
SoCGuard: A Runtime Verification Solution for the

Functional Correctness of SoCs
Rawan Abdel-Khalek and Valeria Bertacco

Department of Computer Science and Engineering, University of Michigan

{rawanak, valeria}@umich.edu

Abstract—The system-on-chip design methodology is charac-
terized by delivering a very high level of design complexity in
a short development time. While this aspect is precisely what
makes SoCs appealing, it also creates a unique challenge for
their verification, requiring the system to be validated as a whole,
besides checking the correctness of each of its components. In
this paper, we propose a runtime correctness solution for SoCs
where we equip each component with two modes of operation: a
default high performance one, where all components capabilities
are active, and a basic mode where only baseline modules are
in operation, so that all basic functionality can be delivered,
but performance is not optimized. By alternating between these
two modes of execution on individual components, or on all
components together, we can carefully sidestep both component
and integration bugs that have escaped into the manufactured
product. Our experimental evaluation on a LEON3 SoC shows
that this solution incurs only 4% area overhead and less than
5% performance impact in most cases.

I. INTRODUCTION

System-on-chip is a well known design paradigm that has

been of interest for many years and constitutes the underlying

structure of many electronic systems. SoCs integrate multiple

IP cores onto a single chip; they are connected by standard

interfaces such as buses and provide a wide range of functions

in a highly compact form. The high level of integration of

these different components makes SoCs a smaller size and a

higher performance alternative to multi-chip solutions. One of

the key reasons for the widespread adoption of SoC design

lies in the ability to obtain and re-use existing IP blocks and

directly integrate them into a new SoC solution, leading to

much lower system development cost and time. In contrast,

the development costs of ASICs have become prohibitively

high, leading to a steady downtrend in the number of new

ASIC developments started each year.

Despite the many advantages of SoCs, there are still many

challenges that need to be resolved, particularly in their

validation. Verifying a SoC requires verifying the individual

IP blocks, their integration, and the system as a whole.

With continuous scaling of silicon and increasing performance

demands, IP cores themselves are becoming more complex.

More functionality can also be integrated on a single chip,

increasing the overall SoC system complexity as well. On

the other end, current verification practices in the industry

are far from ensuring complete functional correctness, due

to time and computational resource constraints. Traditional

pre-silicon verification approaches are incapable of scaling

to the complexity of modern SoC designs or reaching good

validation coverage. Because adequate verification of the in-

dividual components and of all system-level interactions is

not attainable, bugs routinely escape into SoCs. While some

functional bugs can be sidestepped by adapting the software

layer (in the case of embedded systems), this approach is

often not viable. Moreover, software workarounds my have

a large impact on system performance and may not be viable

if the platform is open source. As a result, bugs that escape

into the manufactured SoC might manifest during runtime,

potentially compromising its functionality, safety, and security

and/or forcing a recall of the product.

In this paper, we propose SoCGuard, a novel approach that

targets the correctness of the runtime operation of SoCs. Our

solution ensures that individual components of an SoC are

operating only within the functionally correct sub-domains that

have been validated during the development phase. We achieve

this goal by equipping each component with two modes of

operation: a default high performance mode and a safe basic

mode. The basic mode bounds the component to only execute

behavior that has been previously verified, thus it is guaranteed

to be correct. Integration issues may also be addressed by

validating system integration only in the scenarios that occur

when all components are in basic mode; and then forcing

a system-wide basic mode whenever a potential integration

bug is detected. By providing correctness guarantees at the

component-level and bypassing bugs at the integration level,

we enable a methodology where designers can release SoCs

with high confidence in their functional correctness.

SoCGuard is a design-for-verification paradigm that can

also be incorporated into the design of every IP unit. Vendors

can provide basic modes of operation for their IPs, ensuring

that they can always function within a safe subset of their

operation. SoC developers can leverage this mode to provide

a complete runtime correctness solution for their full system.

A. Contributions

SoCGuard is a novel, distributed verification approach that

ensures that SoC’s building blocks are operating only within

the set of scenarios that have been exercised and verified

during their development. At runtime, we monitor the state

of each SoC component to detect when it is about to enter

an unverified state, and then we force the component into a

safer basic mode of operation. The basic mode is a simpler

yet slower mode that uses only a subset of that component’s

functions or units, but still allows it to carry out all basic

functionality. The basic mode is easier to verify during the

development phase, because the range of concurrent activity

within it is minimal. Thus the correct operation of the IP

can be guaranteed in this mode. During verification, we track

the scenarios that are being validated, and we generate a

combinational block compactly encoding those scenarios. The

inputs to the block are a small set of critical control signals

in the component, representative of its high-level activity.

Many integration issues can be avoided with this solution

alone. If one component is in basic mode, the complexity of

its system level interactions is also limited, and often this is

sufficient to reduce the diversity of interactions at the system

level and bypass escaped bugs. We also provide a basic mode

solution for system integration. By monitoring the activity in

the bus or interconnect of the SoC, we can detect when the

system is about to enter a potential integration bug. The bus

can then communicate to all components to enter their basic

mode to bypass the issue. It is then necessary to prove that

the system operates correctly when all components are in basic

mode, a viable option, given the simplicity of the basic mode.

As we show in the experimental results, our approach can

be applied to a wide range of IP blocks and it introduces a very

small area (4%) and performance (less than 5% in most cases)

overhead. The area costs are mainly due to the error detection

blocks, while the performance impact is directly related to the

quality of the design-time validation effort.

The rest of the paper is organized as follows: Section III

describes our runtime verification solution. Sections IV and V

discuss the error detection and recovery mechanisms in detail.

Section VI presents our experimental evaluation and illustrates

how SoCGuard can be applied to the LEON3 SoC.

II. RELATED WORK

Mainstream verification methodologies for SoCs in industry

rely heavily on simulation to test IP blocks and their integra-

tion. Most work in this area focuses on improving simulation

tools and methodology. The contributions in [1]–[5] aim at

improving test generation to achieve high verification cov-

erage, and at developing better automated tools to facilitate

the verification of large-scale systems. Other work explores

techniques to better model the design and its specifications [6].

Finally, other approaches focus on formal verification, target-

ing only specific modules to bypass the scalability challenge.

For example, [7] uses symbolic model checking to verify the

PCI bus protocol.

However, SoC correctness is still a challenge exacerbated by

design complexity, short development times, and limitations of

current verification tools [8]–[10]. In this context, the work in

[8], describes some practical approaches to SoC verification,

and discusses the need for interface checkers, which ideally

should be supplied with IP cores to detect interface protocol

violations and provide test coverage metrics. Our work shares

with this approach the idea of embedding checkers in the

design; however our checkers are to be used at runtime instead

of design-time, and provide a solution to avoid functional bugs

post system manufacturing. Our embedded monitors track the

runtime operation of each IP to ensure that they are operating

only within previously verified states. Within the area of

runtime verification, we are not aware of any previous work

that targets the SoC design paradigm, but some solutions have

been suggested for processor cores. DIVA [11] augments a

high performance processor with a formally verified “checker

core” that trails the execution of the actual core and overrides

its results when it detects an error. Our solution shares with

DIVA the idea of a runtime detection mechanism, however

we target a broad range of components and do not require the

addition of a simple copy of the design to bypass the error.

Other recent works in runtime validation rely on patching-

based techniques applied to processor cores and cache coher-

ence mechanisms, as proposed in [12]–[14]. Bug signatures

are programmed into an added hardware module that triggers

a recovery process whenever an error is flagged. The main

disadvantage of these techniques is that they can only protect

the system from bugs after they have been identified in

a released product. In contrast, our work can prevent the

occurrence of bugs, even if unknown, since it triggers a system

recovery whenever a component enters an unverified state,

which may or may not include a bug.

Finally, in [15], Wagner proposes adding a “semantic

guardian” to a processor core to monitor its state, so that

when an unsafe state is detected, its executions switches

to a safe mode. The safe mode re-executes the instruction

using only those processor units that have been previously

formally verified. That solution focuses only on processor

cores, whereas our work provides a novel general solution that

can be applied to a wide range of IP components in an SoC.

We also propose a technique to integrate the use of multiple

runtime checkers within a system, and present a new design

methodology that incorporates SoCGuard in the design process

of third party IPs to assist in the verification of SoC integration.

III. SOC RUNTIME VERIFICATION

A. Solution Approach

Our runtime verification method provides error-free execu-

tion for individual components of a SoC. We augment each

IP with a matcher circuit, which tracks that unit’s runtime

execution. When the matcher detects that its corresponding

component is entering a potentially erroneous situation, it flags

an error. We consider any state of the component that has not

been observed during pre-silicon validation as an error state

that could lead to a functional bug, and thus should be flagged.

Once an error is flagged, the unit’s operation switches from its

high-performance mode to a basic mode of operation. Figure

1 outlines this execution flow in a simple SoC example. The

basic mode disables the performance features of the design

making it simpler and less prone to functional design bugs.

One of the key features to disable is the ability to process

multiple transactions or requests simultaneously. In addition,

all modules and features within the unit that contribute only

to its performance, but not to its baseline functionality, are

disabled. The basic units of a design tend to be simple,

amenable to verification and, in most cases, can be guaranteed

to work according to specifications. In contrast, the per-

formance enhancements introduce increasing complexity and

IP
normal
mode

IP
normal
mode

IP
normal
mode

Matcher Matcher

Matcher

IP
normal
mode

Matcher

Matcher

Matcher

IP
normal
mode

Matcher

Matcher

IP
normal
mode

Matcher

Normal
mode

Matcher monitors
execution

Normal
 mode

Matcher detects
error

Basic mode for
error bypass

Matcher

Resume normal mode

IP
normal
mode

IP
normal
mode

Matcher Matcher

IP
normal
mode

IP
basic
mode

Matcher Matcher

Matcher

IP
normal
mode

Matcher

Matcher

IP
basic
mode

Matcher

Normal mode Error detected Recovery

Fig. 1. Overview of SoCGuard. A matcher circuit is added to each IP
component of the SoC. Any matcher can switch the corresponding IP to its
basic mode upon detecting an error. In addition, the interconnect includes a
matcher that allows it to toggle all units to basic mode. The bottom part of
the figure shows the runtime execution flow, with snapshots of the system in
each state shown above.

corner cases that might be missed during testing. Therefore,

executing in basic mode allows the component to operate in a

verified subset of its state space, thus bypassing the unverified

state. In the case of errors detected in different components of

the SoC, each of these components enters its own basic mode,

independently of other components in the system. However,

if an error is detected in the SoC interconnect, then all

components are forced into their basic mode of operation.

As an example, Figure 2 shows how a processor may

operate in basic mode. The basic pipeline stages and main

functional units are sufficient for the execution of the complete

ISA. Whereas features such as branch prediction, pipelining,

data forwarding, out-of-order execution serve only the purpose

of boosting a system’s performance, and are therefore not

active in basic mode. Similarly, the basic operation of a

communication bus is to allow each component to read and

write to the bus. Additional performance features, include

complex arbitration, burst operations, and multiple units ac-

cessing the bus at a given time. Similar approaches can also

be applied to designs based on controllers or state machines.

Consider the cache controller example shown in Figure 3,

whose normal mode of operation consists of handling cache

accesses and transferring of data between memory, cache

and microprocessor. A basic mode of operation for such a

controller bypasses the cache and fetches data directly from

memory, one word at a time. Therefore, it only uses a small

portion of its complete state machine, which is much simpler

and amenable to complete verification.

While an SoC component is operating in its basic mode,

the number and frequency of its input and output signaling

activity may become lower and simpler. For example, when

a processor is executing in basic mode, it only fetches the

next instruction when the current instruction is committed.

Therefore, the frequency of data transfers between it and

the cache and between the cache and memory decreases

significantly, even when just the processor is in basic mode,

simplifying the interconnect interactions and arbitration, as

illustrated also in Figure 4. This simplification of system-

Multiplier

IF ID

ALU

Branch prediction

unit

Forwarding

control logic

WB

Normal mode

ALU

ALU

LD/ST
unit

Multiplier

IF ID

ALU

Branch prediction

unit

Forwarding

control logic

WB

Basic mode

ALU

ALU

LD/ST
unit

Fig. 2. Basic mode of operation for a typical processor data path. The
basic mode is created by “switching-off” performance enhancement features
such as branch prediction, pipelining, data forwarding, out-of-order execution,
etc. This results in a simplified execution, with only one instruction in flight
at a time, which is much easier to verify for error-free operation.

level interactions creates a basic mode for the SoC integration.

During the development and testing of a SoC, simple system

level interactions are more likely to be exercised, whereas bugs

tend to manifest in more complex scenarios or corner cases,

when multiple activity is ongoing simultaneously. Therefore,

at runtime, when an SoC switches to basic mode, the overall

system tends to exercise functionality that reflects more closely

what has been verified at design time.

Idle
state

memory
read/
write

cache
write
access

cache
read

access

cache
line

replace

read

cache hit

write

cache hit

read/write

cache miss

If
(#
 o
f
b
lo
c
k
s
 f
e
tc
h
e
d

<
 l
in
e
_
s
iz
e
)

c
a
c
h
e
 w
rite

 d
o
n
e

Basic modeNormal mode

Idle
state

memory
read/
write

cache
write
access

cache
read

access

cache
line

replace

read request

cache hit

write

cache hit

read/write

cache miss

If
(#
 o
f
b
lo
c
k
s
 f
e
tc
h
e
d

<
 l
in
e
_
s
iz
e
)

c
a
c
h
e
 w
rite

 d
o
n
e

Fig. 3. Basic mode for a cache controller FSM. The cache controller’s
basic mode operation is to fetch data directly from memory, one word at a
time, bypassing the cache. The figure shows an example of a complete cache
controller on the left side, and its corresponding basic mode on the right. The
basic mode effectively uses only a small fraction of the FSM’s original states,
making it much easier to verify.

B. Integration in SoC Development Flow

The SoCGuard approach is well suited for an effective

design-for-verification paradigm. Verifying a SoC requires

verifying that each IP is correct by itself and as part of the

system. The IP blocks can themselves be very complicated

and take up a lot of verification effort; system interactions

are complex and difficult to verify as well. Our SoCGuard

methodology has IP vendors providing a basic mode of

operation for each of their components and, thus reducing

their own verification effort and also that of their customers.

First, verification of the component itself is simpler: the efforts

can concentrate on the basic mode to validate it completely

and simulation-based validation can focus on typical execution

scenarios. However, if an operation is missed during testing,

it is less likely to expose an escaped bug at runtime, since the

hardware can switch to basic mode. Second, this approach also

facilitates the verification of system integration: SoC designers

would have assurance that the IP units, even those from

third parties, are functioning only within previously validated

states. In addition, the basic mode of the units creates a

simple basic mode for SoC integration in which pre-silicon

verification of system integration becomes easier, resulting

in higher confidence in its functional correctness. The SoC

designers still need to verify system integration in normal

mode for common behavior patterns, to the extent permitted

by time and available verification resources, and, based on

that, generate a matcher circuit for their interconnect bus or

logic. If and when this matcher is triggered at runtime, it

would switch all IP components into their basic mode, thus

bringing the system back into the basic integration mode that

has been thoroughly validated. Therefore, the ability to default

at runtime to a verified basic mode, leads to a more relaxed

correctness requirement for the system.

System-level Interactions Fewer system-level

interactions

Normal

mode

Basic

mode

IP

basic mode

IP

basic

mode

IP

basic

mode

IP

normal mode

IP

normal

mode

IP

normal

mode

Fig. 4. Basic mode for SoC integration. A basic mode for the system-level
SoC can be attained in two ways: i) often simpler system interactions occur
because one or more of the individual IP units is operating in basic mode. ii)
SoCGuard includes also a matcher associated with the SoC interconnect that
can trigger a basic mode in all the system’s IP units, thus resulting in much
simpler and less frequent interactions.

IV. ERROR DETECTION

One of the central aspects of SoCGuard is detecting when

a hardware component is encountering an error. In order to

monitor an IP unit’s operation, we first identify the most

relevant control signals affecting its operation. We only need

to consider signals that impact the behavior outside the basic

mode, since we ensure formal correctness of the basic mode.

During pre-silicon validation, we monitor these critical control

signals and record the observed values. The sequence of

vector values obtained is then synthesized and optimized into

a combinational logic block, which constitutes the matcher

for the IP unit. In our implementation, we encoded the

vector values as a simple sum of products and optimized

them using Espresso [16]. The matcher is added to its IP

unit and connected to the selected control signals. During

runtime, any monitored state outside the recorded set of vector

values is flagged by the matcher as a potential bug. Figure 5

illustrates the development flow of a SoC with a SoCGuard-

based verification methodology.

In choosing the control signals to monitor in an IP unit, we

use a combination of manual effort with an automated process.

We first run several benchmarks while that IP is forced to

operate exclusively in basic mode and again while it is forced

to operate only in normal mode. By comparing the switching

activity of control signals during these two processes, we

can identify candidate signals to observe: good candidates

are signals with a much larger switching activity in normal

mode than in basic mode. These are the signals that are mostly

involved in optimization features or interactions between op-

erations. For instance, in a processor, control signals involved

in data forwarding or pipeline flushing exhibit this switching

pattern. An additional group of candidates are signals with

relatively few transitions or the same number of transitions

in both normal and basic mode. These can represent signals

that were not triggered often during validation, either because

of poor quality testbenches or because they are involved in

rare corner case situations. They can also include control

signals that identify the type of operation being executed. For

our processor core example, signals related to interrupts and

exceptions and signals identifying the instruction opcode fall

under this category. After narrowing down the list of candidate

signals, we then run another automated process that eliminates

control signals irrelevant to the actual design, such as VHDL

or language-specific signals or debug signals. Finally, it is

possible to further narrow down the list of signals to monitor

through manual inspection. In our experiments, by applying

this technique to the integer pipeline, we identified 600 control

signals in the design. The automated process narrowed this

set down to 190 potentially relevant signals, from which we

manually picked 54 signals. Note that the higher the number

of monitored signals, the better is the accuracy of the matcher,

and the less frequently potential errors would be flagged,

triggering recovery. However, encoding more complex states

into a matcher increases its area overhead, resulting in a design

trade-off that can be tuned based on external constraints.

Identify
basic
mode

Identify
monitored
signals

IP unit
validation

Synthesize
vector values
into matcher

collect
states

IP basic mode
formal verification

Fig. 5. SoC development and verification flow using SoCGuard’s
methodology. Designers of each IP unit first identify its basic mode of
operation. Then, the control signals to be monitored are determined as
described in Section IV. The IP undergoes a traditional validation process,
while its basic mode is formally verified. The signal values collected are
encoded into a combinational circuit and optimized to form the matcher.

V. ERROR BYPASS AND RECOVERY

When a matcher circuit detects a possible error state,

it switches the SoC component from its normal, high-

performance mode to the basic mode. As soon as a potential

error is detected, the component is stalled and prevented

from completing its current operation. The potentially unsafe

operation is then executed and completed in basic mode. Since

the basic mode is just a simpler execution framework that

excludes all optimization features, it eliminates several com-

plex interactions and corner cases that tend to be error prone

and easily missed during design-time validation. The units

involved in basic mode are therefore easier to verify whether

through extensive simulation or through formal verification,

and completely guaranteed to be correct. By letting the unsafe

operation complete in basic mode, we have a much higher

guarantee that no other functional bugs will manifest during

the recovery phase and that the unsafe operation will be carried

out correctly. In general, an SoC and its IP components usually

undergo significant simulation-based validation before they are

released to the market. The scenarios that are validated tend

to be the most common execution scenarios, those that occur

with the highest frequency at runtime, since those are also the

easiest ones to reproduce in validation. Therefore, at runtime,

IP units enter in basic mode infrequently, because unverified

states and corner cases that escaped design-time validation

tend to rarely occur, which explains why they could not be

reproduced in simulation. As a result, we expect SoCGuard to

have a small runtime profile.

VI. EXPERIMENTAL EVALUATION

As a case study of adopting the SoCGuard approach, we

implemented our solution on LEON3, a VHDL-based model of

a SoC. We chose to target the processor’s integer pipeline unit

and the instruction and data cache controllers, as examples of

components in which we incorporated our runtime verification

method. We simulated several benchmarks from the MiBench

suite [17] on the LEON3 at the RTL level and evaluated the

performance impact and area overhead of our approach.

A. Evaluation Platform

The LEON3 includes a 32-bit 7-stage in-order processor,

compliant with the SPARC V8 architecture, in addition to a

processor bus that connects it to multiple peripheral devices.

We categorized the functionalities of the integer pipeline into

those required for basic mode and those included only in the

normal mode. The basic mode included all units that would

allow it to execute one instruction at a time, which reduced

the complexity that arises from having multiple instructions

in flight and eliminated the use of data forwarding, stalling,

and instruction nullifying logic. Using the method described

in section IV, some of the critical signals that were chosen

for the matcher to monitor were control signals involved in the

stalling control logic, data forwarding, and exception handling,

giving a total of 54 signals.

We also implemented our solution on the instruction and

data cache controllers of LEON3. The cache controllers are

similar to the one shown in Figure 3. The basic mode consists

of fetching data directly from memory while bypassing the

cache and eliminating burst requests. Some of the monitored

control signals include cache access signals, request and grant

signals between cache and memory or processor, control

signals related to cache replacement policies, etc.The number

of signals chosen to be monitored for the instruction and data

cache controllers were 53 and 41, respectively.

-

5

10

15

20

25

30

35

%

p
e
rf
o
rm
a
n
c
e
 d
e
g
ra
d
a
ti
o
n

20%-matcher

10%-matcher

Fig. 6. Performance impact of SoCGuard. The graph plots the performance
slowdown of the system running the MiBench benchmarks with SoCGuard
vs. a baseline solution, with two different sets of matchers: one generated
by collecting vector values over 10% of the testbench execution, and one by
collecting 20%. Most benchmarks show <5% performance degradation. The
performance impact is directly related to the frequency of occurrence of non-
validated behavior and adding more vector values into a matcher decreases
the frequency of basic mode operation, leading to better performance.

B. Results

Based on the control signals selected for each IP unit,

we collected the vector values to encode into the matchers.

These should represent the set of states observed during SoC

design-time verification. Based on the idea of using statistical

sampling proposed in [18], we collected the vector values

by uniformly sampling a portion of each benchmark. The

sample size was chosen such that the vector values collected

from each benchmark accounted for 10% of the total dynamic

vector values observed during that benchmark’s execution. We

sampled all the vector values for 1% of the dynamic execution

time every 10% of execution. We then repeated the analysis

using samples from 20% of execution.

The three matcher circuits were synthesized by combining

the samples from all benchmarks together. The performance

of the LEON3 equipped with SoCGuard is reported in Figure

6: the graph reports performance overhead normalized to a

baseline LEON3 solution for the MiBench testbenches. As it

can be noted, the impact is less than 5% for most benchmarks.

The overhead is due to basic mode execution every time one

of the matcher circuit flags an error. In qsort_large and

CRC, there is almost no performance impact, since for these

benchmarks the states encoded into the matcher were a good

representative sample of their execution, and the basic mode

was triggered rarely. In contrast, for rsynth and gsm, whose

impact is notable, we found that the vector values collected

from 10% of the benchmarks were not well representative of

most of their execution. Note also how the matchers based

on 20% samples impact overall performance: the overhead of

all benchmarks decreases and in particular the overhead of

gsm decreases to 7% and that of rsynth to 17%. We also

evaluated the performance cost for one occurrence of the basic

mode: when it is triggered by a single component, the basic

mode last approximately 30 cycles, when it is system level

triggered, it lasts on average 400 cycles.

To further analyze SoCGuard, we also inserted several

Bug name Bug description

branch stall stalling data dependent branch

inst nullify1 nullifying instruction following consecutive jumps

inst nullify2 nullifying instruction following a jump and a branch

branch delay branch nullifying branch delay slot

store double write control signals of store double instruction

icache tag icache tag address

TABLE I
Design bugs inserted into LEON3.

Bug name
basicmath

qsort large dijkstra FFT CRC32
large

branch stall

0.25% 0.28% 0.04% 0.27% 5 × 10
−5%

4.06% 3% 2.02% 5.8% 0.005%

87.6% 73.05% 42.23% 116% 0.37%

inst nullify1

0.006% 25 × 10
−5% 0.04% 0.01% 10

−4%

0.18% 8.5 × 10
−4% 0.17% 0.08% 0.006%

5.05% 0.14% 3.97% 3.21% 0.38%

inst nullify2

0.006% 10
−4% 10

−4% 10
−4% 10

−4%

0.17% 6 × 10
−4% 0.02% 0.02% 0.005%

5% 0.13% 0.82% 0.99% 0.37%

branch delay

0.47% 0.4% 0.03% 0.53% 0.002%

0.16% 5 × 10
−4% 0.02% 0.03% 0.005%

3.72% 0.02% 0.36% 0.73% 0.37%

store double

0.18% 0.22% 0.016% 0.21% 0.003%

1.82% 2% 0.07% 3.04% 0.02%

40.8% 45.93% 1.54% 58.53% 0.65%

icache tag

0.02% 0.066% 0.06% 0.02% 0.004%

0.18% 7 × 10
−4% 2.3% 0.063% 0.005%

3.48% 0.13% 43.58% 2.22% 0.37%

TABLE II
Peformance overhead in the presence of design bugs. The values
reported are the rate of occurrence of a bug, followed by the basic

mode rate and the performance impact relative to normal mode.

functional design errors into the LEON3 (Table I), and we

ran benchmarks on the “buggy” designs. With SocGuard, all

benchmarks complete correctly, while in the “buggy” baseline,

they crash or produce incorrect results. Table II reports the rate

at which each bug is triggered, followed by the percentage of

times the execution enters basic mode and the overall per-

formance impact. The basic mode is triggered either because

the bug manifests or because the execution encounters a state

not encoded in the matchers. The more frequently the basic

mode is triggered, the higher the performance cost incurred.

This relation between performance and design-time validation

is a trade-off that can be selected by the design team. As a

result, with SoCGuard, a limited design-time validation effort

no longer has catastrophic implications on the quality of the

final product, but simply has a performance cost, which can

be budgeted and controlled.

Finally, we synthesized the baseline LEON3 SoC and the

three matcher circuits using Synopsys’ Design Compiler and

evaluated the area overhead of SoCGuard (Table III). We

found that the 10%-matchers, all together, introduced an area

overhead of 4.17%, while the 20%-matchers cost 4.25% extra

silicon over the baseline.

VII. CONCLUSION

In this paper, we presented SoCGuard, a runtime verification

solution for SoCs. SoCGuard monitors the runtime operation

of individual IP units in the SoC, and switches a unit into a

basic mode of operation when it detects the occurrence of

a state not validated at design time. The basic mode is a

simple execution mode that excludes all complex performance

integer icache dcache total
pipeline controller controller overhead

10%-matcher 1.63 0.44 2.10 4.17

20%-matcher 1.64 0.46 2.15 4.25

TABLE III
Area overhead of the matchers relative to the LEON3 baseline,

reported in % for the 10% and 20% matchers.

and optimization features of the unit. Runtime correctness for

SoC integration is attained by two means. First, when an IP

unit is in basic mode, its system-level interactions are also

simplified. Second, we equip the SoC interconnect itself with

a monitor that tracks system-level communication and can

trigger the basic mode for all IP units. These two techniques

together enable the SoC design’s validation effort to be traded-

off with performance, thus reducing pressure on the design-

time verification. In addition, SoCGuard allows IP vendors to

ship their components with embedded matchers, which SoC

designers can leverage to build a system-level matcher and to

verify the basic mode for their integrated system.

REFERENCES

[1] R. Emek, I. Jaeger, Y. Naveh, G. Bergman, G. Aloni, Y. Katz,
M. Farkash, I. Dozoretz, and A. Goldin, “X-gen: a random test-case
generator for systems and SoCs,” in HLDVT, 2002.

[2] X. Xu and C.-C. Lim, “Using transfer-resource graph for software-based
verification of system-on-chip,” Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 7, pp. 1315 –1328, july 2008.

[3] K. U. Bhaskar, M. Prasanth, G. Chandramouli, and V. Kamakoti, “A
universal random test generator for functional verification of micropro-
cessors and system-on-chip,” in VLSID, 2005.

[4] D. Geist, G. Biran, T. Arons, M. Slavkin, Y. Nustov, M. Farkas, K. Holtz,
A. Long, D. King, and S. Barret, “A methodology for the verification
of a “system on chip”,” in DAC, 1999.

[5] M. Lajolo, M. Rebaudengo, M. S. Reorda, M. Violante, and L. Lavagno,
“Behavioral-level test vector generation for system-on-chip designs,” in
HLDVT, 2000.

[6] Q. Zhu, T. Nakata, M. Mine, K. Kuroki, Y. Endo, and T. Hasegawa,
“System-on-chip verification process using uml,” in UML Satellite
Activities, 2004.

[7] P. Chauhan, E. M. Clarke, Y. Lu, and D. Wang, “Verifying ip-core based
system-on-chip designs,” in IEEE ASIC/SoC conference, 1999.

[8] G. Mosenson, “Practical approaches to SoC verification,” in DATE user
forum, 2000.

[9] N. Bamford, R. K. Bangalore, E. Chapman, H. Chavez, R. Dasari, Y. Lin,
and E. Jimenez, “Challenges in system on chip verification,” in MTV,
2006.

[10] W. Stapleton and P. Tobin, “Verification problems in reusing internal
design components,” in DAC, 2009.

[11] T. M. Austin, “Diva: a reliable substrate for deep submicron microar-
chitecture design,” in MICRO, 1999.

[12] I. Wagner and V. Bertacco, “Caspar: Hardware patching for multicore
processors,” in DATE, 2009.

[13] I. Wagner, V. Bertacco, and T. Austin, “Shielding against design flaws
with field repairable control logic,” in DAC, 2006.

[14] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder, and
J. Torrellas, “Patching processor design errors with programmable
hardware,” IEEE Micro, vol. 27, no. 1, pp. 12–25, 2007.

[15] I. Wagner and V. Bertacco, “Engineering trust with semantic guardians,”
in DATE, 2007.

[16] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli,
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, 1984.

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in WWC ’01: Proceedings of the Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop,
2001, pp. 3–14.

[18] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. D. Bosschere, “Statistical
simulation: Adding efficiency to the computer designer’s toolbox,” IEEE
Micro, vol. 23, pp. 26–38, 2003.

