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Abstract—As transistor counts continue to scale, modern
designs are transitioning towards large chip multi-processors
(CMPs). In order to match the advancing performance of CMPs,
on-chip interconnects are becoming increasingly complex, com-
monly deploying advanced network-on-chip (NoC) structures.
Ensuring the correct operation of these system-level infrastruc-
tures has become increasingly problematic and, in order to
avoid the potential for functional design errors manifesting into
the final product, there is a need for mechanisms to safeguard
communication integrity at runtime.
In this paper, we propose SafeNoC, an end-to-end error detec-

tion and recovery solution to ensure the functional correctness of
CMP interconnects. SafeNoC augments the existing interconnect
with a simple, lightweight checker network that is guaranteed
to deliver messages correctly. For each data message sent over
the primary NoC, a look-ahead signature is transmitted over the
checker network and is used to detect errors in the corresponding
data message. If a functional communication bug is detected, a
novel recovery algorithm reconstructs the data that was in flight
at the time of the error occurrence, ensuring that it reaches
the intended destination. In our experiments, we found that
SafeNoC can recover from a wide variety of errors, with almost
no performance impact in the absence of errors. A lightweight
solution, SafeNoC occupies a 2.41% area overhead in a 64-core
CMP, 7x smaller than common retransmission-based approaches.

I. INTRODUCTION

Due to scaling in semiconductor technology, chip multi-

processors (CMPs) are becoming increasingly large and com-

plex. To fully utilize the performance capabilities of these

multi-core designs, interconnects have transitioned from sim-

ple buses to complex network-on-chip (NoC) architectures. In

a typical NoC architecture, each processor core is connected

to a router through a dedicated network interface unit. Data

messages are divided into packets, which are in turn parti-

tioned into smaller blocks called flits. Packets and flits are

transmitted over the interconnect according to the network’s

routing protocol. To efficiently handle the communication

load among the many cores on chip, NoCs are becoming

increasingly complex, often implementing a wide range of

topologies and providing advanced communication features,

such as adaptive routing. Moreover, routers are also designed

to include complex attributes such as virtual channels, pipelin-

ing, complex allocation schemes, speculation, etc. With such

an intricate communication infrastructure, it is a challenge

to ensure that the interconnect subsystem operates correctly

under all execution scenarios.

Despite massive industry efforts in pre-silicon simulation,

formal verification and post-silicon validation, escaped func-

tional bugs that manifest at runtime are a reality. This is a

prominent issue in processors, where design bugs are often

detected after the release of the product, as can be noted

in several processor errata documents [2], [13], [14], [12],

[15]. As a result of the large number of interactions and the

intricate communication in CMPs, errors in the communication

subsystem now account for a significant portion of the reported

bugs. For example, in the Core 2 Duo and Core i7, at least 10%

and 13% of the design errors reported in the corresponding er-

rata documents are associated with the communication system

[13], [14], despite the CMPs having simple interconnects. As

CMPs transition towards complex NoC-based interconnects,

advanced router architectures, network-level interactions and

concurrent communication make the interconnect highly sus-

ceptible to design errors.

Functional design errors may affect any part of the inter-

connect, particularly those involved in complex operations,

such as virtual channel and switch allocation in routers,

writing and reading from a router’s input buffers, as well

as the routing protocol itself. Therefore, data packets sent

over the interconnect may become corrupted, misrouted, or

even deadlocked. Without an appropriate runtime solution

to ensure that such escaped design errors do not affect the

communication correctness, these issues could lead to critical

loss of data and the failure of software applications or of the

entire system.

A. Contributions

In this work, we propose SafeNoC, a novel approach to

achieve runtime correctness in the communication fabric of

CMPs. SafeNoC is an end-to-end solution that utilizes a novel

recovery technique: upon detection of a design error, SafeNoC

gathers all in-flight data, reconstructs the original packets and

delivers them to their intended destination. By leveraging our

novel recovery solution, we avoid the need to store redundant

copies of data in-flight. To this end, we add to the baseline

NoC a small and simple checker network, which operates

concurrently with the primary interconnect. For each packet

sent over the primary network, a corresponding look-ahead

signature is sent concurrently over the checker network. Each

destination node checks each data packet against the pool of

look-ahead signatures that have arrived at that node. If a match

is not found, a recovery process is initiated: all flits in-flight

in the NoC at the time of the mismatch detection are reliably

transmitted through the checker network to all destination

cores. There, they are reassembled into the original packets

via a software reconstruction algorithm leveraging information

from the signatures available.

SafeNoC greatly enhances the functional correctness of

NoCs by:



• Ensuring that all packets are correctly received at their

intended destinations.

• Leveraging a novel detection and recovery approach that

requires no additional storage for in-flight packets and that

is implemented with small, formally verified hardware.

• Supporting any NoC topology, router architecture and

routing protocol.

• Incurring low performance overhead when an error occurs.

• Maintaining a 7x smaller area footprint compared to com-

mon retransmission-based approaches and minimal perfor-

mance impact in the absence of errors.

II. RELATED WORK

Common design-time functional verification efforts gen-

erally rely on a combination of formal verification and

simulation-based validation approaches. While formal meth-

ods are effective in verifying small portions of the design,

they do not scale to the size and complexity of an entire NoC,

and are not effective in proving network-level properties, such

as the absence of livelock and deadlock. On the other hand,

simulation-based validation solutions are adequate to verify

and debug the interconnect’s most common behaviors. How-

ever, they cannot cover all the countless different operations

and interactions of the network. As a result, critical functional

design errors can often escape verification and manifest in the

released hardware at runtime.

To address the limitations of design-time verification, run-

time solutions have been recently proposed to ensure the cor-

rect transfer of data packets through the interconnect. Several

works focus on the problem of deadlock, with some propos-

ing deadlock-avoidance solutions by forbidding certain routes

[23], and others trying to detect and recover from deadlocks.

DISHA, for example, leverages timeouts for detection, and

then progressively routes blocked packets through a deadlock-

free dedicated link [4]. Other deadlock detection techniques,

such as [19] and [18], propose more sophisticated mechanisms

based on monitoring the activity at the physical channel level.

In contrast, SafeNoC provides protection against several types

of functional errors besides deadlock. Moreover, it uses a novel

detection scheme based on sending look-ahead signatures over

a checker network that is guaranteed to be functionally correct

and a novel recovery approach that is based on collection of

in-flight flits and reconstruction of the original data packets.

Other runtime solutions adopt more general end-to-end

approaches to handle various errors in the network. A common

scheme is the acknowledgment-based end-to-end error detec-

tion and recovery technique, in which a data packet is aug-

mented with error detection codes at the source and checked

for data corruption at the destination. A successful packet

transfer is completed by sending back an acknowledgment

message. Only after the reception of the acknowledgment,

a copy of the packet stored at the source is deleted. If

the acknowledgment is not received within a certain time

interval, the packet can be retransmitted using the source copy.

Similar approaches have also been proposed at the switch

level, where upstream routers wait for acknowledgements from

the downstream routers before deleting a copy of the data

from their buffers[21]. Although this is a simple scheme,

the additional buffer storage required for its implementation

introduces significant area overhead and errors may re-occur

upon retransmission. Moreover, the acknowledgment traffic

degrades the overall runtime performance of the network, even

in the absence of errors. In contrast, SafeNoC maintains a

much lower area footprint by avoiding redundant storage of

in-flight data and using instead a novel recovery process that

collects flits from the network and reconstructs the original

packets. It also incurs a performance impact only when a

functional error manifests in the system, with a negligible

overhead when there are no errors. Finally, SafeNoC does not

rely on the same buggy network to recover from errors, so that

it can handle a wider variety of errors than the retransmission-

based approach.

Several papers have proposed solutions to overcome per-

manent and transient hardware faults in NoCs, such as [11],

[17], [22]. In contrast, SafeNoC targets a different problem, as

it aims at recovering from functional bugs that have escaped

into the design.

We are not aware of any runtime solutions that deal with

design errors in NoCs. However, there has been few such

works for processors, [5], [20], [25]. In general, these solutions

add checker hardware to verify the operation of untrusted

components. SafeNoC is similar to such solutions, in the sense

that it uses a simple and functionally correct checker network

to verify the operation of the complex primary network.

SafeNoC’s detection and recovery mechanisms rely on aug-

menting the original network with a small and lightweight one

that operates concurrrently. The idea of using multiple over-

layed networks has been proposed for various purposes. [6]

and [26] use multiple networks for performance enhancement.

Others, such as TILE64 [7], use separate dedicated networks,

each supporting a distinct functionality of the NoC. Mostly,

these networks share the same topology and are comparable

to each other in complexity. To the best of our knowledge,

SafeNoC is the first attempt to overlay a network with another

low-cost and error-free one to ensure the functional correctness

of the original interconnect.

III. SAFENOC ARCHITECTURE

A. Overview

The SafeNoC solution relies on adding a simple and

lightweight checker network that works concurrently with the

original interconnect. This network is designed to be simple

enough to be formally verified and guaranteed to be free of any

functional errors. As a result, it provides a reliable medium

through which we implement our detection and recovery

processes. In the detection phase, whenever a packet is to be

sent over the primary network, a signature of that packet is

computed and sent through the checker network. The signature

serves as a look-ahead packet and a unique identifier of the cor-

responding main packet, and it is used as a basis for detecting

errors in the main interconnect. When a destination receives a

data packet, it recomputes its signature and compares it against
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Fig. 1: High-level overview of SafeNoC. SafeNoC augments

the original interconnect with a lightweight checker network.

For every data packet sent on the primary network, a look-

ahead signature is routed through the checker network. Any

mismatch between a received packet’s computed signature and

its look-ahead signature flags an error and triggers recovery.

previously received look-ahead signatures. If a match is not

found within a certain timeout period, an error is flagged and

recovery is initiated. During the recovery phase, in-flight flits

and packets are recovered from the network, and reliably trans-

mitted through the checker network to all destinations. Any

destination that has a mismatched signature, runs a software-

based reconstruction algorithm, in which it uses the recovered

flits to reconstruct the original data packets, so that they match

their corresponding signature. Figure 1 shows a baseline CMP

interconnect overlayed with our checker network. Both the

checker router and the NoC router connect to the network

interface, to which we also add two signature calculation

units. Some additions to the primary NoC routers are also

required for recovering in-flight flits. Once all flits have been

recovered, the microprocessor cores run a software algorithm

to reconstruct the original packets.

SafeNoC is not limited to a particular interconnect topology

or router architecture. For our experimental evaluation, we

chose a general baseline router architecture that is input-

queued and uses virtual-channels and wormhole routing. We

also assume the data flit width to be 64-bits and that the

primary routers have built-in error-correcting code (ECC)

functionalities to protect against bit-level data corruption.

B. Checker Network

SafeNoC’s checker network is designed to satisfy three

main properties: i) it should incur minimal area overhead. ii)

it should deploy a simple router architecture, topology and

routing algorithm, so that its design can be easily formally

verified. iii) Finally, it should have low latency, so that it can

deliver look-ahead signatures before actual data packets arrive

through the primary network. Note that these properties are

not a strict requirement for the correctness of the SafeNoC

solution; however additional costs in area, development time

and/or performance are incurred when they are not met. A

checker network that does not deliver signatures before their

corresponding data packets would only introduce a perfor-

mance penalty but would not prevent detection and recovery.

Based on the characteristics of the primary interconnect,

the checker network can be carefully designed in order to

minimize the occurrence of such cases. In addition, since

the checker network is designed to be simple enough to be

amenable to formal verification, it can be assumed that it is

free of functional bugs.

Based on the properties of the baseline primary NoC used

in our evaluation, we chose a ring topology for the checker

network because of its simplicity and small area overhead.

In addition, since the checker network transmits look-ahead

signatures of fixed size (16-bits in our case, as we discuss in

Section III-C), we tailor its channel bandwidth accordingly

so to achieve both efficient bandwidth utilization and area

savings. To optimize the performance of the checker network,

we leverage the simple, single-cycle latency, packet-switched

router, based on the solution proposed in [16].

C. Error Detection

SafeNoC’s primary goal is to ensure that a packet sent over

the interconnect arrives unaltered to the correct destination.

SafeNoC assumes that data within a packet’s flits is protected

by built-in ECC, and thus it does not become corrupted during

transmission. Consequently, our detection scheme considers

that latent functional design errors can either manifest by

affecting the delivery of entire packets, such as a deadlock,

or by affecting the routing of individual flits within a packet,

such as misrouting or re-ordering of flits, but not by corrupting

data bits within a flit. In addition, SafeNoC does not attempt

to localize the functional bug, but instead it detects when the

bug compromises the functional correctness of the NoC and

recovers by reconstructing the packets affected by the bugs.

For each packet sent over the primary network, SafeNoC

sends a corresponding look-ahead signature packet via the

checker network. The signature calculation is based on a

combination of shift-XOR operations. For a signature to

uniquely identify a packet, its value must depend on the

flits’ data values, as well as their order within the packet.

As a result, every flit in the data packet must be augmented

with a flit ID, which is transmitted along with the flit data

on the primary network. The 64-bit data of each flit (see

Section III-A) is rotated by a fixed amount that depends on

the flit’s position. The resulting values are XORed together

into a 64-bit intermediate value. The intermediate value is

divided into 4 parts that are then XORed to give the final

16-bit signature. This solution provides an effective signature

mechanism, which has a very low silicon area profile. It

also has no performance overhead, since the signature is

calculated incrementally and concurrently with the flit’s data

being injected into the primary network.

We also analyzed the probability of aliasing for this 16-

bit signature and found that it is extremely low. To estimate

this probability, we set up a Monte-Carlo-based simulation:

we randomly created 6,000 data packets and computed their

signatures. We then randomly permuted each packet’s flits, and



for each permutation we re-calculated the signature. If the new

signature matched the original, then aliasing had occurred. For

each of the 6,000 samples, we tried approximately 30 million

distinct permutations, and we obtained a total probability of

aliasing of 3.05 × 10−5 with a 95% confidence interval. For

interconnects with larger data widths, the signature size can

be tailored accordingly so as to maintain a similarly low

aliasing probability. However, the probability that an error goes

undetected does not just depend on the probability of aliasing,

but also on other factors such as the timing of its occurrence.

As a result, the overall probability of not detecting an error is

much lower than the aliasing probability.

Each destination router maintains a timeout counter for ev-

ery look-ahead packet it receives. The counter is incremented

at every cycle until the data packet is received and its signature

is re-computed. If the new signature matches any of the look-

ahead signatures, then this packet is considered to have been

delivered correctly. However, if there is still no match when the

counter times out, an error is flagged and recovery is initiated.

D. Recovery

When an error is detected, the interconnect enters the

recovery phase, consisting of five steps: network drain, packet

recovery, another network drain, then flit recovery and packet

reconstruction.
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Fig. 2: SafeNoC recovery process. Recovery proceeds in five

steps with network draining occuring twice. The last step is

executed in software, while the others are implemented in

hardware.

In the first step, a network drain phase is initiated, during

which the network is forced to drain its in-flight packets for

a preset amount of time. As shown in the top left corner of

Figure 2, during this phase, no new packets are allowed into

the network, while in-flight packets continue moving towards

their destinations. If those packets are error-free, they will

match their signatures and be ejected from the network. This

draining stage clears the network from all in-flight traffic that

was not affected by the functional bug that manifested.

The network then enters packet recovery and tries to recover

packets that are deadlocked within the network. During this

phase, primary routers remain active, but we prevent them

from processing new data packets by disabling all the virtual

channel allocation functionalities. If there is a deadlock in the

network, then there is at least one packet in one router that is

blocked waiting for allocation. To cope with this situation, we

use a token-based protocol, in which a token circulates through

the checker network. When a primary router notes the token in

its corresponding checker router, it checks its input buffers to

determine if there is such a deadlocked packet, in which case

it transmits it over the checker network, as shown in the top

right block of Figure 2. Since all other router functionalities

are still active, the entire packet can be drained and is then

transmitted over the checker network to its destination. Once

the token has circulated through all primary routers, they

resume their full functionality and the entire network enters

the second network drain phase. If the previous phase had

recovered packets involved in deadlocks, then the remaining

packets would automatically drain from the network during

this second network drain phase. Note that this situation allows

us to avoid the reconstruction of a number of packets that

are now being delivered through the primary network, greatly

reducing the packet reconstruction computation.

Reconstruct (candidate_flits, signatures)

while (!Empty(signature_buffer))

success = false

while(!success && !tried_all_combinations) do

curr_candidates = GetNextCombination()

candidate_pkt = AssemblePkt(curr_candidates)

calc_signature = CalcSignature(candidate_pkt)

success = MatchSig(calc_signature, signatures)

end while

if(success)

RemoveCandidates(curr_candidates)

end while

end Reconstruct

Fig. 3: Packet reconstruction algorithm The algorithm re-

constructs packets by considering combinations of candidate

flits. When a candidate packet’s signature matches a look-

ahead signature, the data packet is considered correct. Re-

construction ends when all look-ahead signatures have been

matched.

In the forth step, flit recovery, we recover stray flits from

the network. A flit is considered stray if it is stuck in a router

buffer or if it has been delivered to the wrong destination. All

stray flits are candidates for the final reconstruction process.

The bottom left portion of Figure 2 illustrates this phase: we

added a FIFO checker to every input buffer of each router, to

identify valid flits. The FIFO checker has 1-bit entries and its

own read and write pointers following those of the input buffer.

A write to the input buffer changes a corresponding entry in

the FIFO checker to a valid entry and a read invalidates it.

Using the same token-based protocol as in the previous phase,

a router holding the token examines its FIFO checkers for valid

entries. If any exist, the corresponding flits are transmitted

over the checker network to all destinations in the network.



As for stray flits at the network interface buffers, their presence

in the buffers at this point of the recovery process indicates

that they have not matched any signatures, thus they are also

candidates for reconstruction, and they are also circulated over

the checker network.

During the last phase, packet reconstruction, the processor

cores that have flagged an error run a software algorithm

to reconstruct the original packets destined to them using

the flits collected in the previous steps. Candidate flits are

organized in separate groups, one for each flit ID, and an

index is maintained for each group to indicate which flits have

already been considered. The pseudo-code of this algorithm

is presented in Figure 3. For each flit ID, a candidate a

candidate is chosen and added to the set of current candidates.

The current candidates are then assembled into a new packet

and its signature is computed. If the new signature matches

any of the remaining look-ahead signatures, then this packet’s

reconstruction is deemed sucessful, the packet is delivered

to the application and all its flits are removed from the

candidate groups. If a match cannot be found, the process is

repeated, generating new sets of candidates, until all possible

combinations have been tried. The algorithm ends when all

look-ahead signatures have been matched.

In the case of multiple functional errors occurring consecu-

tively, SafeNoC is still able to recover successfully. After the

first error is detected and recovery is initiated, any subsequent

error can only manifest in the primary interconnect during

one of the network drain phases. In that case, flits that failed

to drain from the network are recovered during step 4, flit

recovery, along with the erroneous flits resulting from the

first error. Note that during SafeNoC’s recovery, functional

bugs can not manifest in the checker network or the recovery

process since they are formally verified.

IV. SAFENOC IMPLEMENTATION
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Fig. 4: SafeNoC’s hardware implementation. VC and SW

disablers, FIFO checkers, and a token-manager are added to

the primary routers to implement SafeNoC’s recovery.

In order to implement SafeNoC, we added a few func-

tionalities to a baseline CMP interconnect design, categorized

in three groups: to the network, to network interfaces and

to the primary routers. At the network level, we add the

checker network, using a ring topology with simple single-

cycle latency routers, as overviewed in Section III-B. Checker

routers are packet-switched, with 2-entry input buffers and use

a rotary flow control, giving packets already in the network

priority over packets waiting to be injected into the network, so

to guarantee forward progress for packets within the checker

network at each cycle. In [16], the authors show that the

checker router design leads to a per-hop latency of one cycle

and a deadlock-free ring network. The resulting router is

sufficiently simple that it can be formally verified for correct

operation, as we discuss in Section V-A, and it has very

low area overhead, as shown in Section V-C. In addition, to

transmit the signature packets, the checker network augments

each packet with a destination address. During recovery, data

flits sent over the checker network are partitioned into smaller

blocks and then transmitted back-to-back, since the links of

the primary network are wider than those of the checker

network. SafeNoC also adds a flit ID to each data flit, slightly

increasing the primary network’s channel width. At each

network interface, we add two signature generation units, one

to generate signatures for packets entering the primary network

and the other to verify signatures of packets reaching their

destination. Signatures received through the checker network

are also stored in signature buffers and they are compared in a

signature comparator unit against those of incoming packets.

Figure 4 shows the router level hardware additions to the

primary routers. First, a token manager is added to the routers

to manage the passing of the token during the packet and

flit recovery steps. In addition, a virtual channel allocation

disabler (VC-DIS) and a switch speculation disabler (SW-

DIS) are included to prevent routers from processing new

packets during the packet and flit recovery phases. We also

disable switch speculation during the entire recovery process

to keep the SafeNoC operation simple and easily verifiable for

correctness. Besides these modifications, the packet recovery

phase is implemented with very little overhead, as it relies on

the router’s existing functionalities to retrieve packets from the

buffers, with the exception of a FIFO checker for every input

buffer to keep track of valid entries.

V. EXPERIMENTAL RESULTS

To evaluate SafeNoC, we modeled a CMP system in Verilog

HDL and with a cycle-accurate C++ simulator. Using the hard-

ware implementation, we formally verified the portion of the

system involved in recovery, including the checker network,

ensuring that it operates correctly. We also analyzed the area

overhead of the SafeNoC solution, synthesizing the Verilog

design with a 45nm target library. The impact of recovery on

performance was evaluated using the C++ simulator modeling

a variety of functional bugs in the baseline system. The model

was simulated with two different types of workloads: directed

random traffic (uniform, transpose and bit complement), as

well as application benchmarks from the PARSEC suite [8].

Both the C++ and Verilog experimental setups model the

same baseline system, based on the Booksim [10] simulator.

The main network, an 8x8 mesh using XY routing, was

augmented with a ring checker network and modified to

include detection, recovery and reconstruction functionalities.

The main NoC routers are based on the input-queued VC

router of [10], with 5 ports, 4 pipeline stages, 2 virtual



channels, and 8 flit buffers. Data packets consist of 16 flits of

75 bits each, including ECC and flit IDs. We also integrated

SimpleScalar [9] in our architectural simulation to estimate the

reconstruction algorithm’s execution time. The network drain

time (steps 1 and 3 of recovery) was set to 2,000 cycles and

the packet delivery timeout to 4,000 cycles.

A. Correct Functionality

To guarantee correct functionality and forward progress

of detection and recovery, all components involved in these

processes must be formally verified. Detection is verified by

ensuring that un-matched signatures initiate recovery after

the timeout threshold. Recovery initiation by a single router

can be trivially verified and thus we approached the formal

verification of the recovery process in two steps:

Checker network. We must verify the functionality of the

checker network to ensure that all packets are delivered

unaltered to their correct destination within a bounded time.

This goal was partitioned into three sub-goals: eventual injec-

tion, which guarantees that a packet awaiting injection will

eventually enter the network; forward progress ensuring that

packets progress on a path towards their destination; and timely

ejection guaranteeing that packets are eventually ejected at

the correct destination. Since the checker network is designed

to be simple, its formal verification is not as challenging as

that of the primary interconnect. The formal verification is

even further simplified by the fact that the checker network

transmits one flit signatures and not large data packets, which

makes its router architecture and protocol inherently simpler.

Interaction with the main network. We must also verify

that the checker network interacts correctly with the primary

network to recover the data in transit. The large state space

of the complex baseline network is a challenge for formal

verification. We overcome it by disabling all hardware units

not involved in the recovery process, such as the VC allo-

cators and SW speculators. We first verified that the checker

network could extract a complete packet from a primary router.

Next, we verified that during flit recovery, all valid flits are

extracted from the primary network router. We also validated

the complement of the two properties above, to check that

only valid data is extracted. Finally, we checked for fairness

and exclusivity among the primary routers during recovery,

verifying that data is salvaged from one router at a time.

All properties to be verified were expressed with System

Verilog Assertions [1], embedded in a 2x2 mesh version of

the CMP equipped with SafeNoC, and then formally verified

with Synopsys’ Magellan [24]. Since the checker network

has a simple topology, router architecture and protocol, its

formal verification was completed without obstacles. As for

the verification of the interactions with the main network, it

is sufficient for us to formally verify these properties for a

smaller 2x2 interconnect. Indeed, during recovery only one

router in the primary network is active at a time, eliminating

complex interactions and concurrent communication in the

network. Note that this aspect does not hold true during normal

operation, during which the correctness of a smaller portion

of network does not imply correctness of the full system.

B. Performance

Bug name Bug description

dup flit a flit is duplicated within a packet

misrte 1flit a flit is misrouted to a random destination

misrte 3flit 3 flits of a packet are misrouted to a random destination

misrte 1pkt a packet is misrouted to a random destination

misrte 2pkt 2 packets are misrouted to random destinations

misrte flit pkt a packet is misrouted, another packet’s flits are misrouted

dup pkt a packet is duplicated

dup misrte pkt a packet is duplicated and one copy is misrouted

reorder flit flits within packet are reordered

deadlock some packets are deadlocked in the network

livelock some packets are in a livelock cycle in the network

TABLE I: Functional bugs injected in SafeNoC.

To analyze SafeNoC’s performance impact and its ability

to detect and recover from various types of design errors, we

injected 11 different design bugs into our C++ implementation

of SafeNoC, as described in Table I. These bugs represent

possible flit-level and packet-level manifestations of functional

design errors, and are based on the error model proposed in [3].

They includes misrouting of flits or entire packets, replication

of flits or packets, reordering of flits within a packet, livelock

and deadlock. Note that data corruption within flits is handled

by the ECC already available in the baseline system.
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Benchmarks
Fig. 5: SafeNoC recovery time for each benchmark aver-

aged over all bugs. Execution cycles for the first 4 steps of

recovery (bars-left axis) and for packet reconstruction (line-

right axis).

We ran the random traffic and PARSEC workloads while

triggering the bugs once per execution, and a different bug

each simulation. We ran each simulation several times, each

time varying when the bug is triggered, so to capture the

state of the network at 10 different execution points, every

12,000 cycles after warm-up. We also repeated each experi-

ment with 10 different random seeds for statistical confidence.

With SafeNoC, all workloads complete, delivering all packets

correctly to their destinations. Figure 5 reports the recovery

time required by each benchmark, averaged over all random

seeds, activation points and bugs, for a total of 11,000 runs. On
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Bugs

Fig. 6: SafeNoC recovery time by bug averaged over all

benchmarks. Execution cycles for the first 4 steps of recovery

(bars-left axis) and for packet reconstruction (line-right axis).

average, SafeNoC spends approximatly 11,000 cycles in the

first four steps of recovery. The drain time is a preset design

parameter, which, in our case, accounts for a total of 4,000

cycles. The packet recovery and flit recovery steps require on

average 1,600 and 5,300 cycles, respectively. In addition, Safe-

NoC incurs an average of 3.4M execution cycles to reconstruct

erroneous packets. The performance overhead of SafeNoC

is therefore dominated by the reconstruction algorithm. In

Figure 6, we analyze SafeNoC’s recovery time by bug. The

reconstruction time varies widely, depending on the severity

of the bug and the number of flits and packets it affected.

For example, bug misrte 1flit mixes one packet’s flit among

the flits of another packet. As a result, the reconstruction

algorithm has two candidate flits in the system and it requires

only 1,200 cycles to complete. At the opposite end, bug

misrte 2pkt affects 32 flits in 2 different packets. Therefore,

the reconstruction algorithm must consider two candidate flits

for each position within the packet, requiring up to 38M

execution cycles to complete. As for packet recovery, its time

is constant for almost all bugs, at 1,473 cycles, required for

the token to traverse all routers. deadlock and livelock are an

exception: in these cases, entire packets must be retrieved from

the primary network and transmitted over the checker network.

For these two bugs, packet recovery requires 2,900 cycles and

salvages 90 packets from the network on average. Once those

packets are recovered, they no longer need reconstruction,

thus the corresponding reconstruction time is 0. Finally, flit

recovery time depends on the severity of the design error. The

more packets are affected by the error, the more stray flits are

left in the primary network, and the more must be recovered.

Thus, on average, SafeNoC requires between 11K to 38M

cycles to recover the system from a bug, assuming uniform

clock domains on cores and NoC. For a CMP operating at

1GHz, and considering the extreme case when one design error

manifests as often as every minute, the performance impact of

SafeNoC is thus between 1.83 × 10−5% and 0.06%.

We further investigate the relation between number of flits

in error and reconstruction time by varying the number of flits

misrouted in bug misrte 1flit from 1 to 14. During recovery,

the number of flits retrieved doubles with the number of flits

in error. Then, during reconstruction, there are two candidate

flits for each missing flit position, leading to an exponential

increase in reconstruction time. Therefore, the flit recovery

time increases from 5,211 to 5,237 cycles, while reconstruction

time increases from 1,200 to 4.9M execution cycles over the

range considered.

benchmark % benchmark % benchmark %

blackscholes 0.0 freqmine 0.65 vips 0.0

bodytrack 0.0 swaptions 0.77 x264 0.45

streamcluster 0.52 ferret 0.76 dedup 1.54

average performance overhead: 0.52%

TABLE II: Performance overhead in the absence of bugs.
.

In the absence of bugs, SafeNoC has a negligible perfor-

mance overhead, as seen in Table II. This overhead is due

to false positives in SafeNoC’s detection, occurring when

congestion in the primary network causes a data packet’s

delivery to be delayed and the corresponding destination

counter to timeout. However, with a carefully calibrated time-

out value, the occurrence of such false positives, and thus the

performance impact of SafeNoC, is minimal.

design area (mm
2) %

Baseline 8x8 mesh 4.8 100

SafeNoC additions

router additions 0.15 3.3

NI additions 0.18 3.75

checker router 0.11 2.3

SafeNoC overhead over 8x8 mesh interconnect: 9.35%

SafeNoC overhead over complete 64 SPARC CMP: 2.41%

TABLE III: SafeNoC area overhead.
.

C. Area Results

Finally, we evaluated the area overhead of SafeNoC. Our

results reported in Table III indicate that SafeNoC has a 9.35%

silicon area overhead over an 8x8 mesh primary network,

corresponding to a 2.41% overhead over a complete CMP

with 64 SPARC cores and the same baseline 8x8 NoC.

We compared this overhead to a mainstream end-to-end,

acknowledgement-based error recovery scheme as in [21].

Area overhead in these systems is primarily due to large data

buffers needed to store the packets in-transit. We estimated

the size of these buffers by monitoring the number of packets

at each source waiting for acknowledgement. For an 8x8

primary network with 16-flit data packets, up to 4 data packets

can be awaiting acknowledgements at a single source and

correspondingly the retransmission-based system incurs an

area overhead of 66.3% over the baseline network and 17.4%

over the CMP. Therefore, SafeNoC offers more than a 7x

improvement in area overhead compared to the commonly

used retransmission-based method. Our simulations also show

that SafeNoC buffer storage efficiency grows with data packet

to signature compression ratio, and with a data packet size

of 64 flits in a 8x8 mesh, SafeNoC uses less than a fourth of

the buffer space of the retransmission-based scheme. This gain

can be attributed to SafeNoC’s ability to provide correctness

by storing small signatures, in contrast to large data packets.



VI. SAFENOC DESIGN AND CONSTRAINTS

For an effective SafeNoC implementation, the design must

be tailored to the characteristics of the baseline interconnect.

The signature size is a design parameter that affects the

performance of the checker network and thus needs to be

appropriately selected. As explained in section III-B, we

aim to have a checker network that delivers signatures to

their destinations before the corresponding data packets arrive

through the primary NoC, while minimizing the number of

times when it lags behind. This can be achieved by choosing

a suitable signature size that can identify errors with mini-

mum aliasing, while being sufficiently small so that in most

cases signatures can be transmitted on the checker network

faster than data packets. In our implementation, we chose

16-bit signatures, and we validated this design decision by

conducting experiments to determine how often the checker

network “wins” against the primary network. We found that

in this setup, at 0.38 flits/cycle per node injection rate (at the

onset of saturation), for 99% of the packet-signature pairs, the

signature arrives first, and in the few cases where the signature

is lagging, the difference is less than 3 cycles. The packet

delivery timeout and the signature buffer size are two other

design parameters that need to be tuned to reduce area and

performance overheads. The former determines when recovery

is initiated, with large values delaying the initiation and small

values resulting in false positives. To determine an appropriate

packet delivery timeout, we measured the lead time of the

checker network packet delivery, in a congested network with

both random traffic and PARSEC benchmarks, and found

4,000 cycles to be a conservative timeout. The size of the

signature buffer in the network interfaces is determined by

the maximum number of outstanding signatures. On the verge

of saturation, this value is 11, thus we designed our system

with 12 entries to have a safety margin. In the rare event of

filling all signature buffers, our system triggers a recovery.

SafeNoC can detect and recover from a wide variety of

errors affecting both flits and packets, such as misrouting and

reordering errors, deadlocks and livelocks, etc. However, it

does not protect against data payload bit-level errors, since we

assume that ECC is present in the primary routers. Therefore,

it can not recover from design errors that result in bit-level

corruptions beyond the capabilities of the ECC in-use. In

addition, since SafeNoC does not retain a copy of the data

in-transit, it can not recover from errors that cause flits to be

dropped in transfer. One way to overcome this limitation, is to

provide additional detection mechanisms to detect these errors

and initiate recovery before data is dropped.

VII. CONCLUSIONS

In this paper, we presented SafeNoC, a runtime end-to-

end error detection and recovery technique to guarantee the

functional correctness of CMP interconnects. SafeNoC aug-

ments the interconnect with a lightweight and simple checker

network and it detects functional errors by comparing the

signature of every received data packet with its look-ahead

signature that was delivered through the checker network.

In case of mismatches, our novel recovery approach collects

blocked packets and stray flits from the primary network and

distributes them over the checker network to all processor

cores, where our reconstruction algorithm reassembles them.

SafeNoC can detect and recover from a broad range of

functional design errors, while incurring a low performance

impact, requiring between 11K and 39M execution cycles to

recover from an error. Our evaluation indicates that SafeNoC

requires only 2.41% area overhead in a 64-core CMP system.
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