
Post-Silicon Platform for the Functional Diagnosis and Debug of
Networks-on-Chip

Rawan Abdel-Khalek, University of Michigan

Valeria Bertacco, University of Michigan

Submitted to DCMP12 Special Issue

The increasing number of units in today’s systems-on-chip andmulticore processors has led to complex intra-

chip communication solutions. Specifically, networks-on-chip (NoCs) have emerged as a favorable fabric to

provide high bandwidth and low latency in connecting many units in a same chip. To achieve these goals,

the NoC often includes complex components and advanced features, leading to the development of large

and highly complex interconnect subsystems. One of the biggest challenges in these designs is to ensure the

correct functionality of this communication infrastructure. To support this goal, an increasing fraction of

the validation effort has shifted to post-silicon validation, because it permits exercising network activities

that are too complex to be validated in pre-silicon. However, post-silicon validation is hindered by the lack of

observability of the network’s internal operations and thus, diagnosing functional errors during this phase

is very difficult.

In this work, we propose a post-silicon validation platform that improves observability of network op-

erations by taking periodic snapshots of the traffic traversing the network. Each node’s local cache is con-

figured to temporarily store the snapshot logs in a designated area reserved for post-silicon validation and

relinquished after product release. Each snapshot log is analyzed locally by a software algorithm running

on its corresponding core, in order to detect functional errors. Upon error detection, all snapshot logs are

aggregated at a central location to extract additional debug data, including an overview of network traffic

surrounding the error event, as well as a partial reconstruction of the routes followed by packets in flight

at the time. In our experiments, we found that this approach allows us to detect several types of functional

errors, as well as observe, on average, over 50% of the network’s traffic and reconstruct at least half of each

of their routes through the network.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiprocessors

Additional Key Words and Phrases: Networks-on-chip, post-silicon validation, functional correctness, per-

formance monitoring

1. INTRODUCTION

Driven by the continuous scaling of silicon technology, large chip-multiprocessors
(CMPs) are becoming a prevalent architecture, targeting parallel applications and
high performance computing. In today’s market, designs such as the Intel’s Xeon Phi
co-processors and the Tilera’s multiprocessor chip family embed more tha 50 cores on
a single chip. With the increasing number of processor cores, it is highly important to
have a communication medium that provides adequate bandwidth and allows these
cores to communicate effectively. Therefore, networks-on-chip (NoCs) have emerged as
a scalable and favorable interconnect solution. In a typical NoC architecture, each pro-
cessor core connects to the interconnect through a network interface. Messages sent
over the network are divided into packets, which are then transmitted between cores
through a series of routers, following a path determined by the routing protocol. With
increasing demands for higher bandwidth and better performance, NoC design com-
plexity is on the rise. Routers often incorporate advanced features such as speculation,
escape channels, and aggressive and prioritized allocation schemes [Al Faruque et al.
2006]. Power constraints drive designs towards dynamic power management as well
as adaptive resource and network reconfiguration [Jafri et al. 2012; Mishra et al. 2010;
Kim et al. 2011] . Irregular topologies, adaptive routing algorithms and dynamic re-
source allocation are some of the solutions proposed to adapt network characteristics
to application demands [Krishna et al. 2011] . Complexity is also introduced when local
routing and allocation decisions are optimized by incorporating more global knowledge

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:2 R. Abdel-Khalek et V. Bertacco

of network traffic and resource availability. The growth in complexity, along with the
large size of these systems, translates to increased difficulty in verifying the function-
ality of the NoC.
Pre-silicon validation is one of the main steps in the verification process of any hard-

ware design. It consists of simulation-based verification, which simulates the RTL de-
scription of the design, and formal verification, which theoretically proves the design’s
functional correctness. Both these approaches do not scale-well for large and complex
systems, as simulation-based methods are very slow and can not exhaustively explore
the entire design space, and formal verification suffers from the state space explo-
sion problem. These methods often work well for the verification of small or individual
components of the NoC, such as the arbiter or the buffers or even the router. However,
the limited scalability and performance of these tools, prevent them from exercising
and validating the entire design space, particularly with regards to the validation of
system-level or inter-module operations. In recent work [Parikh and Bertacco 2011],
the authors distinguish between router properties that are amenable to pre-silicon ver-
ification and global network properties that can not be fully verified in pre-silicon and
for which they propose runtime execution checkers.
Post-silicon functional validation starts when the first few silicon prototypes become

available and it is used to ensure that the new chips are functioning correctly and
in compliance with the specifications. Test regressions and applications run directly
on the manufactured hardware, and thus a major advantage of this approach is that
tests execute on the machine at or close to nominal chip performance. Consequently,
engineers can run much longer tests, enabling a deeper and more thorough valida-
tion of the hardware design. This is particularly significant when compared to earlier
verification phases, which are much slower and less scalable. From this perspective,
post-silicon validation has the opportunity to expose functional bugs that might have
been missed during pre-silicon verification. However, despite its high-speed and high-
coverage advantages, post-silicon validation suffers from extremely low observability
and controllability of the design’s behavior. Observability is often restricted to signals
connected to the chip’s input and output pins, as well as a small number of signals
within the design. As a result, when tests fail, it is difficult to detect and debug the
failure as verification engineers can not fully observe the internal operations of the
design.
In this paper, we address the limitations of post-silicon validation targeting specif-

ically NoC subsystems. We introduce a novel debug platform that greatly boosts the
observability of the network activity and facilitates the detection and debug of func-
tional errors. Post-silicon validation offers the high performance necessary to investi-
gate the correctness of network-level functionality in depth and expose complex bugs.
Such functional bugs manifest as incorrect traffic behavior and network resource uti-
lization, or by preventing the network from making correct forward progress, such as
deadlocks, starvations and livelocks. Without a framework to effectively detect and
localize these errors, NoC verification would be extremely challenging.

2. CONTRIBUTIONS

To address the challenges outlined above, we present a post-silicon verification plat-
form that aids in detecting and diagnosing functional errors in network-on-chip inter-
connects in multi-cores and systems-on-chip. We collect information about the traffic
in-flight during a network’s normal operation, by instrumenting each router to peri-
odically take snapshots of the packets traversing it at the time. The snapshots are
stored in a designated portion of the local L2 cache corresponding to that CMP node.
This space is temporarily reserved for post-silicon debug and released afterwards. The
logs of each router effectively provide samples of the traffic observed within the router

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :3

(P1, @t2,

@t3,…,@t40)

(P1, @t1)
(P2, @t1)

(P3, @t3, @t12)

(P3, @t5)

(P3, @t10)

(P3, @t8)

$ $ $

$ $ $

X

$

$

network 
interface

processor core local cache

X

X

BLOCKED

MISROUTE LIVELOCK

router

P1

P2

P1 P3

P3

P3

P3

CMP node

packet

Fig. 1. Overview of our NoC post-silicon validation platform. Our solution boosts observability dur-
ing post-silicon validation by instrumenting routers to monitor network traffic over time. The data collected
is used to track packets in transit, detect functional errors, and provide detailed debug information. In the
figure, we show three possible bugs that our solution can detect and we illustrate qualitatively the type of
information collected by the routers over time.

throughout a test execution. If a functional error manifests, then it must affect the
behavior of at least one packet. Therefore, we run a distributed software checking al-
gorithm on each core to examine the local logs and identify erroneous behavior. If an
error is detected, the logs from all nodes are aggregated and used to reconstruct the
paths followed by packets in flight at the time surrounding the bug occurrence. The
reconstructed paths provide an overview of the traffic in transit during the time pre-
ceding the manifestation of the error. Figure 1, depicts a high-level illustration of our
technique. We show a portion of an example network consisting of six routers, each
connected through a network interface to a processor core and a local cache. Packets
in-flight, shown passing through the different routers, are captured by periodic snap-
shots. These snapshots are accumulated in each router’s corresponding local cache.
For example, the snapshot log of the top-left router, indicates that packet P1 appeared
in that router at times t1 through t40. During the local check phase, these logs are
analyzed and erroneous behavior is detected. Figure 1 highlights three of the types of
errors that our solution can detect: deadlock, misroute and livelock.
Our proposed solution is independent of the specific NoC design, its topology, routing

algorithm and router architecture. It is also applicable to a system-on-chip where some
network routers are not associated with a processor core and a local cache. In that
scenario, those routers can be augmented with additional buffers to store the snap-
shot log and then configured to periodically transfer their logs to neighboring caches
for analysis. If resources are limited or if traffic congestion is a potential issue, the
system-on-chip can be designed so that snapshot hardware is limited to routers that
are attached to a local cache and processing core, in which case error detection and
diagnosis is performed based only on the data gathered at processor nodes. Lastly, our
solution also extends to NoCs that use multiple clock domains.
Our work provides the following main contributions:

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:4 R. Abdel-Khalek et V. Bertacco

• A post-silicon solution that detects and diagnoses functional errors preventing a
network from making forward progress, including deadlocks, livelocks, starvation
and misrouting errors. We find experimentally that we can detect bugs with an
average latency of 50,000 to 300,000 cycles from their occurrence. Moreover, our
diagnosis solution provides observability of over 50% of the packets in most cases,
and it reconstructs at least half of their paths.

• A set of on-chip hardware components that provides observability of the network
operations during post-silicon validation by periodically taking snapshots of routers’
contents. The collected data is used to track packets through the network, providing
a global overview of the network traffic at the time of the error manifestation. Our
on-chip hardware additions entail minimum area overhead.

• A complete post-silicon validation flow methodology infrastructure based on the
framework discussed above. We discuss how our solution can be used to achieve
high quality validation coverage in post-silicon, and, in particular, how to tune the
parameters of our framework to a NoC design under test.

• A method to utilize the proposed framework and hardware-based sampling infras-
tructure to monitor NoC performance during runtime execution by taking snap-
shots of end-to-end latency values at every router. Users can estimate the network
latency, which in turn reflects upon the CMP’s performance.

3. RELATED WORK

Several solutions have been proposed for the post-silicon functional validation of hard-
ware designs. In this section, we first give an overview of some of the recent network-
on-chip designs and advancements that often lead to greater design complexity. We
then describe related post-silicon validation works, while grouping them into four ma-
jor categories: generalized approaches for post-silicon validation, validation techniques
for processor and memory models, previous work in NoC post-silicon validation, and
debugging solutions for NoC-based systems.
NoC designs. As the number of cores on chip increases and with the ever-growing

demands for higher performance, lower power consumption and better QoS guaran-
tees, various NoC designs and advancements are continuously proposed. For example,
several works have presented approaches to dynamically manage and reduce the net-
work’s power consumption [Jafri et al. 2012; Mishra et al. 2010; Kim et al. 2011] .
Others have proposed alternative scheduling [Stuijk et al. 2006], resource reservation
methods [Li et al. 2008] and arbitration schemes that achieve better QoS or provide
QoS bounds for certain types of traffic [Al Faruque et al. 2006]. Several works have
also described changes in network topology [Das et al. 2009] and features in order to
better meet the demands of applications running on the CMP [Krishna et al. 2011].
With these added features and increasing complexity, the functional verification of the
NoC is a challenging task.
Common approaches to post-silicon debug utilize boundary scan registers

(BSRs) [IEEEstd1149.1 1990]. Test data can be serially shifted through the BSRs and
applied to the component being tested and test results and traces can be serially read
out and transferred off-chip to be analyzed for debugging. A main drawback of this
technique is that execution has to be stopped at regular intervals so that debug data
can be serially sent off-chip for analysis. Another conventional approach uses on-chip
trace buffers to collect execution traces and then off-loads them for analysis when they
are full [Abramovici et al. 2006].
Numerous research ideas proposed in this area focus on trace signal selection [Ko

and Nicolici 2008; Liu and Xu 2009; Yang and Touba 2009; Ko and Nicolici 2010]. For
example, [Ko and Nicolici 2008; Liu and Xu 2009; Chatterjee et al. 2011] propose us-
ing the trace signals to restore the states of unmonitored signals. Thus, they develop a

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :5

restoration ratio metric to quantify the restoration quality of signals and to be used to
guide a heuristic for trace signal selection. Other works target data compression or the
reduction of the volume of data that needs to be transferred off-chip [Panda et al. 2010;
Vishnoi et al. 2009; Panda et al. 2011; Lai et al. 2009]. Moreover, some proposals ad-
dress trace data transfer [Liu and Xu 2009; Vermeulen et al. 2001; Abramovici 2008],
where, for example, [Liu and Xu 2009] present an interconnection network design to
transfer monitored trace signals to the trace buffer or port. As opposed to these general
approaches, we propose a post-silicon debug platform targeting specifically NoCs, en-
abling us to tailor our solution for effective functional debugging of the interconnect.
Similar to the idea of using on-chip buffers, we collect information about packets in
flight, but we store them in the local caches and do not require the addition of large
buffers. Once the designated cache space is full, data is first processed locally and only
if and when an error is detected, it is collected at a central location for additional anal-
ysis and debugging. Therefore, our two-phase analysis approach has also the benefit of
eliminating the need to regularly off-load data from all buffers.
Several post-silicon debug solutions focused on the validation of processor de-

signs [Park et al. 2009; Park et al. 2010; Rotithor 2000; Wagner and Bertacco 2008].
For example, in [Park et al. 2009], authors record control flow and data values for in-
structions passing through the pipeline during execution. This data is later scanned
out and analyzed to localize bugs. In addition, other recent approaches have been de-
veloped for the post-silicon validation of coherence [DeOrio et al. 2008] and consistency
[DeOrio et al. 2009; Lv et al. 2011] of the memory subsystem in multi-core architec-
tures. In contrast our solution focuses on the post-silicon validation of network-on-chip
and our detection and debugmechanism targets functional errors that prevent the net-
work from making correct forward progress,
In the context of post-silicon validation for networks-on-chip, Vermeulen,

et al.describes a transaction-based NoC monitoring framework for systems-on-chip,
where monitors are attached to master/slave interfaces or to routers [Vermeulen and
Goossens 2009]. These monitors can analyze performance, filter traffic to monitor
transactions of interest, and verify the integrity of the data through checksum calcu-
lations. [Ciordas et al. 2004] proposes adding configurable monitors to NoC routers to
observe router signals and generate timestamped events. The events are then trans-
ferred through the NoC for off-chip analysis or at dedicated processing nodes. This
work was later extended in [Ciordas et al. 2006] by replacing the event generator with
a transaction monitor, which can be configured to monitor the raw data of the observed
signals or to abstract the data to the connection or transaction level. These works pro-
pose solutions for increasing NoC observability, but do not demonstrate their use in
functional verification. [Vermeulen and Goossens 2009] focus on using the monitors
for performance analysis of the network operations. [Ciordas et al. 2006; Ciordas et al.
2004] provide a high-level description of the types of events and transactions that can
be observed, but do not address their use in detecting and debugging errors. Moreover,
the types of events and transactions would depend on the network-on-chip design that
is being tested. We share with them the idea of monitoring traffic at the routers to
provide observability of the network’s internal operations. Moreover, in contrast with
their solutions, we propose a complete framework that selects the exact data to be
monitored, independently of the router architecture or the network’s routing proto-
col, and then uses it to detect and debug functional errors. An additional drawback
of these approaches is that, to continuously monitor execution, data must either be
stored in large buffers or regularly transferred over the network for analysis. The for-
mer increases area and power overheads, and the latter perturbs the network’s nor-
mal execution. The authors of [Ciordas et al. 2006; Ciordas et al. 2004] also report a
high area overhead (17%-24%) for monitors that will be no longer needed after system

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:6 R. Abdel-Khalek et V. Bertacco

deployment. On the other hand, our framework stores the monitored data in the local
cache, analyzes it locally, and transmits it over the network only if an error is detected.
Finally, our monitoring hardware introduces a much smaller area overhead (9%).
Other debugging solutions for NoC-based multi-cores and systems-on-chip

(SoCs) include [Tang and Xu 2007]. Debug probes are added between each core under
debug (CUD) and its network-interface. The probes monitor communication transac-
tions, generate signals to control the CUD, and read the CUD’s trace buffers. Control
and debug data are transferred between the probes and an off-chip debug controller
through the NoC. Similarly in [Yi et al. 2010; 2008], probes are added to monitor in-
coming and outgoing packets of master IPs in an SoC, which are then used to analyze
the initiation and completion of transactions. In these solutions, the proposed plat-
forms make use of the NoC-based interconnect to debug the cores or the communica-
tion protocol in the system, but they do not address debugging functional errors in the
interconnect itself, which is the target of our work.

virtual 
channel 

allocation (VA)

switch 

allocation (SA)

xbar

input port1

input port2

input port3

input port4

input port5

virtual channel 1

virtual channel 2

input buffer

route 
computation (RC)

to xbar

ivc

output vc control 

input vc control (ivc)

output port

input channel

input port1

Fig. 2. General architecture of a virtual channel router. The figure shows a router with two virtual
channels per input port. A received packet is first stored in one of the input buffers. The route computation
(RC) stage determines the output port to which it will be sent. The virtual channel allocation (VA) unit
assigns an output virtual channel and the switch allocator (SA) arbitrates for the use of the crossbar.

4. POST-SILICON VALIDATION PLATFORM

In a typical NoC-based CMP, each processor core and its local cache are connected
through a network interface to a router (Figure 1). We assume a general virtual chan-
nel worm-hole router architecture, where packets are partitioned into flits, with a
header flit marking the beginning of the packet. An incoming packet is first queued
in one of the router’s input buffers, after which it is processed through three main
stages. First, route computation determines, based on the network’s routing algorithm,
the output port to which the packet will be sent. This is followed by virtual channel
allocation, which determines the output virtual channel. Finally, in the switch alloca-
tion stage, flits arbitrate for the use of the crossbar. Once the output port and virtual
channel are selected for the header flit, the rest of the packet follows. Figure 2 shows
a high-level overview of the router architecture, highlighting the three stages. The ex-
ample router has five input ports, with each including two virtual channel buffers and
an input virtual channel control logic. After route computation and virtual channel
allocation, the flits traverse the cross-bar to their designated output ports.
In our post-silicon platform, execution is divided into a series of epochs, each consist-

ing of a logging phase and a checking phase, as shown in Figure 3. During the logging
phase, routers take snapshots of their internal state. These snapshots are taken at
regular intervals and stored in a reserved portion of the local cache attached to that

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :7

logging local check logging logginglocal check global check
local cachecore

temporary 
log storage

core

each core analyze its 
log and detects bugs

lo
ca

l 

ca
ch

e

periodic router 
snapshots central debug unit (CDU) collects 

snapshots and builds packet routes

error detected

CDU

snapshots 
log

test execution 

epoch

test execution test execution 

router

Fig. 3. Execution flow of the NoC debug platform. Execution is partitioned into epochs, each consisting
of a logging phase and a local check phase. During the logging phase, snapshots of each router’s contents
are periodically taken and logged in a reserved portion of the local cache. During the local check phase,
each local log is analyzed by a software algorithm running on its corresponding processor core. If an error
is detected, the global check phase collects the snapshot logs from all caches and reconstructs the route of
packets that were in-flight during the logging phase.

router. When the available space has been fully utilized, the logging phase terminates
and network execution is halted. At that point, each core runs several software-based
checks to analyze the snapshots that have been accumulating in its local cache, in order
detect situations where packets are not making forward progress. If such a situation
is suspected, in-flight network packets are dropped and the local logs are transferred
through the NoC and collected at one CMP node. There, a global checking algorithm
processes the data to provide debug information, including an overview of the network
traffic at the time of the bug occurrence and a reconstruction of the paths followed by
packets in flight.

4.1. Logging

4.1.1. Logging in the routers. During the logging phase, each router is configured to take
snapshots of packets traversing it at the time, as illustrated in Figure 4. Snapshots
are taken periodically at fixed time intervals and the physical clock of the router is
used to track time. This interval is a user-defined value, which is set according to the
characteristics of the NoC and the traffic density. To identify the packets to be logged,
a router determines if header flits are stored in its input buffers. This is accomplished
by augmenting the router with one header buffer for each input buffer. When a router
receives a packet, it stores the packet in one of its input buffers and stores a copy of the
header flit in the corresponding header buffer. Figure 4 illustrates this activity with
an example, where, at time t40, a router has three packets, P7, P5 and P9 in input
buffers IP1, IP2 and IP4, respectively. The header buffer associated with each input
buffer stores a copy of the header flit of each packet.
The size of the header buffer depends on how many packets can be in a router’s

input buffer at any point in time, which in turn depends on the minimum number
of flits in a packet. As an example, the router architecture used in our experimental
evaluation, Section 7, consisted of ten input virtual channel buffers (5 input ports
and two virtual channels per port). With network packets consisting of 16 flits, every
buffer can have at most one packet at a certain time and each header buffer needs
at most one entry. A similar approach can be utilized to determine the header buffer
size required when considering other router architectures and packet sizes. When a
header flit is identified, the snapshot hardware can extract the packet’s source and
destination nodes. In addition, we require that the header flit also includes a packet ID
(unused space in the header is often available). This ID consists of a sequential number

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:8 R. Abdel-Khalek et V. Bertacco

Snapshot1, t10
P1, IP4, OP2
Snapshot2, t20 

…..
…..

Snapshot4, t40
P7, IP1, OP3
P5, IP2
P9, IP4, OP4

processor data

temporary 
snapshot 
storage

lo
ca

l c
ach

e

IP1

IP2

OP1

OP2

OP3

OP4

router at time t40

IP3

IP4

input port

P5

P7

P7

P9

P5

P9

snapshot 

input buffer
header buffer

output port

header flit

VARC SA

network 
interface 

dedicated link for 
snapshot transfer

1-bit link to halt 
network execution at 
end of logging phase

Fig. 4. Logging. Routers periodically take snapshots of packets traversing them. A header buffer is added
for every input buffer to keep track of the header flits of packets stored in the input buffer. The snapshot
hardware captures the header data as well as information from the route computation (RC) and virtual
channel allocation (VA) modules of the router.

generated at the source node, which, along with the source and destination, forms a
unique identifier of that packet. It is also useful to log additional information about
the packets, depending on their status within the router. For example, packets that
have completed the route computation phase are assigned to an output port, whose
value can be obtained from the route computation stage. Similarly, if the output virtual
channel has been determined for that packet, the specific channel ID can be extracted
from the virtual channel allocation phase. Besides providing debug data, logging the
output port and output virtual channel allows us to determine the downstream router
along that packet’s path. Therefore, as illustrated in Figure 4, the snapshot captured
at time t40 consists of packets P7, P5, and P9, along with their respective input ports,
IP1,IP2 and IP4. Packets P7 and P9 have been allocated to an output port and thus
their entries also include their respective output ports, OP3 and OP4.
In addition to packet-specific information, being able to trace these packets over time

is important for debugging. Thus, a snapshot also stores the physical time at which it
is taken. If the network uses multiple clock domains, physical times can be offset at
different nodes. In this case, we rely on the notion of logical time implemented through
Lamport clocks [Lamport 1978], where every router includes a counter to keep track of
its logical clock, which is advanced every time a new packet is received. In this setup,
packet headers also include a logical timestamp that monotonically increases with
every hop. When a router receives packets, it sets its logical clock to the maximum
timestamp of the received packets and then it increments it. When a packet leaves the
router, its timestamp is updated to the logical time of the router. Thus, in the case of
multiple clock domains, a snapshot entry includes the logical timestamp of the packet.

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :9

Note that, when the system operates with a single global clock and thus we can log the
physical timestamp, we only need to store one timestamp for each snapshot, instead of
one for each snapshot entry.

Num of entries: n

Packet ID
(counter, src, dest)

input 
port

input 
VC

output 
VC

output 
port

physical timestamp

Packet ID
(counter, src, dest)

input 
port

input 
VC

output 
VC

output 
port

entry 1

entry n

Num of entries: n

Packet ID
(counter, src, dest)

input 
port

input 
VC

output 
VC

output 
port

logical timestamp

Packet ID
(counter, src, dest)

input 
port

input 
VC

output 
VC

output 
port

logical timestamp

entry 1

entry n

(a) snapshot contents when network has a single global clock

(b) snapshot contents when network is in multiple clock domains

Fig. 5. Router snapshot format. A snapshot comprises data organized in several entries, one for each
packet found in the router at the time of the snapshot. For each entry, we record a packet ID, a timestamp,
and as much information as possible about the packet’s incoming and outgoing ports and channels.

Overall, every snapshot consists of several entries, one for each packet. Every entry
contains a packet ID (counter, source, destination), input port, input virtual channel,
output port (if allocated), output virtual channel (if allocated), and its logical times-
tamp. Figure 5 shows the information logged in each snapshot. In our experimental
platform described in Section 7, the size of a snapshot was at most 57B (assuming
20 bits for the physical timestamp, 15 bits for the logical timestamp and 20 bits for
packet ID). The collected snapshot entries are sent through a dedicated link to the
network interface and stored in a designated portion of the local cache. The width of
that link determines the number of cycles needed to transfer the snapshot from the
router. In our experimental setup, a 64-bit link can ensure that the snapshot is trans-
ferred within 10 cycles. As shown in Figure 4, the collected snapshot at time t40 is
stored in the local cache, along with older snapshots. When available storage is full,
the corresponding node transmits a flag through a 1-bit dedicated link, halting the
network temporarily and initiating the local check phase.

4.1.2. Log Storage In Local Caches. When a snapshot is captured in the router, it is
transferred through a dedicated link to the network interface and then to the local
L2 cache of that node, as shown in Figure 4. Therefore, the local L2 cache, which is
typically set-associative, designates one or more ways to be used solely for the storage
of snapshot data. This effectively disables these set entries from the perspective of the
processor and the cache allocation and replacement policies.
From the perspective of the snapshot data, even though the reserved cache lines

belong to different sets, they can be collectively viewed as one big FIFO. Snapshots are
written and read from each line in order of increasing cache index. Depending on the
size of the snapshot relative to the cache line size, a snapshot could be padded to fill
the line or it could span multiple cache lines. Since every snapshot stores the number
of entries it contains, and given that the entry size is constant, determining the size
of each snapshot is straightforward and it is needed for addressing the cache, reading

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:10 R. Abdel-Khalek et V. Bertacco

the snapshots, and flagging a full log. In order to write/read from the snapshot log, an
address-generating unit generates the cache index to address the line in the next set.
In addition, a running counter can keep track of the total size of snapshots logged so
far. When this counter exceeds the user-sepecified log size, a local check is triggered.
Similarly, snapshots are read from one line at a time. Having the number of snapshot
entries and knowing the fixed snapshot entry size, allows proper parsing of the data
and the snapshot boundaries.
In our experimental setup detailed in Section 7, the average size of snapshots for

bitcomp traffic at varying injection rates ranges between 9 to 12 bytes. Similarly, the
average snapshot size for the Parsec benchmarks is approximately 9 bytes. Consider-
ing, as an example, a 256KB L2 cache that is 4-way set associative with 32B lines, then
we can configure one of those ways to be used to store only the incoming snapshots,
which is equivalent to 64KB. However, in practice, it maybe useful to trigger a local
check before all the physically available storage space has been used, so that the bug
is detected closer to its ocurrence and debug data is more relevant. In our experiments,
we set the maximum log size to be 30KB. Therefore, we rely on the running counter to
keep track of the total size stored so far and to trigger a local check when it exceeds
the preset limit. Finally, note that if snapshots are very large and span several lines,
then it is possible to exhaust the entire reserved space before the maximum log size is
reached. In this case, the local check can be triggered earlier or the execution can be
repeated while reserving more ways for snapshot data.

4.2. Local Checks

Our debug platform targets errors that prevent the network from making correct for-
ward progress. During the local check phase, each core analyzes the snapshot log from
its local cache to detect signs of such errors. If the design under validation is a system-
on-chip that includes network nodes not connected to a core, then the local check algo-
rithm only executes on the processor cores in the system. Nodes without an associated
core would have to transmit their log data to the nearest core-node throughout the
epoch. Alternatively, if the network bandwidth is a design bottleneck, the local checks
would simply be performed on the nodes connected to a core, possibly missing errors
that can only be detected from non-core nodes.
Figure 6 shows the pseudocode for the local check algorithm. It first iterates through

the snapshots and groups snapshot entries according to the packet ID. Thus, each
packet becomes associated with a list of entries that reflect how the status of the
packet changed within that router. Forward progress can be hindered if a packet is
blocked in a router, in the case of a starvation or deadlock bug, or is not advancing
correctly towards its destination, in the case of a livelock or misroute bug. In the re-
maining of this section we discuss each of the possible erroneous situations that may
arise. After all local checks have completed, if no error has been detected, the snapshot
data is cleared and the NoC resumes execution. However, if an error is detected, the
logs are aggregated at the central debug unit (CDU), which can be any of the network
nodes connected to a processor core. In-flight packets are dropped and the logs are
sent to the CDU from each cache, one at a time. Transmitting only one log at a time
greatly reduces the complexity of network operations during the transmission of the
logs, boosting the likelihood of error-free transmission, since at this stage of the verifi-
cation process (post-silicon), the network’s most basic operations –such as transmitting
correctly one singly packet– have been extensively validated.

4.2.1. Livelock. A network livelock exists if a packet is being transferred through
routers but not advancing to its destination. Since the checking algorithm running
on each core has only access to its local snapshot log, livelocks must be detected lo-

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :11

1. LocalCheck (snapshotLog){
2. foreach packet in snapshotLog {

3. foreach ntr in GetSnapshotEntries(packet) {
4. time = PhysicalTimeEntry(ntr);
5. next time = PhysicalTimeEntry(ntr+1)
6. if (next time - time > snapshotInterval)
7. FlagError(Livelock)}

8. if (CountEntries(packet) > threshold)
9. if packet in lastSnapshot(snapshotLog)
10. FlagError(Deadlock)
11. else FlagError(Starvation)

12. src = GetSrc(packet)
13. dest = GetDest(packet)
14. if router !InPath(src, dest)
15. FlagError(Misroute) } }

Fig. 6. Local check algorithm. To detect livelock, the algorithm checks if a packet appears in non-
consecutive snapshots. For blocked packets (deadlock and starvation), it checks if a packet appears in several
consecutive snapshots. Finally, misroute errors are detected by comparison with the set of valid paths be-
tween the packet’s source and destination.

cally at the router. For a network with a finite number of nodes, a livelocked packet
will eventually traverse the same router twice. Provided that the epoch length is long
enough for the livelock cycle to form, such errors can be detected locally. In Figure 6
(lines 3-7), the algorithm retrieves the physical timestamp of the packet’s snapshot en-
tries. If the difference in time between two successive snapshot entries is greater than
the snapshot interval, then they were captured in non-consecutive snapshots. This is
an indication that the packet traversed the router at different non-consecutive times
and the algorithm flags a livelock.

4.2.2. Starvation. A starvation error exists if a packet is temporarily blocked waiting to
acquire resources that are given to other packets. Packets traversing the network can
only be blocked in a router’s input buffers, as this is the only storage available in the
network. Therefore, a starved packet must appear in several consecutive snapshots
in a router. Hence, the checking algorithm first determines the number of consecutive
snapshots in which each packet appears (Figure 6, line 9). Then, based on the snapshot
rate, it deduces the number of cycles the packet has been waiting. A starvation error
is flagged when the number of cycles exceeds a user-set threshold.

4.2.3. Deadlock. A network deadlock exists if packets are blocked waiting on each
other to free resources in a way that none of them can advance forward. At the
network-level, a deadlock can be identified by the existence of a cyclic dependency
of resources. However, identifying a deadlock at the router-level by examining only the
local snapshot log reduces to the problem of identifying a blocked packet. Similar to
the starvation bug, a packet is blocked if it appears in consecutive snapshots. How-
ever, a deadlocked packet is permanently blocked, which means it must also be seen
observed in the latest snapshot. Therefore, the local check algorithm checks if any of
the packets in the snapshots satisfy both these conditions and, in that case, flags them
as deadlocked (lines 10-11 in Figure 6). In the case that a coincidentally starved packet

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:12 R. Abdel-Khalek et V. Bertacco

happened to still be in the router at the time when the last snapshot was taken, it is
possible to misclassify the starvation error as a deadlock.

4.2.4. Misroute. Under deterministic routing, a packet traveling between a source and
destination pair should always go through the same route, based on the routing algo-
rithm. In this scenario, a misroute occurs if a packet is routed to a node that is not on
this deterministic path (irrespective of whether the packet eventually reaches its final
destination). To detect such errors, we first assume that all valid paths between each
source-destination pair are known, since they can easily be collected theoretically or
experimentally beforehand. This information is stored in each local cache in the form
of a bit vector that indicates, for each source-destination pair, whether the local router
is part of the valid route. Therefore, to detect misrouting errors, the local check algo-
rithm iterates through the snapshot entries, obtains the source and destination of each
entry, and checks it against the valid paths information (lines 13-16 in Figure 6). In the
case of non-deterministic routing, a packet going from a given source to a destination
node can travel through multiple valid routes. Therefore, the valid paths bit-vector can
be replaced by a statistical distribution of acceptable paths for each source-destination
pair. Packets following routes that are outliers, relative to the statistical distribution,
can be flagged as potential misroutes.

4.3. Local Check Down-sampling

To reduce the time spent in each local check phase, we provide an optimization that
trades-off the ability to detect errors with the execution time of the local check algo-
rithm. Instead of analyzing the entire snapshot log, each core can downsample the
information, such that it only looks at a fraction of the snapshot entries. This is accom-
plished by processing uniformly distributed burst intervals of the log, until the number
of snapshot entries processed reaches the target sampling rate. This local check sam-
pling rate is a user-defined value, which we evaluate in Section 7.1 and discuss in
detail in Section 5, in the context of our proposed post-silicon methodology.
It is possible to decrease the total time spent in local checks by simply increasing

the snapshot interval. A larger snapshot interval means that snapshots are taken less
frequently and the available storage fills up slowly. Therefore, within a given execution
time, there are fewer local check phases and the overall time spent in local checks
is less. Note that in these cases, the time spent in each local check phase remains
the same, since the local check phase is still initiated when the cache space is full.
However,the advantage of using local check sampling, as opposed to increasing the
snapshot interval, is that it reduces the amount of data that needs to be analyzed
during each local check phase without compromising the granularity at which data is
being logged. By looking at burst intervals of the log, local check sampling can continue
to capture the fine-grained traffic behavior that is provided by the smaller snapshot
intervals.

4.4. Global Check

The goal of the global check phase is to provide useful diagnostic information that can
facilitate the debugging of an error detected in the local check phase. Figure 7 shows
the pseudo-code of the global check algorithm. It combines the collected snapshots
to reconstruct the paths of observed packets, and it gives an overview of the traffic
that passed through the network during the logging phase. Snapshots entries pertain-
ing to the same packet are grouped together. Packet routes are then reconstructed
by sorting these entries by increasing order of snapshots’ physical timestamps, when
a global clock is present, or the logical timestamps when the network uses multiple
clock domains (lines 4-5 in Figure 7). In the latter case, because the logical timestamp

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :13

1. GlobalCheck (combinedSnapshotLogs){
2. foreach packet in combinedSnapshotLogs {
3.
4. packet_entries = GetSnapshotEntries(packet)
5. sort(packet_entries)
6.
7. foreach entry in packet_entries {
8. router = entry->router;
9. upstream_router= GetUpRouter(router, entry->input_port);
10. downstream_router= GetDownRouter(router, entry->output_port);
11. packet_path -> Add(upstream_router, router, downstream_router); }
12. }}

Fig. 7. Global check algorithm. In the global check phase, snapshot logs from all routers are collected at
a central debug unit. Snapshot entries relating to a packet are grouped together and sorted by increasing
timestamp. The packet’s path is then reconstructed, while using the input and output ports to infer a portion
of its path beyond the router in which the packet was observed.

of a packet is monotonically incremented in every hop, sorting according to increasing
timestamp values allows the reconstruction of the path in the correct order. We also
use each entry’s input port and output port to try to reconstruct the path beyond the
router in which the packet was observed (lines 7-11 in Figure 7. Indeed, we can de-
termine the upstream (downstream) router, based on the input port (output port) field
and the network topology
Besides reconstructing packet routes, the global check algorithm can highlight the

packets that were present in each router at the time at which the snapshot was taken,
exposing interactions that possibly triggered the error. For example, by examining a
router’s snapshot log, we can identify a subset of the packets that traversed it at the
time surrounding the bug occurrence and deduce the router’s internal state, such as
the buffers that were in-use and the virtual channel and output port allocations at the
time.

5. PLATFORM PARAMETERS

The proposed post-silicon platform includes several parameters to be tuned to provide
high observability and debug information. First, the snapshot interval value deter-
mines the frequency at which traffic is sampled and information is logged. Therefore,
lower snapshot intervals allow for a finer-grained detection and debugging. Similarly,
having a higher sampling rate during the local check phase increases the probability
of detecting erroneous traffic behavior, as more data is available for analysis. Our ex-
perimental evaluation in Section 7 validates the above expectations. In particular, we
found that the detection of some errors such as misroute and starvation benefits from
higher sampling rates and lower snapshot intervals. Whereas other errors, like dead-
locks and livelocks, are almost always detected even with local check sampling as low
as 20% and a snapshot interval of at least 50 cycles.
Based on these observations, we propose a methodological approach to deploy this

platform in a post-silicon validation flow. In this flow, validation is divided into two
phases. During the first phase, tests are executed with a high snapshot interval and a
low sampling rate. This allows the detection of errors that have a widespread effect on
the behavior of erroneous packets, such as deadlocks and livelocks. This is shown in the
first block of Figure 8, where the platform parameters are tuned to an initial value and
the regression tests are simulated. The post-silicon simulation, which is equipped with

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:14 R. Abdel-Khalek et V. Bertacco

1- parameter 
tuning for error 
detection

2- post-silicon 
simulation

- lower snapshot interval
- increase local check sampling passing tests

failing tests

reconstruct packet 
paths and analyze 
debug data

regression 
tests

error diagnosed

error not yet 
diagnosed

debug data

1- parameter 
tuning for fine-
grain debugging

- lower snapshot interval
- increase local check sampling

2- post-silicon 
simulation

until sufficient breadth coverage reached

1 2

3

Fig. 8. Post-silicon validation flow. Tests are first executed with high snapshot values and low sampling
rates on our post-silicon simulation platform. Failing tests are debugged using the generated debug data and
the reconstructed packet paths. In case the error could not be diagnosed, the same test is repeated while
varying the platform parameters to achieve finer-grained debugging. Passing tests are also repeated while
iteratively sweeping the snapshot interval from high to low values and increasing the local check sampling
rate.

our snapshot hardware and local check functionalities, generates debug data, which
includes an overview of network traffic and partial path reconstruction of packets in-
flight. This information can be used to diagnose and debug the failing tests. If the
error could not be diagnosed, these tests can be repeated with lower snapshot interval
values and higher sampling rates in order to achieve finer-grained debugging. This is
depicted in block 3 in the flow diagram in Figure 8. In the second phase, passing tests
can then be repeated, while iteratively lowering the snapshot interval and increasing
the local check sampling rate. During every iteration of this process, a verification
engineer would be increasing the platform’s detection accuracy. Therefore, this second
phase, is likely to expose bugs whose effects are more transient in nature and which
are harder to capture, such as starvation and misrouting errors.
Moreover, the specific values selected for the platform parameters affect epoch

length, the packets that are captured by snapshots, and the fraction of each log that is
analyzed. Therefore, running the same test while sweeping these parameters can pro-
vide observability over different parts of the test’s execution, which allows for better
error detection. Similarly, failing tests can be repeated with different parameters or
with finer-grained snapshots (lower snapshot intervals) in order to provide more de-
bugging capabilities. As an example, one limitation of the local check algorithm is that
it can miss a livelock bug, if the livelock cycle does not complete within the logging
epoch or a starvation bug, particularly if the bug manifests very close to the end of
an epoch. Repeating these tests with different snapshot intervals modifies the epoch
length and allows us to overcome this limitation.
The last set of our NoC validation platform parameters are the reserved cache space

and the deadlock and starvation thresholds used in the local checks. All these three
parameters can be set upfront depending primarily on the nature of the network traf-
fic and the NoC characteristics, such as topology and router architecture. For example,
benchmarks with lower injection rates may require a smaller storage to trigger the
local check frequently enough to detect errors. Finally, note that since we utilize a por-
tion of the cache to store the logs, our framework can fail to expose some execution
scenarios that would have occurred during runtime operation when the full cache is
used. In such cases, it is possible for us to miss some bugs. However, this does not hin-
der the value of our solution. In fact, smaller available cache space causes conflict and
capacity misses to be more pronounced. This would likely generate more traffic and
better exercise the network, potentially allowing us to achieve the needed coverage.

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :15

6. RE-USING THE POST-SILICON FRAMEWORK FOR RUNTIME PERFORMANCE

MONITORING

Hardware that is added to the system to faciliate post-silicon validation is fabricated
and released along with the rest of the chip. This hardware is typically unused after the
product is deployed and thus incurs an added area cost without providing any function-
ality or benefit from the prespective of the end-user. However, in our case, we propose
to re-purpose our post-silicon sampling infrastructure for monitoring the network-on-
chip’s performance during runtime operation. Runtime performance monitoring can
allow users to measure the quality of service delivered to applications running on the
CMP and to determine whether the NoC is matching the performance requirements of
the system. In addition, runtime performance data provide insights about the distri-
bution of traffic and the underlying communication patterns, which in turn can help
users analyze the effectiveness of application scheduling on the CMP processor cores.
For this purpose, our framwork is configured to log information about end-to-end la-

tency of packets, instead of periodically taking snapshots of the network traffic. During
this mode of operation, each packet’s header flit is augmented with the time at which
the packet is injected into the network. As explained in Section 4.1, additional space
in the header flit is often available. Moreover, in contrast to post-silicon validation,
during runtime, our framework no longer needs to keep track of packet IDs, since we
only want to monitor performance values. Therefore, we can re-use some of the header
reserved header space to store the injection time.
At periodic intervals, each router examines its header buffers to determine if a valid

packet is present in the router. If such a packet exists and it is also destined to the node
associated with that router, the packet’s injection time is logged. As in the post-silicon
approach, the snapshot is then transferred through the dedicated link and stored in
the local L2 cache. If the design is a system-on-chip, nodes that are not associated
with a processor core can log this information in additional storage and transmit them
to core-nodes. If the network bandwidth is limited, runtime performance monitoring
can be restricted to routers that are connected to a processing core. Note that this
process requires no additional hardware modifications and simply re-uses the existing
sampling infrastructure to take the snapshots and store them in the cache. Once in
the cache, a software program calculates the end-to-end latencies as the difference
between the time at which the snapshot was taken and the logged injection times.
These latencies can then be accumulated into one value that represents the running
average of end-to-end latencies measured by that router. In addition, it can also be
useful to keep track of the maximum and minimum latency values observed at each
router during execution. This runtime performance monitoring approach has minimal
impact on the operation of the network and the CMP. First, the cache space allocated
for the snapshots is minimal, since each snapshot only logs packets’ injection times and
the time at which the snapshot is taken. For example, considering a router architecture
with ten input virtual channel buffers (5 ports, 2 virtual channels per port) and packet
sizes of sixteen flits, a router can have at most ten header flits in its buffers at a given
time. In this case, a snapshot consists of at most 10 injection time values that need
to be stored in the cache. Moreover, once the average, the maximum, and minimum
latency values are computed, the snapshot data can be deleted from the cache. This is
in contrast to the post-silicon approach, where snapshots consisted of much more data
(Figure 5) and had to be accumulated in the cache for analysis during the local check
phase.
To evaluate this runtime performance monitoring approach, we utilized the experi-

mental setup described in Section 7. Our network was an 8x8 mesh and was simulated
with bitcomp random directed traffic. We first examined the accuracy of the sampled

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:16 R. Abdel-Khalek et V. Bertacco

0%

2%

4%

6%

8%

10%

12%

14%

16%

0.04 0.06 0.08 0.1 0.12 0.14 0.16

av
er

ag
e 

er
ro

r

injection rate

snapshot interval = 100 snapshot interval = 1000

Fig. 9. Accuracy of performance monitoring. Error in end-to-end latency for bitcomp directed random
traffic averaged for all routers in the network in an 8x8 mesh. For snapshot intervals of 100 cycles, where
end-to-end latencies at every router are sampled every 100 cycles, the average error ranges between 5% to
8%. Increasing the snapshot interval, decreases the accuracy of the monitored end-to-end latencies relative
to their actual values.

latency values relative to the actual end-to-end latency values at each router. Figure
9 shows the percentage error for the bitcomp traffic at varying injection rates and for
two distinct snapshot intervals, 100 and 1,000 cycles. The error values are averaged
over all routers in the network and all simulations (10 seeds per injection rate). When
latencies are sampled every 100 cycles, the percentage error observed was found to be
between 5% to 8%. Increasing the snapshot interval means that the latency values are
sampled less frequently and the average error increases. However, even with interval
of 1,000 cycles, the measured latency values were within 10% to 15% of the actual
latencies.
Some other approaches to NoC performance monitoring have been proposed in the

literature, as discussed in Section 3. The main advantage of our framework over these
techniques is that it can be seamlessly configured for both post-silicon validation or
runtime performancemonitoring . A similar approach to ours was proposed in [van den
Brand 2005] where the author utilizes the monitoring framework proposed by [Cior-
das et al. 2004] for performance monitoring. Probes are added to NoC routers, with
each probe consisting of a ”sniffer” that monitors traffic and an event generator. Moni-
tored traffic is abstracted into events and transmitted over the NoC to a central unit or
off-chip to extract performance measurements. We share with this solution the idea of
router-level performance monitoring; however, we differ in two main regards. First, in-
stead of continuously monitoring network traffic, we periodically sample performance
measurements at each router. Second, the monitored information is logged in the lo-
cal cache and analyzed by the processor core attached to each router. We therefore
avoid utilizing the network to regularly transmit performance measurements, which
introduces unnecessary performance slowdowns.

7. EXPERIMENTAL EVALUATION

To evaluate our debug platform, we modeled a CMP interconnect with Booksim, a cycle
accurate C++ based network simulator [Dally and Towles 2003]. Our baseline system
was considered to be an 8x8 mesh NoC with input-queued virtual channel routers.
Each router has 5 ports, 2 virtual channels and 8 flit-buffers. We modified the simu-
lator so that routers take periodic snapshots of packets traversing them and we im-

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :17

plemented the local check functions and the global check reconstruction method. We
simulated two types of workloads: directed random traffic (uniform, bitcomp) and ap-
plications from the PARSEC benchmark suite [Bienia et al. 2008]. The space allocated
for the snapshot logs was 30KB for the random traffic, less than 10% of a typical size
L2 cache of 256KB.

Table I. Functional bugs injected into our network-on-chip baseline system.

bug name bug description
deadlock several packets permanently blocked in a deadlock cycle
livelock1 packet indefinitely circulates through a cyclic path of four routers
livelock2 packet is indefinitely passed from one router to another
starvation packet is temporarily prevented from acquiring resources
misroute-1 packet is misrouted once along its path to destination
misroute-3 packet is misrouted three along its path to destination
misroute-9 packet is misrouted nine times along its path to destination

7.1. Error Detection

We first analyzed our platform’s ability to detect functional errors. We modeled seven
types of bugs in the baseline system, each representing variations of errors that would
prevent the network from making correct forward progress. These include: A deadlock
bug, where several packets are permanently blocked in a deadlock cycle. Two types
of livelock bugs, livelock1, where a network packet indefinitely circulates through a
cyclic path of four randomly chosen routers and livelock2, where a network packet
is indefinitely passed from one router to another. A starvation bug, where a packet is
temporarily prevented from acquiring the resources it needs to progress along its path.
Three misroute bugs, misroute-1, misroute-3, misroute-9, where a packet is misrouted
one, three or nine times, respectively, along its path from its source to destination.
The bugs were injected in a randomly chosen router or set of routers by modifying the
simulator to model the effect of the bug on the packets in transit at the time. We ran
both the random traffic and PARSEC workloads, while triggering each bug once during
the simulation and repeated each experiment with 11 random seeds.
Table II shows the detection rate when simulating bitcomp traffic over our seven

bugs and two snapshot intervals (every 10 cycles and every 50 cycles). Note that, for the
network considered in our experiments, it takes at least 18 cycles for a 16-flit packet to
pass through a router. Once the header flit of that packet completes route computation
and virtual channel allocation, the remaining fifteen flits bypass these two stages and
follow the same route. We also varied the sampling rate of the local check algorithm,
which, as explained in Section 4.2, constitutes a trade-off between detection cover-
age and the time it takes to complete the local check phase. In these experiments, the
threshold for detecting starvation and deadlock was set to 100 snapshots. Results show
that deadlock and livelock bugs are always detected, whereas misroute and starvation
have a much lower detection rate (less than 52%). This is because, when a packet is
deadlocked or livelocked, it remains in this state from when the bug manifests un-
til the end of the simulation, and thus it has a high probability of being captured by
the snapshots over time. On the other hand, misroute and starvation errors are tran-
sient and the affected packets can never be observed. In addition, this effect is more
pronounced when the snapshot interval is increased to 50 cycles, because snapshots
are now taken even less frequently. Note that for misrouting bugs, as the number of
misroutes increase the detection rate increases as well. This is because the error man-
ifestation becomes more pronounced and the probability of capturing the packet at a
time when it is traversing a wrong path increases. Moreover, if sampling is activated

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:18 R. Abdel-Khalek et V. Bertacco

Table II. Error detection rate for our seven types of bugs. The results are reported for two snapshot intervals, with
and without local check sampling.

injected bugs no sampling 50% sampling 20% sampling no sampling 50% sampling 20% sampling

misroute 19% 14% 2% 6% 0% 0%

deadlock 100% 100% 100% 100% 100% 100%

livelock1 100% 100% 100% 100% 100% 100%

livelock2 100% 100% 100% 100% 100% 100%

starvation 24% 7% 2% 0% 0% 0%

misroute-3 36% 17% 4% 6% 6% 3%

misroute-9 52% 29% 9% 4% 3% 3%

snapshot interval=50 cyclessnapshot interval=10 cycles

during the local check phase, the detection of misroute and starvation decreases, again
because of the transient nature of these errors. Whereas, local check sampling does not
affect the detection of livelock and deadlock. Finally, we noticed that for the snapshot
interval of 10 cycles, the simulations where the traffic injection rate was high (close to
network saturation), exhibited false positives due to the false detection of starvation
bugs. Starvation errors were flagged even before our bugs were injected. This is be-
cause the network is highly congested and the chosen detection threshold was small.
However, at a snapshot interval of 50 cycles, no false positives were reported.

0

200

400

600

800

1000

1200

1400

1600

0.04 0.06 0.08 0.1 0.12 0.14 0.16

d
et

ec
ti

o
n

 la
te

n
cy

 (
x1

03 
cy

cl
es

)

injection rate

snapshot interval = 10 cycles

snapshot interval = 50 cycles

Fig. 10. Time to detect errors with varying snapshot intervals and injection rates. Higher snap-
shot interval values increase the detection latency as log space takes longer to fill up and trigger the local
check phase.

7.2. Error Detection Time

In our post-silicon platform a bug is first detected during the local check phase, which
is initiated when the reserved cache space is full. Therefore, the detection latency is
directly related to the length of the logging phase, and the chosen snapshot interval is
one of the main factors that affect it.
Figure 10 plots the bug detection latency for bitcomp traffic at varying injection rates

and two snapshot intervals of 50 and 100 cycles. The injection rate was swept from 0.04
flits/node/cycle (injection rate near zero-load latency) to 0.16 flits/node/cycle (injection
rate when network is near saturation). The results are averaged over all bugs, with
each bug injected once during each simulation at a fixed time of 100,000 cycles. Note
also that each run was set to execute for 1M cycles. This experiment highlights the

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :19

0

500

1000

1500

2000

2500

3000

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

d
et

ec
ti

o
n

 la
te

n
cy

 (
x1

03 
cy

cl
es

)

injection rate

bug injection time = 100K cycles

bug injection time = 400K cycles

bug injection time = 800K cycles

Fig. 11. Time to detect errors with varying bug injection times. Larger bug injection times lower
the system’s detection latency. Snapshot logs are closer to being full deeper into the simulation, which trig-
gers local checks soon after bug injection. At higher injection rates, there is a less pronounced variation in
detection latency with varying bug injection times.

impact of congestion and snapshot interval on detection latency. For a snapshot inter-
val of 10 cycles, the time between bug injection and detection varied between 17,000
cycles (at high injection rate) to 12,000 cycles (at low injection rate). This is due to the
fact that at higher injection rates, the network is more congested and more packets are
logged at every snapshot. Therefore, the logs fill up faster and the local check phase is
triggered much earlier allowing the system to detect the bug soon after it happened.
On the other hand, when traffic congestion is low, the logging phase lasts longer, as
it takes more time for the designated snapshot logs to fill up. Consequently, the error
detection latency increases.
We also studied the impact of bug injection time on detection latency. Figure 11

highlights the results obtained for bitcomp traffic at a snapshot interval of 50 cycles.
For low injection rates, as the bug injection time increases, the time it takes the system
to detect the bug decreases. This is due to the fact that at low injection, snapshot
logs fill up infrequently and much later during the execution. Therefore, a larger bug
injection time means that the bug is injected closer to when a local check is triggered.
As the injection rate increases, the effect of bug injection time is no longer pronounced.
In those cases, the high traffic creates smaller epochs and very frequent local checks.
Therefore, bugs are detected soon after they happen, irrespective of their injection
times.

7.3. Error Diagnosis

We also evaluated the quality of information that can be obtained from the snapshots
when they are aggregated during the global check phase. Table III shows the results
for bitcomp random traffic at low, medium and high injection rates and two snapshot
intervals (10 cycles and 50 cycles) and with a sampling rate of 50%. We particularly
looked at 3 measurements. First, we calculated the percentage of packets that were
observed in at least one snapshot with respect to the total number of packets injected in
the simulation. Second, we looked at the path reconstruction rate, which is the average
fraction of each route that we were able reconstruct from the aggregated snapshots.
Finally, we measured the path reconstruction of the packets that were detected as
faulty (i.e., the packets where the error manifested).

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:20 R. Abdel-Khalek et V. Bertacco

Table III. Diagnosis capability is evaluated by measuring the % of packets observed, the %
of each path that we could reconstruct, and the % reconstruction for the erroneous paths.

snapshot rate 

10 cycles

snapshot rate 

50 cycles

low

injection

%packets observed 54% 20%

avg. path reconstruction 53% 30%

avg. path reconstruction rate of 

faulty packets per bug type

misroute-1 43% misroute-1 0%

deadlock 63% deadlock 54%

livelock1 74% livelock1 66%

starvation 36% starvation 0%

livelock2 29% livelock2 6%

misroute-3 56% misroute-3 0%

misroute-9 58% misroute-9 0%

medium

injection

% of packets observed 67% 28%

avg. path reconstruction 52% 31%

avg. path reconstruction rate of 

faulty packets per bug type

misroute-1 55% misroute-1 0%

deadlock 67% deadlock 49%

livelock1 57% livelock1 48%

starvation 47% starvation 0%

livelock2 37% livelock2 9%

misroute-3 59% misroute-3 22%

misroute-9 64% misroute-9 17%

high

injection

%packets observed 85% 50%

avg. path reconstruction 58% 35%

avg. path reconstruction rate of 

faulty packets per bug type

misroute-1 60% misroute-1 0%

deadlock 77% deadlock 54%

livelock1 73% livelock1 56%

starvation 0% starvation 0%

livelock2 47% livelock2 18%

misroute-3 40% misroute-3 23%

misroute-9 67% misroute-9 11%

For a snapshot interval of 10 cycles, the percentage of observed packets is 54% at low
injection and increases to 85% at high injection. This increase is due to the fact that at
higher injection rates, the network is more congested and routers have more packets
traversing them, which allows each snapshot to capture a larger fraction of the packets
in flight. As for path reconstruction, we note that on average 52% to 58% of each route
was reconstructed from the snapshots. When looking at the path reconstruction rate
of the erroneous packets, we notice that when the bug is detected, we can reconstruct
on average 36%- 60% of its path. In some cases, for example the starvation bug under
high traffic injection, the path reconstruction of the faulty packet is reported as 0%.
This is because the faulty packet was not captured in any snapshots and the error was
not detected in any of the runs. Even though at higher injection, the network is more
congested and starvation is more likely to occur, we maintained the same bug injection
rate: one starvation bug injected once during each run. Therefore, with more traffic
in-flight and given the probabilistic nature of the snapshot algorithm, the erroneous
packet that was affected by the bug was never observed.
When the snapshot interval is increased to 50 cycles, the percentage of packets that

are observed in the collected snapshots decreases to 20% at low traffic injection and

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :21

50% at high injection. Similarly, the overall average path reconstruction decreases to
35%. With higher snapshot intervals, snapshots are taken less frequently and thus
more packets are missed. Therefore, the snapshot interval directly influences network
observability. Moreover, the impact of the chosen snapshot interval varies depending
on the injection rate. For test cases that have low traffic injection, a smaller snapshot
interval is required to observe at least 50% of all packets. However, at high injection
rates, a larger snapshot value would be sufficient to attain the same result, because of
the higher congestion in the network.

7.4. Performance Evaluation

Our NoC debug platform periodically stops network execution to locally check the col-
lected snapshot logs. The time spent in the local check phase is therefore the main
source of performance overhead. To evaluate this overhead, we implemented and in-
tegrated our snapshot and local check algorithms with the Booksim simulator. Note
that, since the local checks are intended to run in software on the CMP’s cores, our
implementation of these algorithms could not be cycle-accurate. Therefore, we instru-
mented the local check algorithms to utilize the x86 timestamp counters and report
the execution time in cycles while running on a 2.4GHz Core2 Quad machine. We then
added the execution time (in cycles) of the local checks occurring in each run to the
benchmark execution time (in cycles) that was obtained from the cycle-accurate Book-
sim simulator. We compared these results to the benchmark execution time on the
baseline system, which does not have any of our post-silicon debug functionalities. For
our experiments, we simulated both PARSEC and random traffic benchmarks. We also
assumed that 30KB of the local L2 cache were reserved for the snapshot log, when
simulating random traffic workloads, and 10KB when simulating the PARSEC bench-
marks. Note that the snapshot storage is approximately 10% or less of a typical L2
cache size of 256KB. In addition, the lower injection rate of the PARSEC benchmarks
forced us to choose a lower storage size so that the local log could fill up and trigger a
local check at least once during the benchmark’s execution.
We first examined the performance impact of varying snapshot interval values.

Figure 12a) shows the the execution time of the different workloads normalized to
their respective execution times on the baseline system (without any of our NoC debug
functionalities). In these experiments, the local check sampling rate was set to 20%.
The normalized execution time only takes into account the overhead of the periodic
local checks triggered during each run, as this is the main source of overhead in our
framework. For random traffic, we varied the injection rate from low injection (when
the network is close to zero-load latency) to high injection (before network saturation).
With larger snapshot intervals, local checks are invoked less frequently and the overall
benchmark execution times are smaller. This can be observed in Figure 12a), where
larger snapshot intervals result in smaller values for normalized execution relative to
the baseline system. For example, when the snapshot interval is set to 10 cycles, the
execution time for bitcomp traffic ranges from 2x to 32x slower than a baseline system
that does not implement our solution. When increasing the snapshot intervals to 50
and a 100 cycles, the execution time improves by a factor of 5 and 10, respectively.
Note that despite this slowdown, the speed at which benchmarks are executed is still
relatively high, especially when compared to the speeds of simulations during pre-
silicon verification, which are typically in the order of 10-100Hz. However, as explained
in Section 7.3, a larger snapshot interval reduces the observability of in-flight packets
and the ability to reconstruct their paths. A similar trend is observed for the uniform
and PARSEC workloads. PARSEC workloads experience on average 1-2x slowdown
when executing on our framework with a snapshot interval of 10 cycles. This overhead
consists of the additional time spent on locally checking the logs whenever they are

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:22 R. Abdel-Khalek et V. Bertacco

snapshot interval=10 snapshot interval=50

snapshot interval=100

 -

 5

 10

 15

 20

 25

 30

 35

0.04 0.06 0.08 0.1 0.12 0.14 0.16

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

injection rate (flits/cycle/node)

bitcomp

0

0.2

0.4

0.6

0.8

1

1.2

0.04 0.06 0.08 0.1 0.12 0.14 0.16

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

injection rate (flits/cycle/node)

bitcomp

20% sampling

no sampling

50% sampling

0

5

10

15

20

0.02 0.06 0.1 0.14 0.18 0.22 0.26

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

injection rate (flits/cycle/node)

uniform 4428

0

0.2

0.4

0.6

0.8

1

1.2

0.02 0.06 0.1 0.14 0.18 0.22 0.26

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

injection rate (flits/cycle/node)

uniform

0

0.5

1

1.5

2

2.5

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

benchmarks

PARSEC

0

0.2

0.4

0.6

0.8

1

1.2

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

benchmarks

PARSEC

a) reference baseline: system without 

our snapshot functionalities

b) reference baseline: system with our 

snapshot functionalities but without local 

check sampling

Fig. 12. Normalized execution time for PARSEC and random traffic workloads with varying
snapshot intervals and local check sampling rates.

full. However, note that at low injection rates, increasing the snapshot interval might
not be feasible, as was the case of the PARSEC benchmarks that would never trigger
a local check (normalized execution time is 1)
We also evaluated the effect of varying the local check sampling rate on per-

formance, in Figure 12b). In these experiments, we are using a snapshot interval of 10

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :23

cycles while varying the local check sampling rate between 20% and 50%. The results
are normalized to a system without any local check sampling. As expected, sampling
the logs during the local check phase speeds up the process. For example, at a sam-
pling rate of 50%, where only half of each snapshot log is analyzed, the execution time
is twice as fast, on average, for the random traffic. An even lower sampling rate of 20%
improves the execution time to at least a factor of 3. A similar trend is observed for the
PARSEC benchmarks.
Therefore the snapshot interval and the local check sampling rate constitute a trade-

off between the performance overhead of our post-silicon validation platform and its
ability to detect and diagnose errors. Our post-silicon validation flow described in Sec-
tion 5 tunes these parameters based on the goals of the simulation. During the first
phase of the validation process, large snapshot interval values and lower sampling
rates allow the system to run at higher performance. When failing tests are repeated
for finer-grain debugging and when passing tests are iteratively repeated with differ-
ent parameters, the performance of the system decreases to attain better error detec-
tion and debug.

7.5. Area

We also evaluated the area overhead of the router modifications that are needed to
capture the local snapshots. The hardware implementation is described in Section 4.1
and illustrated in Figure 4. The hardware additions primarily consist of the header
buffers, one buffer associated with each input buffer, as well as control logic to identify
valid packets within the router and extract their corresponding state from the vari-
ous router stages. Moreover, we also included a small storage to temporarily store the
captured snapshot while it is being transferred to the local cache. We synthesized the
modified baseline router with the Artisan 45nm target library. We found that the base-
line router area was 0.075mm

2 and the area overhead of our additions was 0.0067mm
2,

which corresponds to 5,296 NAND2-equivalent gates and constitutes 9% of the total
router area.

8. CONCLUSION

We presented a post-silicon solution to support the functional verification of networks-
on-chip by increasing the observability of the network’s internal operation and provid-
ing debug information to facilitate the diagnosis and debugging of errors. We incorpo-
rated our solution in a complete post-silicon validation flow that tunes the different
system parameters and guides the validation process. Our platform targets functional
errors that prevent the network from making correct forward progress, such as dead-
lock, livelock and starvation errors. This is accomplished by instrumenting routers to
periodically take snapshots of packets traversing them and log these snapshots in a re-
served portion of each processor’s local cache. When the space allocated for the logs is
exhausted, a software algorithm running on each cores examines its local snapshot log
for incorrect packet behavior. Once an error is detected, the local logs are combined and
additional debug information is extracted. In addition, we proposed a method to utilize
the post-silicon platform for runtime performance monitoring of end-to-end latencies
in networks-on-chip. Our experimental results show that during post-silicon valida-
tion, our debug platform can effectively collect information critical to the detection
and diagnosis of functional errors, and that, during runtime performance monitoring,
it can estimate end-to-end latencies at network routers with low error.

Acknowledgments. This work was supported by STARnet, a Semiconductor Re-
search Corportation program sponsored by MARCO and DARPA, and NSF grant
#1217764.

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



:24 R. Abdel-Khalek et V. Bertacco

REFERENCES

ABRAMOVICI, M. 2008. In-system silicon validation and debug. IEEE Design & Test of Computers 25, 3,
216–223.

ABRAMOVICI, M., BRADLEY, P., DWARAKANATH, K., LEVIN, P., MEMMI, G., AND MILLER, D. 2006. A
reconfigurable design-for-debug infrastructure for socs. In Proceedings of the 43rd annual Design Au-
tomation Conference. DAC ’06.

AL FARUQUE, M., WEISS, G., AND HENKEL, J. 2006. Bounded arbitration algorithm for qos-supported on-
chip communication. In Hardware/Software Codesign and System Synthesis, 2006. CODES+ISSS ’06.
Proceedings of the 4th International Conference. 76–81.

BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. 2008. The PARSEC benchmark suite: Characterization
and architectural implications. In Proc. PACT.

CHATTERJEE, D., MCCARTER, C., AND BERTACCO, V. 2011. Simulation-based signal selection for state
restoration in silicon debug. In Proceedings of the International Conference on Computer-Aided Design.
ICCAD ’11.

CIORDAS, C., BASTEN, T., RADULESCU, A., GOOSSENS, K., AND MEERBERGEN, J. 2004. An event-based
network-on-chip monitoring service. In High Level Design Validation and Test Workshop. HLDVT’04.

CIORDAS, C., GOOSSENS, K., BASTEN, T., RADULESCU, A., AND BOON, A. 2006. Transaction monitoring in
networks on chip: the on-chip run-time perspective. In Proc. IES.

DALLY, W. AND TOWLES, B. 2003. Principles and Practices of Interconnection Networks. Morgan Kaufmann.

DAS, R., EACHEMPATI, S., MISHRA, A., NARAYANAN, V., AND DAS, C. 2009. Design and evaluation of a
hierarchical on-chip interconnect for next-generation cmps. InHigh Performance Computer Architecture,
2009. HPCA 2009. IEEE 15th International Symposium on. 175–186.

DEORIO, A., BAUSERMAN, A., AND BERTACCO, V. 2008. Post-silicon verification for cache coherence. In
Proceedings of International Conference on Computer Design. ICCD’08.

DEORIO, A., WAGNER, I., AND BERTACCO, V. 2009. Dacota: Post-silicon validation of the memory subsys-
tem in multi-core designs. In Proceedings of International Symposium on High Performance Computing
Architecture. HPCA’09.

IEEESTD1149.1. 1990. IEEE standard test accesss port and boundary scan architecture. IEEE Std. 1149.1-
1990.

JAFRI, S. M. A. H., GUANG, L., JANTSCH, A., PAUL, K., HEMANI, A., AND TENHUNEN, H. 2012. Self-
adaptive noc power management with dual-level agents - architecture and implementation. In PECCS.
450–458.

KIM, G., KIM, J., AND YOO, S. 2011. Flexibuffer: reducing leakage power in on-chip network routers. In
Proceedings of the 48th Design Automation Conference. DAC ’11. ACM, New York, NY, USA, 936–941.

KO, H. F. AND NICOLICI, N. 2008. Automated trace signals identification and state restoration for improv-
ing observability in post-silicon validation. In Proceedings of the conference on Design, automation and
test in Europe. DATE ’08.

KO, H. F. AND NICOLICI, N. 2010. Automated trace signals selection using theRTL descriptions. In Pro-
ceedings of International Test Conference. ITC’10.

KRISHNA, T., PEH, L.-S., BECKMANN, B. M., AND REINHARDT, S. K. 2011. Towards the ideal on-chip
fabric for 1-to-many and many-to-1 communication. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO-44 ’11. ACM, New York, NY, USA, 71–82.

LAI, C.-H., YANG, F.-C., KAO, C.-F., AND HUANG, I.-J. 2009. A trace-capable instruction cache for cost effi-
cient real-time program trace compression in soc. In Proceedings of the 46th Annual Design Automation
Conference. DAC ’09.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM.

LI, Z., ZHU, C., SHANG, L., DICK, R., AND SUN, Y. 2008. Transaction-aware network-on-chip resource
reservation. IEEE Comput. Archit. Lett. 7, 2, 53–56.

LIU, X. AND XU, Q. 2009. Trace signal selection for visibility enhancement in post-silicon validation. In
Proceedings of the Conference on Design, Automation and Test in Europe. DATE ’09.

LV, Z., CHEN, H., CHEN, F., AND LV, Y. 2011. Fast verification of memory consistency for chip multi-
processor. In Proceedings of the 2011 Seventh International Conference on Computational Intelligence
and Security. CIS ’11.

MISHRA, A. K., SRIKANTAIAH, S., KANDEMIR, M., AND DAS, C. R. 2010. Cpm in cmps: Coordinated power
management in chip-multiprocessors. In Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis. SC ’10. IEEE Computer Society,
Washington, DC, USA, 1–12.

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.



Post-Silicon Platform for the Functional Diagnosis and Debug of Networks-on-Chip :25

PANDA, P. R., BALAKRISHNAN, M., AND VISHNOI, A. 2011. Compressing cache state for postsilicon proces-
sor debug. IEEE Transactions on Computers 60, 4, 484–497.

PANDA, P. R., VISHNOI, A., AND BALAKRISHNAN, M. 2010. Enhancing post-silicon processor debug with
incremental cache state dumping. VLSI-SoC’10.

PARIKH, R. AND BERTACCO, V. 2011. Formally enhanced runtime verification to ensure NoC functional
correctness. In Proceedings of the International Symposium on Microarchitecture. MICRO’11.

PARK, S.-B., BRACY, A., WANG, H., AND MITRA, S. 2010. Blog: post-silicon bug localization in processors
using bug localization graphs. In Proceedings of the 47th Design Automation Conference. DAC ’10.

PARK, S.-B., HONG, T., AND MITRA, S. 2009. Post-silicon bug localization in processors using instruction
footprint recording and analysis (IFRA). Transactions on Computer-Aided Design of Integrated Circuit
Systems 28, 10, 1545–1558.

ROTITHOR, H. 2000. Postsilicon validation methodology for microprocessors. IEEE Desing Test 17, 4, 77–88.

STUIJK, S., BASTEN, T., GEILEN, M., GHAMARIAN, A., AND THEELEN, B. 2006. Resource-efficient routing
and scheduling of time-constrained network-on-chip communication. In Digital System Design: Archi-
tectures, Methods and Tools, 2006. DSD 2006. 9th EUROMICRO Conference on. 45–52.

TANG, S. AND XU, Q. 2007. A multi-core debug platform for NoC-based systems. In Proceedings of the
conference on Design, automation and test in Europe. DATE’07.

VAN DEN BRAND, J. 2005. Runtime networks-on-chip performance monitoring. M.S. thesis, Technische Uni-
versiteit Eindhoven.

VERMEULEN, B. AND GOOSSENS, K. 2009. A network-on-chip monitoring infrastructure for communication-
centric debug of embedded multi-processor socs. In Proc. VLSI-DAT.

VERMEULEN, B., OOSTDIJK, S., AND BOUWMAN, F. 2001. Test and debug strategy of the pnx8525 nexperi-
atm digital video platform system chip. In Proceedings of the IEEE International Test Conference 2001.
ITC’01.

VISHNOI, A., PANDA, P., AND BALAKRISHNAN, M. 2009. Cache aware compression for processor debug
support. In Design, Automation Test in Europe Conference Exhibition, 2009. DATE ’09.

WAGNER, I. AND BERTACCO, V. 2008. Reversi: Post-silicon validation system for modern microprocessors.
In Proceedings of International Conference on Computer Design. ICCD’08.

YANG, J.-S. AND TOUBA, N. A. 2009. Automated selection of signals to observe for efficient silicon debug.
In Proceedings of VLSI Test Symposium. VTS’09. 79–84.

YI, H., PARK, S., AND KUNDU, S. 2008. A design-for-debug (DfD) for NoC-based SoC debugging via NoC. In
Proceedings of Asian Test Symposium. ATS’08.

YI, H., PARK, S., AND KUNDU, S. 2010. On-chip support for NoC-based SoC debugging. IEE Trans. on
Circuits and Systems 57, 7.

ACM Transactions on Embedded Computing Systems, Vol. , No. , Article , Publication date: January YYYY.


