(ii) In the other extreme, where the quantization q = 2,
which leads to a binary image, the dimensionality estimate
is a function of p, specifically, it is a linear function as seen in
Figs. 5 and 6. The estimate with the L2-norm is exactly twice
that when using the L1-norm.

(iii) Figure 3 also shows that when considering two
Minkowski norms p and q (p < q), the dimensionality
estimate μp < μq for any quantization. However, the di-
mensionality estimated with the L1-norm appears to be
independent of quantization level.

We explain these findings through four theorems.
Theorem 1. In the limit that the intensities are not quantized

(q → ∞), the dimensionality estimate is independent of the
choice of p. By examining the development of the MLE and
nearest-neighbor approaches, we show that the only effect of
different Minkowski dimensions is a multiplicative constant
on the distance between nearest neighbors. Since the dimen-
sionality estimate involves ratios of distances, this completely
eliminates any difference between dimensionality estimates.

Theorem 2. For binary images, the dimensionality estimate
is proportional to p. By examining the Minkowski distance
formula, for a binary image, intensities are some multiple of
either 0 or 1. Both of these values are not affected by the
operations of computing the Minkowski norm.

Theorem 3. The dimensionality estimate is a nonstrictly
increasing function of p for all levels of quantization., that

is, the L1-norm always produces the lowest dimensionality
estimate over all p-norms of quantized images. This follows
directly from fundamental properties of Minkowski distances.
The effect of this on estimates of dimensionality is a ratio of
distances made with different Minkowski p-norms.

Theorem 4. For finite q, the dimensionality estimate as-
sumes its lowest value for the L1-norm. This follows directly
from the properties of Minkowski norms applied to the esti-
mation procedures used here.

The consequence of this is that, for infinite precision in
quantization (q → ∞), the dimensionality estimate is con-
sistent over all Minkowski parameters. For all other cases,
the estimate using the L1-norm gives the smallest number of
dimensions. For the most extreme case, the binary image, the
dimensionality estimate scales directly with p. We have not
shown that the L1-norm estimates were independent of the
level of quantization, but the experimental results shown in
Fig. 9 indicate that the distortion is less than for the other
norms.

Proofs of theorems

Theorem 1. For analog data, the nearest-neighbor estimate
of intrinsic dimension μ̂(p) is independent of the choice of the
Minkowski distance parameter p.

The key to this result is that the Poisson point density varies
with a const × rμ

p , where the constant is the only dependence
on p of the estimate. This constant cancels when the dimen-
sionality estimate is made. The proof is as follows.

Proof. For a Poisson point process, there is a stochastic
number of particles in a unit region, distributed according
to the Poisson distribution. In this case, the Poisson rate is
the product of the hypervolume of the region and the local
probability density per unit hypervolume, that is,

λ = f (m)Vp(μ)rμ
p , (25)

where f (m) is the local probability density about point m and
Vp(μ) is the hypervolume of a unit sphere measured with the
Minkowski p-norm. Their product is a constant for a particular
m, so we will represent this as cp.
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FIG. 8. (a) Estimation of the ratio of average distances to the jth and kth nearest-neighbor shells for the Swiss roll data set as a function of
the Minkowski parameter. (b) MLE-based intrinsic dimension for different Minkowski parameters: helix, μ = 1 and Swiss roll, μ = 2. Note
that for these data, which are not discrete, the intrinsic dimensionality estimate is independent of the Minkowski parameter.

Equation (25) says that the Poisson rate scales as rμ
p , with

cp the proportionality constant,

λ = cprμ
p , (26)

which is the Poisson rate of points within a ball of radius rp,
measured according to the Minkowski p-norm. Defining rp to
be the distance between m and its kth nearest neighbor, there
will be k − 1 points within the (open) ball of radius rp. Thus,
the probability of finding these k − 1 points within the ball is

P(k − 1) =
(
cprμ

p

)k−1

(k − 1)!
exp

( − cprμ
p

)
. (27)

Equation (27) gives the (stochastic) number of points at a
given radius. What is needed is a way of estimating the radius
to the kth point, so this equation is inverted [27],

Fk (rp) =
⎛
⎝(

cprμ
p

)k−1

(k − 1)!
exp

( − cprμ
p

)⎞⎠ d

drp
cprμ

p

=
⎛
⎝(

cprμ
p

)k−1

(k − 1)!
exp

( − cprμ
p

)⎞⎠cpμrμ−1
p , (28)

where Fk (rp) is the probability of observing a ball of radius rp

containing k − 1 points. From this expression, the expectation
of a distance rp from m to its kth neighbor can be found as

T k (p) =
∫ ∞

0
ρFk (ρ)dρ

= ck
pμ

(k − 1)!

∫ ∞

0
ρμke−cpρ

μ

dρ. (29)

Recalling that �(k) = (k − 1)!, this equation simplifies to (see
Appendix B)

T k (p) = [
c−1/μ

p

][�
(
k + 1

μ

)
�(k)

]
. (30)

The leading term c−1/μ
p , which is a function of the Minkowski

parameter p, is independent of k. This implies that the ratio of
expected distances for different values of k will be indepen-
dent of the Minkowski parameter. This can be verified for the
case of a Swiss roll in Fig. 8(a), which shows that the estimates
of the ratio of average distances to the jth and kth nearest-
neighbor shells Tj (p)

Tk (p) for different Minkowski parameters is
constant.

Equations (5) and (17) are the estimators for the dimen-
sionality for the nearest-neighbor and the MLE approaches,
respectively. Both involve only the ratios of distances. In the
above, we showed that the only effect of p in the Minkowski
p-norm is a multiplicative constant, which cancels in both
cases. �

Remark 1. Figure 8(b) shows the variation of computed
intrinsic dimension by this approach against the choice of
Minkowski parameter for a helix and a Swiss roll data set.
The correct intrinsic dimension is found for all Minkowski
parameters tested: 1 for the helix and 2 for the Swiss roll.

Theorem 2. For binary images, the intrinsic dimensionality
estimates scale with the value of p in the p-norm, that is,
μ̂p,2 = pμ̂1,2.

Proof. Consider the distance between any two images in
the Minkowski distance family for the case of binary images
(two-level quantized). Here one has discrete samples where
images occupy vertices of a cube as shown in Fig. 1(b).

When mv is quantized, it assumes discrete values that are
an integer multiple of a basic value 	m. We can define a
variable ζ q ∈ Zn, where q is the number of quantization levels
in the representation of the image, so the elements of ζ q are in
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{0, 1, 2, . . . , q − 1},
mv � 	mζ q

v , (31)

where v denotes the vth image. In this case, q = 2, since it
is a binary image. Since the absolute difference between any
two binarized pixels is either zero or one (|ζ 2

v,i − ζ 2
w,i| = 0 or

|ζ 2
v,i − ζ 2

w,i| = 1),∣∣ζ 2
v,i − ζ 2

w,i

∣∣p = ∣∣ζ 2
v,i − ζ 2

w,i

∣∣∀ i ∈ {1, 2, 3, . . . , n}, (32)

where i denotes the coordinates of ζ 2.
The Minkowski p-norm distance between any two binary

image instances mv and mw can be written as

dp(mv, mw ) =
(

n∑
i=1

|mv,i − mw,i|p

)1/p

= (	m)1/p

(
n∑

i=1

∣∣ζ 2
v,i − ζ 2

w,i

∣∣p

)1/p

=
(

	m
n∑

i=1

∣∣ζ 2
v,i − ζ 2

w,i

∣∣)1/p

=
(

n∑
i=1

|mv,i − mw,i|
)1/p

= [d1(mv, mw )]1/p. (33)

In terms of the distance estimates, this leads to Tk (p) =
[Tk (1)]1/p, using the nearest-neighbor estimate in Eq. (5). The
intrinsic dimension estimates are then a linear function of p,

μ̂p;2 = ln

(
kb

ka

)(
ln

Tkb (p)

Tka (p)

)−1

= ln

(
kb

ka

)(
ln

Tkb (1)1/p

Tka (1)1/p

)−1

= ln

(
kb

ka

)(
1

p
ln

Tkb (1)

Tka (1)

)−1

= pμ̂1;2, (34)

where the superscript 2 indicates that this estimate is made
with q = 2, one-bit precision.

The same behavior is also obtained with the MLE equa-
tion (17) because it uses similar distance ratios. Thus, an
estimate of the intrinsic dimension of pμ̂1,2 would be obtained
for the Minkowski p-norm measure when using binary (one-
bit quantized) images. �

Remark 2. Note also that the condition described in its
extreme by Theorem 2 is usually inescapable. Even if care
were taken to use a large value of q to quantize the image,
most of the levels would not be used because of the intrinsic
sparsity of the data. With materials images, the intensities
tend to cluster about only a few intensities that represent,
for example, phases, compositions, and crystal orientations.
The end result will inevitably be a quantized image for which
we recommend the L1-norm as the metric for estimating the
intrinsic dimension.

Remark 3. Theorem 2 is the opposite extreme from Theo-
rem 1. Whereas Theorem 1 pertains to the infinite quantization
limit, Theorem 2 pertains to the one-bit binary image extreme.
The results are general, irrespective of the data. For q values
between these extremes, the results are in general dependent
on the data. Still some general conclusions may be drawn. The
following two theorems describe the behavior of the estimates
between these two extremes.

Theorem 3. The dimensionality estimate with the L1-norm
is lower than that using any other Minkowski norm for q-level
quantized images with pixels represented as positive integers.

Proof. We do this in two steps: We prove that (i) the L1-
norm is greater than or equal to any other Minkowski p-norm
and (ii) there is a proportionality constant between the esti-
mate of nearest-neighbor dimension made for the L1-norm and
any other p-norm. The generalization of the p proportionality
constant in Eq. (34) is a constant γq > 1 and is a function of
q, the quantization level.

In the proof of Theorem 2, we showed that the scaling of
the k-nearest-neighbor radius goes as Tk (p) = [Tk (1)]1/p for
binary images [Eq. (33)]. This theorem generalizes this to any
level of quantization.

To generalize this idea, one can first show that Tk (p) �
Tk (1) for q-level quantized images. This can be proved using
repeated applications of the triangle inequality (‖ f + g‖p �
‖ f ‖p + ‖g‖p), which applies for metric p-norms (p � 1) [36]:

‖d‖p =
(

n∑
i=0

|di|p

)1/p

=
(

n−1∑
i=0

|di|p + ∣∣d p
n

∣∣)1/p

�
(

n−1∑
i=0

|di|p

)1/p

+ ∣∣d p
n

∣∣1/p

=
(

n−1∑
i=0

|di|p

)1/p

+ |dn|

=
(

n−1∑
i=0

|di|p

)1/p

+ ‖dn‖1. (35)

By recursion, all of the terms of the sum can be separated out,
using the triangle inequality to yield

‖d‖p �
n∑

i=0

‖dn‖1

= ‖d‖1, (36)

which proves that the L1-norm gives a value greater than or
equal to any other metric p-norm.

For part (ii) of the proof, recall that the distances Tk (1)
and Tk (p) are just the L1- and Lp-norms, respectively, of the
distance to the kth neighbor of the target point. Using the
result just proved, the following is true:

Tk (1) � Tk (p). (37)
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Since logarithms are increasing functions, it is also true that

ln[Tk (1)] � ln[Tk (p)]. (38)

Under the condition Tk (1) > 1, the logarithms will always be
positive and

1 � ln[Tk (p)]

ln[Tk (1)]
� γ1,p;q, 1 < Tk (t ). (39)

Rearranging Eq. (39), we obtain Tk (1) = [Tk (p)]1/γ1,p;q . Using
this relation in the nearest-neighbor estimate in Eq. (5), it is
shown that

μ̂1;q = γ1,p;qμ̂p;q, (40)

which is guaranteed if the estimate is made from neighbor
distances Tk (1) > 1. This implies that μ̂p;q > μ̂1;q. Thus, the
L1-norm provides the lowest nearest-neighbor estimate of in-
trinsic dimensionality from among the p-norms. �

Remark 4. Theorem 3 is a generalization of Theorem 2, for
1 < q < ∞.

Theorem 4. Let μ̂p;q and μ̂t ;q be the p-norm and t-norm
estimates, respectively, of q-level quantized images, where the
pixels are represented as positive integers. If p � t , then, for
all q, μ̂p;q � μ̂t ;q.

Proof. We do this in two parts. First, we show that the
t-norm is less than or equal to the p-norm for t > p, in general.
Then we show that the relationship between the dimensional-
ity estimates using the t-norm are greater than those using the
p-norm, in general.

Consider a p-normalized vector d∗ � d/�, where � �
‖d‖p. We have ‖d∗‖p = 1. With this, the t-norm of d∗ may
be written

‖d∗‖t =
(∑

|d∗
i |t

)1/t
, (41)

which is not expected to be 1 in the general case. For each i,
|d∗

i | � 1, so if p � t , we have

|d∗
i |t = [|d∗

i |t−p]|d∗
i |p

� |d∗
i |p. (42)

Raising the t-norm of Eq. (41) to the power of t and using
Eq. (42) gives

‖d∗‖t
t =

∑
|d∗

i |t

�
∑

|d∗
i |p. (43)

However, this is just 1, since the p-norm of d∗ is 1, by
construction. This implies that ‖d∗‖t � ‖d∗‖p for p � t , es-
tablishing the inequality for all vectors of unit p-norm. This
can be extended to any vector by multiplying by � to recover
the original vector d:

�‖d∗‖t = ‖�d∗‖t = ‖d‖t . (44)

Applying the analogous transformation to the p-norm estab-
lishes that ‖d‖t � ‖d‖p if p < t .

For part (ii) of the proof, recall that the distances Tk (t )
and Tk (p) are just the t-norm and p-norm, respectively, of
the distance to the kth neighbor of the target point. Using the
result just proved, the following is true:

Tk (t ) � Tk (p), t � p. (45)

FIG. 9. Illustration of features of γq as a function of quantization
q. Sampled images of size 256 × 256 contain pixels represented
with integers uniformly sampled in the range (0, 2q − 1). For binary
images, γq scales with the p-norm. On the other hand, the estimates
converge at high levels of quantization. In addition, the higher the
Minkowski norm parameter, the higher the dimensionality estimate.

Since logarithms are increasing functions, it is also true that

ln[Tk (t )] � ln[Tk (p)], t � p. (46)

Under the condition that Tk (t ) > 1, the logarithms will always
be positive and

1 � ln[Tk (p)]

ln[Tk (t )]
� γt,p;q, t � p, 1 < Tk (t ). (47)

Rearranging Eq. (47), we obtain Tk (t ) = [Tk (p)]1/γt,p;q . Us-
ing this relation in the nearest-neighbor estimate in Eq. (5), it
is shown that

μ̂t ;q = γt,p;qμ̂p;q, p � t, (48)

which is guaranteed if the estimate is made from neighbor
distances Tk (t ) > 1. This implies that μ̂t ;q � μ̂p;q when t � p,
that is, the p-norm estimate is an increasing function of p. This
is not strictly increasing: At infinite quantization, they are all
equal. �

Remark 5. Theorem 4 is a generalization of Theorem 3 to
any pair of Minkowski distance measures.

Remark 6. The constraint in the above proofs is that
Tk (1) > 1 and this is realized when pixel values are repre-
sented in the form of integers, where q-level quantization
indicates pixels represented in the range (0, q − 1). Most
common is an eight-bit representation in the range (0,255).
In such a case, the minimal L1 distance between two different
images is one, in the case where one pixel intensity is changed
by one and the images are otherwise identical. At higher
neighbor distances (e.g., the second nearest neighbor), it is
guaranteed that Tk (1) > 1. Note that in the implementation of
the MLE (17), the lower limit of the k neighborhood has to be
necessarily greater than one [19]. As numerical verification,
Fig. 9(a) shows the value of γq as a function of number of bits
for sampled images of size 256 × 256. The figure shows the
features of γq as a function of quantization q, indicating that γq

035001-15



SUNDARARAGHAVAN, SHAH, AND SIMMONS PHYSICAL REVIEW E 108, 035001 (2023)

scales with the p-norm for binary images, γq > 1 for all cases,
and γq trends towards one in the limit of infinite quantization.
In addition, following Theorem 4, the higher the Minkowski
norm parameter, the higher the dimensionality estimate.

Remark 7. In Ref. [1] it was found that the intrinsic di-
mension estimate based on raw images was curiously higher
than the dimension estimates from the same images coded
to a smaller latent vector using an autoencoder. This was
specifically for cases where the images were quantized (e.g.,
binary images) and not the case for images represented in
grayscale. For example, in the case of the circular motion
example, which is highly quantized, the intrinsic dimension
was 3.67 compared to the ground truth of 2, and 2.19 es-
timated using the latent vectors. The dimension estimates
should be the same if the images are losslessly compressed.
The reason for the increase in dimensionality, we propose,
is given by the proofs in Theorems 1 and 4. Specifically,
they used an L2-norm for the quantized images leading to
close to double the estimate provided by the autoencoder. The
autoencoder generates real numbers in the latent vector and
hence the estimate from the L2-norm will be close to the true
dimensionality according to Theorem 4. In the next section,
we further explore the topology of the space generated by an
autoencoder.

B. Composite microstructure dimensionality

Figure 7 shows that the microstructure has a self-similar or
fractal property and that 40 variables are sufficient to describe
its features. The intrinsic dimension is much smaller than the
expected dimension based on the number of fibers, which
would be five times the mean number of ellipses (x and y
positions of centroid, major, and minor axes and orientation
angle). A comparison of the results with three times the num-
ber of fibers, which is the upper bound for circular fibers, is
shown in Fig. 7(b).

The reason for the low dimensionality is that the fiber
packing is correlated as the window size increases, so some
variables become redundant or less informative. To demon-
strate this, we compared the dimensionality of experimental
images with the synthetic data set DS SiC/SiC B with random
placement of fibers in Fig. 7(b). Circular fibers were used in
the synthetic data set, which initially had lower dimensionality
compared to elliptical fibers, which additionally had differ-
ences in the minor axis and orientation. However, the intrinsic
dimensionality continued to increase with the window size
linearly, unlike the experimental data set.

One implication of this result is that it can help to
determine the optimal size and centroid placement of a mi-
crostructural representative volume element (RVE), which is
a sample of a heterogeneous material that can be used to
predict its effective properties using computational models.
A common criterion for choosing an RVE size is that it
should be large enough to capture the statistical variabil-
ity of properties or spatial correlation of the microstructural
features but small enough to reduce the computational cost
and complexity. Based on our intrinsic dimension analy-
sis, we can suggest that an RVE size of 140 µm or larger
would be suitable for representing the fibers in a tow for this
data set.

C. Retrieving state variables using an autoencoder

While the MLE algorithm recovers the intrinsic dimension-
ality, it is of interest to identify the geometry of the latent
space and to correlate the dimensions to microstructural fea-
tures. A variety of applications can benefit from such analysis,
including identification of novel processing paths and inverse
design of microstructures for a given property as shown in
Ref. [9]. To generate a proof of concept, a synthetic DS
SwissRoll was used where the generator space is known. Our
objective was to check if the generator space can be retrieved
solely from the image data.

The state variables were identified using an autoencoder ar-
chitecture. An autoencoder [37] is a multilayer neural network
that learns the identity function such that the output x̃ approx-
imates the input x. In the architecture, the hidden layers have
fewer nodes than the input dimension and act as a bottleneck.
In the first few layers, the autoencoder compresses the input to
a compressed (latent space) representation in a process called
encoding. At its simplest, a single hidden layer operates on the
input x ∈ Rn and generates an encoding y1 ∈ R j , j < n, such
that

y1 = σ (W1x + b1), (49)

where W1 represents the j × n weight matrix and b1 is the
j × 1 bias vector for the first layer. The function σ is typically
a nonlinear activation function and a logistic sigmoid function
is used in this work. Later layers reconstruct the output from
this latent space representation in a process called decoding.
An example is another layer that maps the latent vector y1 in
the previous step to output x̃ ∈ Rn such that

x̃ = σ (W2y1 + b2), (50)

where W2 represents the n × j weight matrix and b2 is the
n × 1 bias vector of the second layer. Multiple layers can be
used to develop a deep network. The parameters in W and b
are found by minimizing the cost 1

2 (‖x − x̃‖2)2 by training via
backpropagation.

In this work a stacked autoencoder configuration com-
prised of five fully connected layers in total as shown in
Fig. 10(c) was employed. The first autoencoder comprised
of three layers (input, bottleneck, and output) was trained
to reduce the dimensions to a bottleneck of 100 first. This
was followed by a second autoencoder that used the 100-
dimensional feature from the first autoencoder as input and
reduced it to the intrinsic dimension identified by the MLE
algorithm or the generator dimension. The two autoencoders
were sequentially trained first, followed by retraining a com-
bined five-layer autoencoder. We used a mean-square error
(MSE) loss function and an Adam optimizer with a learning
rate of 0.001. We trained the first two networks for 400 epochs
and the stacked autoencoder for 1000 epochs. The network
achieved a final MSE of 0.01 on the test set, indicating a good
reconstruction performance.

Figure 10 shows a schematic of the approach using DS
SwissRoll A [circles sampled from a Swiss roll, Fig. 10(b)].
The stacked autoencoder reads the images into a network with
a bottleneck equal to the generator space dimension (equal
to 3). The decoded images from the last layer are shown in
Fig. 10(d). The three variables corresponding to each image
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Generator space (Swiss roll)

Plot latent representa�on

16384 16384

100

3
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Sample circle center (x,y)
and radius (z) from Swiss roll

Ambient space (Training data) Decoded images

Reconstructed generator space

Stacked Autoencoder

(a)

(b)
(c)

(d)

(e)

radius radius

FIG. 10. Use of autoencoders for building a generator space shown using a synthetic data set. (a) The Swiss roll is the generator space:
Each point has a (x1, x2, x3) coordinate equal to (x, y, R) in an image where R is the circle radius and (x, y) is the center of the circle in
the matrix representation (row, column) of the image. (b) Images from the database. (c) The stacked autoencoder reads in the images into a
network with a bottleneck equal to the generator space dimension (equal to 3). (d) Decoded images from the last layer of the network. (e) The
1000 images are reduced to three variables in the bottleneck. These variables (when plotted) show the generator space.

Original data

Decoder output (3D latent space)

(b)

3D autoencoder representation

(a)

FIG. 11. (a) Decoder outputs for combined data set containing all three phase field trajectories. (b) A 3D representation from the
autoencoder showing all three trajectories, with the first trajectory going towards the origin, the second to the right, and the third to the
left of the plot.
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are plotted in Fig. 10(e), which shows that the generated
topology is similar to the actual generator space in Fig. 10(a).
The points shown are colored according to the circle radius in
the images. Note that the autoencoder, by default, restricts the
range of values to between 0 and 1. However, the topology
of the space is generally well reconstructed demonstrating a
proof of concept that variables that define the microstructural
state can be identified using stacked autoencoders.

Since the dimensionality of microstructure data sets and
its topology can be estimated, the present approach can be
used to understand structure-property relationships directly
in the microstructure space. As an example, Fig. 11 shows
a 3D space generated by the autoencoder for the DS Phase-
Field (phase field data) containing three different phase field
simulations. Initial images were generated via small random
perturbations to the order parameters leading to different
evolution pathways for the microstructure. In all three sim-
ulations, the initial images are close and are represented by
the central points in the latent space. The trajectories from
the three simulations emerge in different directions from the
initial point, resulting in different microstructures. This latent
space is an illustration of the microstructural latent space for
a grain coarsening process. This falls short of estimating the
true dimensionality of the space, for which a large number
of such phase field trajectories is required. Nevertheless, this
example is used to illustrate how the framework can be used
to visualize a multitude of complex processes within a single
low-dimensional manifold. The use of nonlinear manifolds (as
opposed to linear PCA) as demonstrated here is expected to
significantly improve the state of the art in the future.

VII. CONCLUSION

A methodology for reliably estimating the intrinsic di-
mensionality of random media was developed. The method
resolves the ambiguity in results for images with low bit depth
when using state-of-the-art techniques that employ the Eu-
clidean (L2) norm. The following are the main contributions
of this work.

(i) Maximum-likelihood estimates of dimensionality can
undergo a significant distortion because of image quantiza-
tion. For infinite level quantization (analog), all Minkowski
p-norms yield the same value for dimensionality. When the
image is quantized, the MLE estimate increases with the
Minkowski p parameter. We provided proofs of this result in
Sec. VI.

(ii) The L1-norm produced the most consistent estimate.
This was the consequence of mathematical properties of the
MLE estimate for different levels of quantization.

(iii) For microstructure images, where the object of interest
is not localizable, it was possible to estimate the dimensional-
ity of the random images because the estimate homogenized.
Specifically, for a SiC/SiC fiber composite, it was found that
the dimensionality estimate homogenized, in this case, at 40
dimensions.

(iv) We conjectured that the processing-microstructure-
property paradigm is actually a linking of three sparse
domains, each describing the material. We showed that it was
possible to infer characteristics of a sparse generator domain
from high-dimensional images produced by the generator.

This was shown for a simulated data set and one constructed
with phase field modeling.
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APPENDIX A: EFFECTS OF PARTICLE INTERSECTIONS
WITH BOUNDARIES

In the data sets used in this paper, we avoided the intersec-
tion of the particle shape with the image boundary to get an
unbiased estimation of the dimensionality. In general, image
boundaries can play a role in biasing the intrinsic dimension.
Consider the case of a single circular shape placed in a matrix.
If the shape intersects the boundary, only a part of the shape
is seen and an intrinsic dimensionality of 3 as judged from the
data set assumes that the shape always remains a circle. To test
this, we have plotted results from two data sets, one with and
one without boundary intersections. We consider sufficiently
high sample size (3000 images) and image size (128 × 128)
for each case.

The histogram of estimated dimension per data point is
plotted in Fig. 12(a), showing that the algorithm is able
to predict the correct mean dimension for both cases. The
key difference is that the histogram is broader and a higher
standard deviation is obtained when the circles intersect the
boundary. Another case is shown in Fig. 12(b), where the
circle is linearly placed along the centerline. Here two distinct
peaks are seen in the histogram where the circles are freely
placed, with the first peak at a lower intrinsic dimension. The
mean dimension is again correctly estimated for both cases
with a higher standard deviation for the case where circles
intersect the image boundaries. A case where the circles are
periodic is also shown here, where the circles wrap around on
the opposite side when they intersect the boundary. While this
case shows a single sharp peak as in the case where boundaries
are avoided, the standard deviation is higher than that case.

APPENDIX B: ESTIMATE OF MINKOWSKI p-NORM
DISTANCE TO THE kth NEIGHBOR

Equation (28) simplifies to

Fk (rp) =
⎛
⎝(

cprμ
p

)k−1

�(k)
e−cprμ

p

⎞
⎠cpμrμ−1

p

=
[

ck
pμ

(
1

�(k)

)]
rμk−1

p e−cprμ
p .
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(a) (b)

FIG. 12. Histograms of estimated dimension per data point. (a) Two cases are considered: A circle of varying radius is freely placed in one
case (d = 3.2) and avoids boundary (d = 3) in another case. (b) Here the circle is linearly placed along the centerline. A case with periodicity
is included. The insets show a superposition of a few different images in each data set.

Inserting this into Eq. (29), we obtain

T k (p) =
∫ ∞

0
rpFk (rp)drp

=
[

ck
pμ

(
1

�(k)

)]∫ ∞

0
rμk

p e−cprμ
p drp.

Changing the integration variable with ξ � cprμ
p (rp =

ξ 1/μc−1/μ
p ), we obtain

T k (p) =
[

ck
pμ

(
1

�(k)

)] ∫ ∞

0

(
ξ 1/μc−1/μ

p

)μk
e−ξ d

(
ξ 1/μc−1/μ

p

)

= c−1/μ
p

(
1

�(k)

)∫ ∞

0
ξ k+1/μ−1e−ξ dξ .

The integral is, by definition, �(k + 1/μ) [38], which we
obtain by substituting

T k (p) = c−1/μ
p

�
(
k + 1

μ

)
�(k)

.

APPENDIX C: MLE DERIVATION WITH THE
MINKOWSKI DISTANCE MEASURE

The Poisson rate can be written in terms of the radius r
based on a Minkowski p-norm as

λ∗(r) = f (m)Vp(μ)μrμ−1. (C1)

The log-likelihood of the 1D Poisson process can be written
as

L(μ, θ ) =
∫ R

0
ln(λ∗)dN (r) −

∫ R

0
(λ∗)dr. (C2)

Using the conversion ln f (mi ) = θ , we get λ∗(r) =
eθVp(μ)μrμ−1 We can plug this into L as follows:

L(μ, θ ) =
∫ R

0
[θ + ln(Vpμrμ−1)]dN (r) −

∫ R

0
eθVpμrμ−1dr.

(C3)

Maximizing likelihood with respect to θ using ∂L
∂θ

= 0, the
second term independent of θ vanishes, θ terms comes out

of the integral, and the remaining integrals can be trivially
evaluated as

∂L

∂θ
= N − eθVp(μ)Rμ = 0, (C4)

N = eθVp(μ)Rμ. (C5)

Maximizing likelihood with respect to μ, we get

∂L

∂μ
= ∂

∂μ

∫ R

0
ln(eθVpμrμ−1)dN − ∂

∂μ

∫ R

0
eθVpμrμ−1dr.

(C6)

Evaluating the first term only, we obtain

∂

∂μ

∫ R

0
ln(eθVpμrμ−1)dN

= ∂

∂μ

(
ln(eθVpμ)N + (μ − 1)

∫ R

0
ln(r)dN

)
(C7)

= ∂

∂μ

(
θ + ln(Vpμ)N + (μ − 1)

∫ R

0
ln(r)dN

)
. (C8)

The first term vanishes and the second and third terms can be
differentiated as follows, using ∂Vp

∂μ
= V ′

p:

∂

∂μ

∫ R

0
ln(eθVpμrμ−1)dN =

(
V ′

p

Vp
+ 1

μ

)
N +

∫ R

0
ln(r)dN.

(C9)

The second term is given by

∂

∂μ

∫ R

0
eθVpμrμ−1dr

= ∂

∂μ
eθVpμ

∫ R

0
rμ−1dr

= eθ ∂

∂μ
(VpRμ) (C10)

= eθV ′
pRμ + eθVp(μ)Rμ ln(R). (C11)
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Using N = eθVp(μ)Rμ, we get

∂

∂μ

∫ R

0
eθVpμrμ−1dr = V ′

p

Vp
N + N ln(R). (C12)

Combining the first and second terms and putting that back in
∂L
∂μ

, we get

∂L

∂μ
=

(
V ′

p

Vp
+ 1

μ

)
N +

∫ R

0
ln(r)dN − V ′

p

Vp
N − N ln(R).

(C13)

Simplifying

∂L

∂μ
= N

μ
+

∫ R

0
ln(r)dN − N ln(R) = 0 (C14)

and using a numerical approximation for the integral, we
obtain ∫ R

0
ln(r)dN =

N∑
k=1

ln Tk . (C15)

This comes from the fact that numerical increments in the
number of neighbors N is one and the integral is equivalent
to a summation over the logarithm of distances to the kth

neighbor. This leads to

N

μ
= −

(
N∑

k=1

ln Tk

)
+ N ln R

=
N∑

k=1

(− ln Tk + ln R)

=
N∑

k=1

ln
R

Tk
. (C16)

Rearranging the terms

μ = N

(
N∑

k=1

ln
R

Tk

)−1

(C17)

and fixing the number of neighbors k rather than the radius
of the sphere R results in the MLE equation being identical
to that of Levina and Bickel except that Tk is the Minkowski
p-norm:

μ = (k − 1)

⎡
⎣k−1∑

j=1

ln

(
Tk

Tj

)⎤
⎦

−1

. (C18)
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