
Formally Enhanced Verification at Runtime to Ensure NoC
Functional Correctness

Ritesh Parikh, Rawan Abdel-Khalek, Valeria Bertacco

The Department of Computer Science and Engineering, University of Michigan
{parikh,rawanak,valeria}@umich.edu

ABSTRACT

As silicon technology scales, modern processor and embedded sys-

tems are rapidly shifting towards complex chip multi-processor (CMP)

and system-on-chip (SoC) designs. As a side-effect of complexity

of these designs, ensuring their correctness has become increas-

ingly problematic. Within these domains, Network-on-Chips (NoCs)

are a de-facto choice to implement on-chip interconnect; their de-

sign is quickly becoming extremely complex in order to keep up

with communication performance demands. At the same time,

functional design errors escaping into a system’s interconnect may

have a detrimental impact on the whole system.

In this work, we propose ForEVeR, a solution that complements

the use of formal methods and runtime verification to ensure func-

tional correctness in NoCs. Formal verification, due to its scal-

ability limitations, is used to verify smaller modules, such as in-

dividual router components. To complement this, we propose a

network-level detection and recovery solution to deliver correct-

ness guarantees for the complete network. ForEVeR augments the

baseline NoC with a lightweight checker network that alerts desti-

nation nodes of incoming packets ahead of time, and which is used

to detect errors in the communication. If a bug is detected, a re-

covery mechanism delivers the in-flight data safely to the intended

destination via the checker network. ForEVeR’s experimental eval-

uation shows that it can recover from NoC design errors at only

5.8% area cost for an 8x8 mesh interconnect, over a time interval

ranging from 0.5K to 30K cycles per recovery event. Additionally,

it incurs no performance overhead in the absence of errors.

1. INTRODUCTION
Current trends in microprocessor design entail the inclusion of

an increasing number of relatively simple processor cores commu-

nicating via an interconnect fabric. Correspondingly, embedded

systems deploy system-on-chip architectures, comprising several

IP components in one single chip. As a result, the demands for high

bandwidth inter-core communication have rapidly sidelined tradi-

tional interconnect architectures, such as simple buses, due to their

limited scalability and performance. In contrast, network-on-chips

(NoC) are characterized by highly concurrent communication paths

and better scalability, and are thus becoming the de-facto choice for

interconnect architectures. Moreover, to keep up with the perfor-

mance of the cores/IPs on-chip, NoC design is becoming increas-

ingly complex, employing various techniques to efficiently manage

high communication loads. In NoCs, data is transmitted as ’pack-

ets’, that can further be divided into smaller blocks called ’flits’ for

efficient transfer. Packets injected via network interfaces (NI) are

transmitted to their destinations through a network of routers and

links, abiding some routing protocol. The routers themselves often

include advanced features, such as pipelining, speculation, prior-

itization, complex allocation schemes, etc., and are organized in

a wide range of topologies, implementing complex routing algo-

rithms. With these advanced performance features it is a challenge

to ensure correct functionality under all circumstances for the entire

network.

Current methodologies for functional verification in the indus-

try are heavily rooted on simulation based validation and formal

methods. Simulation techniques are inherently incomplete, since

they cannot check all the possible execution scenarios of the sys-

tem. Formal techniques, although they can theoretically provide

complete guarantees of correctness, are in practice heavily lim-

ited by design complexity, and thus mostly applied only to small

portions of the design. A recent trend in the research community

has started to explore runtime verification solutions, where the sys-

tem’s activity is monitored at runtime, after customer deployment,

and checked for correctness. Runtime verification solutions can

sidestep the negative impact of escaped design bugs by detecting

their occurrence and intervening at runtime to prevent the corrup-

tion of network/processor state, loss of data and/or system fail-

ure. Their cost, however, includes silicon area dedicated to runtime

monitoring and recovery, dedicated design effort and often a perfor-

mance impact on the overall system due to continuous monitoring

activities.

ForEVeR’s approach is based on the insight that although for-

mal methods do not scale to the complexity of an entire NoC, yet

they can ensure component-level correctness, which in turn could

greatly reduce the need for runtime bug detection and recovery.

Thus, ForEVeR proposes a complementary functional verification

solution for networks-on-chip, which leverages formal techniques

for individual network routers or components, and runtime verifi-

cation at the network-level. ForEVeR’s runtime modules are de-

signed to cover only those aspects that cannot be formally proven

to work correctly. In this manner, the silicon area and design time

effort dedicated to the runtime verification hardware directly bene-

fits from the designer’s ability to formally verify.

1.1 Contributions
ForEVeR (Formally Enhanced Verification at Runtime for NoC

correctness) targets functional bugs in the NoC fabric and it is

a solution independent of topology, router architecture and rout-

ing schemes. Leveraging the synergy between formal and runtime

verification, ForEVeR can detect and recover from a wide vari-

ety of functional errors in the interconnect and can ensure forward

progress in the execution with no data corruptions. Finally, For-

EVeR comes at a small area cost of 5.9% for an 8x8 mesh intercon-

nect, while incurring a minimal performance impact only when an

error manifests.

To the best of our knowledge ForEVeR is the first work to pro-

vide correctness guarantees in NoCs via complementary use of for-

mal verification and runtime validation. Formal methods are em-

ployed to verify basic router functionality, ensuring that packet

integrity is maintained within a router. The complementary run-

time technique ensures correct forward progress in the overall net-

work transfers. The runtime detection and recovery scheme, also

enables designers to deliberately implement agressive allocation

schemes that might starve packets or complex routing and priori-

tization mechanisms that occasionally lead to deadlock or livelock.

If starvation and deadlocks are rare, the overall performance im-

provement due to aggressive schemes outweighs the recovery over-

head [2]. Together, formal verification and runtime validation guar-

antee that all data is eventually delivered to the correct destinations

without being dropped or corrupted. ForEVeR achieves these goals

by adding simple, verifiable and mostly decoupled hardware to the

baseline interconnect. To enable runtime network-level detection

and recovery, ForEVeR adds a lightweight checker network over

the baseline NoC that can be guaranteed to operate correctly. For

each data packet sent over the primary NoC, an advanced notifica-

tion is transmitted over the checker network to flag a future packet

delivery. Each destination maintains a count of expected packets

and initiates recovery on anomalous behavior in the counters val-

ues. During recovery, all packets in-flight in the primary NoC at

the time of bug detection are reliably delivered to their intended

destinations via the checker network.

The ability to formally ensure packet’s integrity within a router

might vary depending on the complexity of the router logic. To

cover scenarios where local router functionality cannot be com-

pletely verified using formal methods, we propose additional router-

level runtime checkers that monitor each router for ’correct’ behav-

ior of the un-verified aspects. If these checkers flag an error, our

network-level recovery is triggered and the router pipeline is forced

into a degraded mode of operation. In degraded mode, a router dis-

ables most of it’s advanced features to a threadbare version with

enough functionality to support the recovery process. Correctness

of the system in this simplistic mode of operation can then be for-

mally verified, guaranteeing complete recovery past the occurrence

of the bug when running in degraded mode.

2. RELATED WORK
Very few research works have proposed complementary use of

formal and runtime techniques. Among them, Bayazik and Malik

[4] suggested a hybrid verification methodology that leverages the

use of hardware checkers in model checking to avoid state explo-

sion by validating assumptions and abstractions at runtime. For-

EVeR, on the other hand, uses formal methods and runtime verfi-

cation in a hybrid methodology to provide complementary correct-

ness goals for NoCs. Moreover, [4] is a generic methodology for

verfication of complex properties that cannot be directly applied to

NoC correctness. Other works, such as [6] target the formal verifi-

cation of an abstracted model of the NoC, and thus cannot guaran-

tee correctness of the actual implementation.

Ensuring the runtime correctness of NoCs has been the subject of

previous research, focusing on a variety of aspects. Several works

[17, 2, 12, 11] target deadlock, prominent in adaptive routing, while

others target a wider variety of errors through general end-to-end

detection and recovery techniques [14]. Traditionally, the deadlock

problem in NoCs is overcome by deadlock avoidance, or through

detection and recovery, as in DISHA [2]. Other works [12, 11],

propose more sophisticated deadlock detection mechanisms based

on monitoring activity at the router channels. In contrast, ForEVeR

safeguards against all kind of functional bugs, including deadlock

and livelock. In addition, ForEVeR is an end-to-end solution lever-

aging hardware units mostly decoupled from the primary NoC, thus

making minimal changes to the primary NoC design. Other end-to-

end approaches for NoC runtime correctness have been surveyed

in [14]. The most common error recovery scheme for NoCs is the

acknowledgement-based retransmission technique of [14], where

error detection codes are transmitted along with data packets, to

check for data corruption at the receiver. An acknowledgement is

sent back after successful transfer, otherwise the sender times out

and re-transmits the packet using a locally-stored copy. Apart from

large storage buffers and performance degradation due to the ad-

ditional acknowledgement packets, this approach suffers from the

obvious disadvantage of not being able to overcome errors such as

deadlock and livelock. Moreover, since it uses the same untrusted

network for re-transmission, it ultimately cannot guarantee packet

delivery.

Runtime verification solutions have targeted so far microproces-

sor designs [3, 13, 20]. In general, these solutions add hardware to

verify the operation of untrusted components, switching to a verifi-

able degraded mode on error detection. Finally, ForEVeR detection

mechanism relies on the use of router-level runtime monitors, when

formal methods fail to ensure router correctness. The idea of using

runtime checkers has been proposed for various purposes [7, 16].

[7] champions the use of runtime monitors for post-silicon debug

and in-field diagnosis, as a general design methodology. ForEVeR

leverages a set of specialized hardware monitors coupled with ded-

icated network recovery support.

3. METHODOLOGY
The success of complementary verification depends on intelli-

gent division of correctness goals between the two complete verifi-

cation techniques, namely formal and runtime verification. Formal

verification is a theoritically complete, guaranteeing correctness

under all execution scenarios. However, model checking, which

has been the work-horse for formal verification, suffers from the

state explosion problem that prevents it from proving end-to-end

correctness properties of large systems. Additionally, formal veri-

fication solutions are not keeping up with the design trends and as a

result design complexity is growing faster than the ability to verify.

In contrast, runtime validation approaches are not affected by

state explosion as they only monitor the execution scenarios carried

out during the actual design run. Yet they provide for complete ver-

ification as paths not taken at runtime are of no concern to design

correctness. Another advantage over formal techniques is that they

can recover from the errors dynamically, making runtime validation

an effective method to heuristically detect system-level violations

and recover from them in-field. However, standalone runtime so-

lutions tend to be area intensive. Moreover, these agnostic runtime

solutions are often intrusive, further complicating the already com-

plex designs.

Based on these observations, we employ formal methods, specif-

ically model checking, to verify the basic router functionality, which

includes proving that packet integrity is maintained within a router.

In other words we verify that flits are not dropped and they follow

the header flit in a wormhole fashion. However, formal methods

might not be sufficient for proving correctness of complex routers

and could need additional runtime monitoring hardware along with

some reconfiguration logic that enables the degraded mode of routers

during recovery. As for design errors that inhibit forward progress

of the system, such as starvation and deadlock, they are detected by

a network level runtime detection mechanism, followed by a recov-

ery step, which reliably delivers all the packets in error to their re-

spective destination nodes. Figure 1 shows the high level overview

of ForEVeR, where partially verified routers are connected together

to form a NoC system that is augmented with detection and recov-

ery logic to provide runtime correctness. Runtime checkers and

recovery logic are used at router level to protect complex router

components against design flaws. The primary NoC is augmented

with a lightweight checker network that is used to deliver advance

notifications to the counting logic at destination nodes. During re-

covery, the checker network is used to reliably transmit in-flight

primary network packets to their respective destinations.

4. ROUTER CORRECTNESS
In the context of our scheme, a correctly functioning router should

ensure that a packet’s integrity is maintained within or across routers.

NI

chk

NI

chk

NI

degrd

chk

NI

chk

partially
verified
router

partially
verified
router

partially
verified
router

partially
verified
router

destination counter
(detection)

checker network
(notification and

recovery)

partially
verified NoC

recovery
support logic

verified
router core

monitored
components

advanced
performance features

NoC router

Figure 1: High-level overview of ForEVeR. A combination of

router-level runtimemonitoring and network-level detection and re-

covery scheme, along with component formal verification, ensures

correct NoC operation.

If a router guarantees that no flits are dropped and all body flits fol-

low the head flit in a wormhole, then we consider it to be function-

ing correctly. Our definition of router’s correctness is motivated by

the fact that even with no guarantees of forward progress, if each

router in the network ensures to hold these properties, all data in-

flight in the network is maintained in a coherent state and correct

network state can be restored without any need of data duplication.

In this section we describe our approach to ensure router cor-

rectness using either formal or runtime verification. Without loss

of generality we discuss our ideas for a fairly complex 3-stage

pipelined router that is input-queued and that uses virtual channel

(VC) flow control, lookahead routing and switch speculation. A

detailed schematic of this router is shown in Figure 2. A router es-

sentially ties together its datapath components, such as input buffer,

channel and crossbar, with a control plane that consists of input

VC control (IVC), route computation unit (RC), VC allocator (VA),

switch allocator (SA), output VC control (OVC) and flow control

manager. The control plane manages the error free flow of data

from input channels to the output channels via input buffers and

crossbar respectively. Since the data path components are fairly

simple and can be easily verified, we specifically focus our verifi-

cation effort on controlling logic. Moreover, it is well known that

the most complex verification tasks arise from the interaction of

concurrent components. In the framework of a router, the interac-

tions between the concurrently operating VCs are handled by RC,

VA and SA units. These units utilize information provided by the

flow control mechanism, which is used to transmit buffer state in-

formation among neighboring routers. Other control units such as

IVC and OVC operate mostly on a standalone basis, with infor-

mation provided by the RC, VA and SA units, and hence can be

formally verified using existing formal tools.

Based on the above observations, first a full formal proof of

router correctness is attempted. If due to the complexity of the

logic involved, formal methods fail to provide correctness guaran-

tees, only parts of the router that can be easily handled by existing

formal tools are verified. Then runtime hardware checker are used

to protect the vital router components that handle the interactions

among concurrent units, which keeps the area cost low. In addi-

tion, provisions have to be made to prevent the NoC from entering

an unrecoverable state; for example this might happen when a flit

is dropped or corrupted before the monitoring hardware flags an er-

ror. In either case, operation of the router during recovery has to be

formally verified.

4.1 Formal Verification
The verification process can be efficiently divided into two sub-

VA

SA

S
P
E

C

S
P
E

C

-D
IS

V
A
-

D
IS

crossbar

o
u
tp

u
t
c
h
a
n
n
e
ls

ejection

south

injection

token manager

west

input porteast

north

east

west

north

south

head buffer (RC)

head buffer (RC)

IVC

IVC VA, SA &

token manager

in
p
u
t
p
o
rt

input

channel

in
p
u
t
c
h
a
n
n
e
ls

recovery ctrl

OVC

Input buffer
to x-bar

input port

input port

input port

input port

to NI

router control plane

flow ctrlneighboring

routers
FIFO ctrl

verifiable

components

critical

components

ForEVeR’s

router additions

p
e
rf
o
rm

a
n
c
e
-

o
n
ly

 f
e
a
tu

re

Figure 2: Router modifications in ForEVeR. VA, SA and flow

control units are monitered by runtime checkers. To implement re-

covery, NoC router is augmented with VC and speculation disablers

along with a token manager and a recovery FIFO controller

correctness goal verified property sub time(s)

No dropped flit * incoming valid flit written to buffer 6 90

(datapath and standalone * buffer behaves in FIFO manner 20 660

control units) * flit gets from buffer to OP channel 17 170

Packet keeps wormhole * only valid body flits follow head flit

42 2400(complex interactions of with no mixing between packets

concurrent components) and no flit/packet duplication

Table 1: Formal verification of router correctness.
.

goals: ensuring no flits are dropped and proving that body flits fol-

low the header flit in a wormhole. To prove that the router does not

drop flits, it is necessary to verify that all valid flits received through

input channels are written into valid buffer entries, followed by the

verification of first-in first-out functionality of the buffers. Finally,

it should be proven that a flit read from the input buffer should get

to some output channel, within a fixed number of clock cycles de-

pending on the router pipeline. Verifying that a packet maintains

its wormhole nature is more involved as now correctness has to be

proven over an entire packet rather than a flit. Apart from prov-

ing that flits follow the head flit, formal methods should ensure that

no other flit from any other packet meddles with the wormhole.

Also, it is essential to verify that only valid flits are transmitted and

that there is no flit/packet duplication within the router. This re-

quires extensive verification of various router control components

and their interactions. Table 1 summarizes the correctness goals

for NoC router and the entailed properties that require proof. To

illustrate the verification procedure of writing specification prop-

erties, we provide an example where we discuss in detail how a

correctness property is divided into sub-properties. The property

’incoming valid flits written to IP buffer’ is used as an example.

This property holds if it can be verified that an incoming valid flit

always has a valid VC tag and the corresponding VC buffer has

a free slot (no overflow). Additionally, the flit contents should be

written to the free slot of only the requested VC buffer. Finally,

an incoming invalid flit should not be written to any of the VC

buffers. Some router implementations maintain a separate header

buffer corresponding to each VC buffer and thus similar properties

should be verified for the header buffers, where instead of any valid

flit, only valid header flits are considered.

The number of sub-properties (sub), expressed as System Verilog

Assertions (SVA) [1], to represent each correctness property is also

reported in Table 1. Finally, Table 1 states the time taken to ver-

ify each property using Synopsys Magellan [19] on an Intel Xeon

processor running at 2.27 GHz and using 4GB of main memory. It

should be noted that formal guarantees for starvation freedom in al-

location schemes and proper functioning of the route computation

module need not be provided, as the network level detection and

recovery scheme efficiently handles these scenarios.

4.2 Runtime Verification
As mentioned earlier, due to the area overhead of runtime check-

ers, only components that handle interactions between the concur-

rently operating modules are monitored. These components are the

hardest to verify and result in majority of hard-to-catch bugs [9].

We also pointed out that the routing unit, VC allocator and switch

allocator orchestrate the actions of input and output VCs and that

the flow control unit interprets and communicates the control infor-

mation between routers. Among these units, errors in the routing

stage are not detrimental to our scheme as long as the other router

functionalities are guaranteed to be correct. Thus the routing unit

is not monitored at runtime. All other vital units are supervised for

correct operation by runtime checkers, as shown in Figure 2. Once

an error is flagged by these checkers, router level reconfiguration is

performed that forces the router to a formally verifiable degraded

mode, with minimum functionality to support network level recov-

ery. This is followed by network level recovery initiation that we

discuss in section 5.2.

4.2.1 Detection and Recovery

VC and switch allocator A design flaw in VC allocator may give

rise to various erroneous conditions, some of which are benign as

they either do not violate our definition of router correctness or are

effectively detected and recovered by our network level correctness

scheme. Assignment of an unreserved but erroneous output VC to

an input VC is an example of such a benign error, as in the worst

case it may only lead to misrouting or deadlock. Starvation is an-

other example that needs no detection or remedy at a router level.

Critical errors arise when an unreserved output VC is assigned to

two input VCs or an already reserved output VC is assigned to a

requesting input VC. This situation will lead to packet mingling

and/or packet/flit loss. Similar to VC allocator, a design flaw in

switch allocator may or may not have an adverse affect on For-

EVeR’s operation. An error in switch allocator may send a data flit

to a different direction than the corresponding header flit; it may

also cause the same flit to be sent to multiple outputs; or multiple

flits from different packets to be directed towards the same output at

the same time. All these cases lead to packet data corruption and an

un-recoverable network state. To monitor VC and switch allocators

at runtime for corrupt behavior, we propose the use of Allocation

Comparator (AC) unit, that is a stripped down version of a similar

unit that was proposed in [16] for soft error protection. The AC

unit is purely combinational logic that performs all comparisons

within one clock cycle. It simultaneously analyses the state of VC

and switch allocators for duplicate or invalid assignments. If an

error is flagged, all VC and switch allocations of the previous cy-

cle are invalidated. Flits traversing the crossbar just after the error

is flagged, are discarded at the output. To avoid loosing flits due

to this invalidation/discard operation, an extra storage slot per VC

buffer is reserved for use during such emergencies. To implement

this, VA, SA and crossbar units are modified to accept invalidation

command from the AC.

Flow control To safeguard against flow control errors, a hardware

monitor is inserted to detect buffer overflow errors. Additionally,

to avoid dropped flits, input buffers are equipped with two emer-

gency slots per VC. On receiving a flit at buffer full condition,

indicating an overflow, the downstream router tells the upstream

router to switch to a slightly modified version of ACK-NACK flow

control [8]. The second emergency slot is reserved for a possible

in-flight flit during this upstream signalling. The modified ACK-

NACK flow control eliminates the need for negative acknowledge-

ments and re-ordering ability at the downstream router. This is

achieved by stopping further transmission on the link until an ack-

nowledgement is received for a previously transmitted flit. The

flit awaiting acknowledgement is re-transmitted every two cycles

(round trip latency of the links), before being dropped on receiving

an acknowledgement. This scheme, though detrimental for per-

formance, is extremely simple and can be implemented with little

modification to the existing flow control mechanism. In addition,

the router works in this mode only during recovery, switching back

to its high performance mode after recovery is complete. Note that

to safeguard against all errors at most two emergency slots per VC

buffer are required. Since buffers are usually designed as circular

FIFOs, this scheme entails only slight modifications to the buffer

full logic.

4.2.2 Degraded Mode

When a bug is detected by hardware monitors, the router switches

to a degraded mode with formally verified execution semantics, by

either disabling complex units or replacing vital ones with simpler

spare counterparts. This mode is equipped with bare-minimum fea-

tures to support the network level recovery, that is initiated imme-

diately after discovering a bug. To prevent the NoC routers from

servicing new packets in probable erroneous state, all packet level

operations such as route computation and VC allocation are dis-

abled during recovery, as discussed in section 5.2. Similarly ad-

vance “performance only” features such as switch speculation and

prioritizing mechanisms are disabled. Since stuck packets have to

be drained out of NoC routers, it still requires the switch alloca-

tor and flow control manager to work properly. To this end, the

router reconfigures to use a spare simple arbiter that polls each in-

put VC for switch allocation. Similarly, flow control switches to an

acknowledgement based mode to prevent flit loss as discussed in

section 4.2.1. The resulting degraded router has significantly less

concurrency and thus can be verified to function correctly.

5. NETWORK CORRECTNESS
With router correctness guaranteed, we need a network level

solution that ensures forward progress in the NoC system. More

specifically it should efficiently detect and recover from design er-

rors that inhibit forward progress in the network (deadlock, livelock

and starvation) and misrouting errors. To this end, ForEVeR adds a

lightweight and verifiable checker network that works concurrently

with the original NoC, providing a reliable fabric for transfer of

notifications and recovered packets during detection and recovery

phases respectively. Our checker network should be a simple, low

latency optimized network that can consistently deliver notifica-

tions before the actual packets arrive through the primary network.

We, therefore, leverage the single cycle latency, packet-switched

routers of [10], organized as a ring network.

In the detection phase, each packet sent on primary network is

accompanied by a corresponding notification over the checker net-

work, both directed to the same destination. Each destination main-

tains a count of expected future packet deliveries through the pri-

mary network, decrementing the count on receiving a packet from

the primary network. A distributed detection scheme monitors the

counter values for zeros, initiating recovery on not observing a zero

value during the entire check epoch of certain cycles. During the re-

covery phase, in-flight packets are recovered from the primary net-

work, and reliably transmitted through the checker network. Fig-

ure 1 shows a baseline NoC augmented with the checker network.

Interactions between the NoC router and checker network are han-

dled by the NI unit, which also houses the detection and recovery

initiation logic.

5.1 Detection
All design errors that inhibit forward progress result in packet(s)

jammed within the network, and thus our detection mechanism

should be designed to detect such scenarios. Moreover, it should

be simple enough to be implemented with small area overhead and

minimal changes to the existing infrastructure. To this end, we use

notification messages travelling via the reliable checker network

as the means for destinations to keep a count of the future packet

deliveries. A bug in the primary network will always lead to an un-

accounted packet at the destination, and thus the counter value will

never go to zero, under the assumption that notifications always

reach the destination before their counterpart packets. Therefore,

our distributed detection scheme flags an error if it does not ob-

serves a zero counter value at any particular destination inside an

entire check epoch. Figure 3 depicts the working of our distributed

detection scheme. Counting logic is added to the NI to keep a count

of number of expected packets at destination nodes, as shown in

Figure 2. A timer monitors the counter value for zeros during en-

tire check epoch length, failing which recovery is triggered. With

proper size of the check epoch, this simple scheme is effective in

catching bugs as we show in our experimental results section 6.1

and it can be implemented with lightweight counting logic. On the

other hand, misrouting errors that do not cause deadlock or livelock

are detected at destinations by analyzing the routing information

carried by header flit.

check epoch

chk

router

+- 2 3---2-------1--2---3--2---------1--0--

notification

packet
counter
activity

counterNI

zero
observed!

zero not
observed!

trigger
recovery continue

normal
operation

time

Figure 3: ForEVeR’s detection scheme. Each destination tracks

the notification counters for zero values. Recovery is triggered if

zero is not observed during the entire check epoch at any destina-

tion.

5.2 Recovery
When an error is reported either by the router level runtime mon-

itors or by the network level detection scheme, the NoC enters a

unified recovery phase, consisting of network drain step followed

by a packet recovery step. In network drain phase, the network is

allowed to operate normally to drain its in-flight packets for a pre-

set amount of time, with the exception of switching the erroneous

routers to a degraded mode if recovery was initiated by router level

checkers. During this phase, new packets are not injected into the

network, as shown in Figure 4(a). Recovery is aborted at the end

of network drain if all destinations receive the packets they were

expecting, indicating a false positive due to the limited accuracy of

the detection scheme. It should be noted that false positives, though

a performance hit in absence of errors, do not affect the correctness

of the system.

The network then enters packet recovery, where we try to recover

packets that are stuck within the network. To this end, a token is

circulated through all routers in the NoC via the checker network,

and NoC routers can operate only when they hold this token. In ad-

dition, VC allocators of all the NoC routers are disabled to prevent

them from processing new data packets from neighboring routers.

When a router receives the token, it examines the fronts of its VC

buffers in a serial manner, looking for packet headers. In case of a

successful search, the packet is retrieved and sent over the checker

network as shown in Figure 4(b). Since vital router functionalities

for packet drain are still active (even in the degraded mode), the

entire packet can be safely diverted to its destination through the

checker network. Once the token has circulated through all primary

routers, the entire process of packet recovery is repeated until either

each destination receives all the pending packets or no more pack-

ets are retrieved, in which case a design bug has slipped through

our scheme. To enable the ForEVeR scheme, NoC routers are aug-

mented with certain simple units, as shown in Figure 2. First, a

token manager is added to the routers to manage token passing. In

addition, virtual channel (VC) allocation disabler (VC-DIS) and

switch speculation disabler (SPEC-DIS) are included to prevent

routers from processing new packets during the packet recovery

phase and to keep the ForEVeR operation simple and easily verifi-

able for correctness. The recovery operation is implemented with

very little overhead, making use of the router’s existing function-

alities to drain out packets from their buffers, with the help of the

FIFO recovery controller.

NI NI

stop injecting
new packets

NINI

chk

network
drain

checker
network

header flit of
stuck packet

drain through

checker network

router (VA dis)

input buffer H

NI

(a
)
N
e
tw
o
rk
 d
ra
in

(b
)
P
a
c
k
e
t
re
c
o
v
e
ry

1

2

chk

chk chk

degrd

flit assembler/

de-assembler

all packets

recovered?

No! Yes!
resume

normal

operation

degrd

degrd degrd

active
router core

active
router core

active
router core

active
router core

Figure 4: ForEVeR recovery process. Network drain is followed

by packet recovery until all primary network packets are recovered.

Due to the limited bandwidth of the checker network, each pri-

mary network flit is transmitted as several checker packets. During

recovery, only one router is transmitting its stuck packets to a single

destination at a time, greatly simplifying the dis-assembling/assembling

process. To send the entire primary network flit as multiple checker

packets, the channel of the checker network is augmented with head

and tail indicators. The flit with head indicator carries the destina-

tion address and reserves an exclusive path between the source and

one particular destination. All intermediate valid flits traversing

the ring network are ejected at the same destination till a flit is re-

ceived with a tail indicator, in which case the process repeats itself

on transmission of another flit with a head indicator. Moreover, all

transmissions on the checker network during recovery occur in the

same (clockwise) direction to avoid wormhole overlap of two pack-

ets. In our evaluation system with 64 nodes, the checker network

channel is 8 bits wide (6-bit address, 2-bit head-tail indicators).

Thus each 64-bit primary network flit takes 12 checker networks

packets (1 head, 11 body/tail) to transfer.

5.3 Verification of Recovery Operation
All components involved in the detection and recovery processes

must be formally verified to guarantee correct functionality. Veri-

fication of the detection mechanism involves ensuring the correct

functioning of the counting and timer logic at NIs and due to the

simplicity of the logic involved this makes up for a trivial verifi-

cation task. Formally verifying the recovery operation is more in-

volved and requires two major tasks: first, verifying the checker

network functionality; and second, verifying the interaction be-

tween checker and primary network during recovery, to ensure proper

restoration of erroneous packets.

Checker network. It should be verified that the checker network

correctly delivers all packets to their respective destinations within

a bounded time. To this end, this correctness goal was partitioned

into three sub-properties: eventual injection (inj_prop), guarantee-

ing injection of a waiting packet into the network; forward progress

(fw_prop) ensuring that packets progress on a path towards their

destination; and timely ejection (ej_prop) that guarantees packet

ejection at correct destination.

Interaction with primary network. The primary network’s units

that interact with the checker network to salvage stuck packets from

the primary routers must be ensured to function properly. During

recovery, primary routers work in a rudimentary mode by disabling

all complex hardware units not involved in the recovery process,

such as the VC allocators and SW speculators, thus making the ver-

ification task tractable. First, it is verified that the checker network

could extract a complete packet from an individual primary router’s

VC buffer (rec_prop), leaving it empty (rec_emp_prop). The com-

plement of this property is also validated (not_rec_prop) to check

that only valid packets are extracted from the primary network.

This was followed by checking for fairness and exclusivity among

the primary routers while undergoing recovery (fair_ex_prop), en-

suring that packets are salvaged from one router at a time.

correctness goal verified property time(sec)

Checker network correctness

inj_prop 8

fw_prop 156

ej_prop 86

Interaction with primary network

rec_prop 15

rec_emp_prop 10

not_rec_prop 46

fair_ex_prop 29

Table 2: Formal verification of ForEVeR’s recovery operation

Table 2 summarizes the correctness goals for ForEVeR’s recov-

ery process and the time required to prove the etailed properties.

6. EXPERIMENTAL RESULTS
We evaluated ForEVeR by modeling a NoC system in Verilog

HDL, as well as with a cycle-accurate C++ simulator, both based

on [8]. Our system is a 8x8 XY-routed mesh network, using routers

with 2 VCs and 8 entry buffers per VC, that are similar to the router

described in section 4. In addition, the NoC was augmented with a

checker network enabled with detection and recovery capabilities.

The Verilog implementation was used to formally verify the NoC

routers and the hardware components taking part in the recovery

process. To this end, we inserted specification properties expressed

as System Verilog Assertions [1] in the HDL design and verified

them with Synopsys Magellan [19], a model checking tool. For-

EVeR’s area overhead was estimated using synthesis results from

Synopsys Design Compiler [18] targeting the Artisan 130nm li-

brary. On the other hand, the C++ simulator was used to assess

the accuracy of our network level detection scheme and to evalu-

ate the performance impact of recovering from functional bugs that

were deliberately inserted in our model. The scheme was analyzed

with two different types of workloads: directed random traffic (uni-

form), as well as applications from the PARSEC suite [5].

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 f
a

ls
e

 p
o

si
ti

v
e

s

psize4_med psize6_med psize8_med psize10_med

psize4_high psize6_high psize8_high psize10_high

traffic pattern = uniform

injection process = bernoulli

0

10

20

30

40

0K 1K 2K 3K 4K 5K
P

e
rc

e
n

ta
g

e
 f

a
ls

e
 p

o
si

ti
v

e
s

epoch size (cycles)

Figure 5: ForEVeR’s detection scheme under uniform random

traffic. Figure plots the false positive rate with increasing check

epoch size, for various packet sizes. False positive rate drops

rapidly with larger check epoch sizes and decreasing network load.

6.1 Network Level Detection Accuracy
ForEVeR’s runtime performance overhead is affected by the ac-

curacy of its detection scheme. False positives in absence of bugs

lead to unnecessary recovery initiation where injection into the net-

work is stopped while it is drained. Given a sufficiently long drain-

ing period, the system will resume normal operation after the net-

work drain phase as all in-flight packets in the error free network

will be delivered correctly to their destinations. Thus a false pos-

itive in our detection mechanism does not affects network’s cor-

rectness but hits the runtime performance. The false positive rate

of our detection scheme depends on the duration of check epoch

relative to traffic conditions. Note that false positives are triggered

when the destination counter is non-zero for the entire check epoch,

and hence a heavily loaded network will trigger more false recov-

eries as unaccounted notifications will accumulate at destinations

with their corresponding packets being delayed due to congestion

in the primary network. Intuitively, a longer check epoch, though

increasing the detection latency, will also reduce the false positive

rate by giving more time to the latency hit primary network packets

to balance the notifications accumulating at the destination nodes.

Figure 5 shows a study using uniform random traffic with varying

packet sizes, that plots the false positive rate in the absence of bugs

with increasing check epoch size. It can be seen that false positive

rate decreases rapidly with the increasing check epoch size, with

the false positive rate dropping to a negligible value beyond a cer-

tain check epoch size (Epochmin), the value of which depends on

network load. It can also be seen that for the same check epoch size,

a heavily loaded network exhibits a much higher false positive rate

than a moderately loaded network.

Despite using a large check epoch, a heavily loaded network may

result in a destination continuously receiving new notifications be-

fore the “expected packet” count is neutralized by primary network

packets, therefore initiating a false recovery. Extensive simulations

indicate that this scenario is possible only when the network is op-

erated at loads well past its saturation. However, NoC workloads

are characterized by self-throttling nature of applications, which

prevents them from operating past saturation [15], making a good

case for our detection scheme. In addition, large check epochs,

used to prevent false positives at high network load, can be toler-

ated even though it increases the detection latency as this affects

system performance only when a bug manifests. To validate our

design’s effectiveness and to calibrate the check epoch size, we ran

rigorous simulations using both uniform random traffic and PAR-

SEC benchmarks. After operating ForEVeR normally for a set pe-

riod, we drop a random primary network packet to imitate an error

in the primary network, calculating the number of false positives

and negatives for various check epoch lengths at the same time. A

design flaw in the primary network will at least result in one stuck

main network packet, and hence this simulation technique models

the worst-case scenario.

100

150

200

250

4K

6K

8K

10K

12K
a

v
g

 n
e

tw
o

rk
 l

a
te

n
cy

 (
cy

cl
e

s)

ch
e

ck
 e

p
o

ch
 s

iz
e

 t
o

 e
li

m
in

a
te

 f
a

ls
e

 p
o

si
ti

v
e

s

(c
y

cl
e

s)

check_epoch_size avg_network_latency

packet size = 8

traffic pattern = uniform

injection process = bernoulli

0

50

0K

2K

4K

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

a
v

g
 n

e
tw

o
rk

 l
a

te
n

cy
 (

cy
cl

e
s)

ch
e

ck
 e

p
o

ch
 s

iz
e

 t
o

 e
li

m
in

a
te

 f
a

ls
e

 p
o

si
ti

v
e

s

injection rate (flits/node/cycle)

Figure 6: ForEVeR’s detection scheme under uniform traffic.

Figure shows the variation of Epochmin and latency with increas-

ing network load. Epochmin is within tolerable limits for deeply

saturated networks.

3K

4K

5K

6K

7K

ch
e

ck
 e

p
o

ch
 s

iz
e

 t
o

 e
li

m
in

a
te

 f
a

ls
e

 p
o

si
ti

v
e

s

(c
y

cl
e

s)

low injection rate (1 x zero_load_latency)

moderate injection rate (1.5 x zero_load_latency)

high injection rate (2 x zero_load_latency)

packet size = 8

traffic pattern = uniform

injection process = bernoulli

0K

1K

2K

4 6 8 10

ch
e

ck
 e

p
o

ch
 s

iz
e

 t
o

 e
li

m
in

a
te

 f
a

ls
e

 p
o

si
ti

v
e

s

Packet Size (flits)

Figure 7: ForEVeR’s detection under uniform traffic. Figure

shows the variation of Epochmin with different packet sizes, at

low, moderate and high network load. Epochmin size decreases

with increase in packet size.

Uniform random traffic Figure 6 plots the average network la-

tency and the minimum check epoch length at which the false pos-

itives are practically eliminated (Epochmin) as traffic load on the

network is varied. Note that the value of Epochmin was deter-

mined by extensive simulations and a theoretical determination of

a lower bound on check epoch length to completely eliminate false

positives is not required as false positives due to in-accuracy in the

estimated value of Epochmin entail only a performance penalty

and are not a correctness issue. Epochmin exhibits a slow increase

with rising injection rate, till network saturation, from where it

shows a steep rise. In the worst case shown by the graph,Epochmin

of 7K cycles is sufficient to eliminate all false positives, when the

network is in deep saturation, operating at an average latency of

about 4 times the zero-load latency. Figure 7 shows a similar study

plotting Epochmin at low, moderate and high injection rates for

four different packet sizes. Apart from showing that Epochmin is

within manageable limits in all cases, it also indicates the decrease

of Epochmin value with increasing packet size. For similar loads,

the network using larger packet sizes has fewer in-flight packets

causing fewer notifications to accumulate at destinations and hence

lower Epochmin values.

1.0K

1.5K

2.0K

2.5K

ch
e

ck
 e

p
o

ch
 s

iz
e

 t
o

 e
li

m
in

a
te

 f
a

ls
e

 p
o

si
ti

v
e

s blackscholes

bodytrack

dedup

ferret

streamcluster

x264

swaptions

vips

freqmine

0.0K

0.5K

3 4 5 6 7 8 9 10

ch
e

ck
 e

p
o

ch
 s

iz
e

 t
o

 e
li

m
in

a
te

 f
a

ls
e

 p
o

si
ti

v
e

s

packet size (flits)

(cycles)

Figure 8: ForEVeR’s detection scheme under PARSEC bench-

marks. Figure shows the variation of Epochmin with different

packet sizes for 9 PARSEC benchmarks. Epochmin’s size across

all benchmarks is within tolerable limits for packets of size up to 8

flits (avg. network latency of 800 cycles)

PARSEC Benchmark traces for evaluation of our detection and re-

covery scheme were extracted from a 64 core CMP system running

PARSEC workloads, with our baseline NoC using 4-flit data pack-

ets as the on-chip interconnect. The average network latency across

all benchmarks for these traces was 26 cycles. However, to exam-

ine our scheme under more demanding conditions, we decreased

the channel width of our baseline NoC, in effect increasing the net-

work load. Using the same traces, NoCs with longer data packets

(due to decreased channel width) are used to unrealistically stress

the network during simulation. It should be noted that such high

load scenarios (average network latency up to 1600 cycles) will

never arise in an actual NoC because of the self-throttling nature of

the applications. Figure 8 plots the variation of Epochmin with

different packet sizes for the benchmarks of the PARSEC suite,

demonstrating that zero false positives can be achieved with rea-

sonable check epoch sizes even with high network loads.

Finally to avoid false negatives in our scheme, the checker net-

work is constrained to deliver notifications before the correspond-

ing data packets arrive through the primary NoC. A checker net-

work design capable of this can be achieved by considering several

design alternatives, such as bundling together multiple notifications

before transmission, or using multiple checker networks, etc. In our

evaluation system, the checker network almost always delivers no-

tifications ahead of data packet delivery through the primary NoC,

except for certain very low latency cases, where certain main net-

work packets take shorter routes through the primary NoC, whereas

the notifications travel longer routes in a ring-based checker net-

work. To counter this case, the destination counters, rather than up-

dating immediately on arrival of primary NoC packets, are updated

after a certain delay period that is determined by the maximum la-

tency difference between primary and checker network possible at

zero load.

6.2 Recovery Overhead
To analyze ForEVeR’s performance impact and its ability to re-

cover from various types of design errors, we injected 9 different

design bugs into our C++ implementation of ForEVeR, as described

in Table 3. Bugs 1-8 are errors that inhibit forward progress or lead

to incorrect routing and are detected by the network-level detec-

tion scheme, whereas Bug 9 is detected by router-level hardware

checkers after being randomly activated in any one router servic-

ing a packet. We ran PARSEC workloads while triggering one

bug during entire execution and varying bug trigger time (5 points,

10,000 cycles apart), place of bug injection (10 random places) and

packet size (4,6,8 flits). ForEVeR was able to detect all errors with

no false positives or negatives and recover from them, executing

all workloads to completion and delivering all packets correctly to

their destinations. ForEVeR’s performance overhead on bug man-

ifestation is due to the recovery phase that includes network drain

and packet recovery. During network drain, phase the primary NoC

is allowed to drain for a fixed period of 500 cycles, that was deter-

mined by simulations as the time required to drain a congested net-

work. Table 3 reports the average packet recovery time (in network

cycles) taken by each bug, averaged over all benchmarks, packet

sizes, activation times and places of bug injection. It should be

noted that routing errors are quickly detected at erroneous destina-

tions, whereas errors that effect the router operation are detected

immediately by the router level hardware monitors.

bug description recovery time

deadlock some packets deadlocked in the network 4821

livelock some packets in a livelock cycle 3084

VA_vc_strv input VC never granted an output VC 2827

VA_port_strv no input VC in a port granted output VC 3055

SW_vc_strv one input VC never granted switch access 2123

SW_port_strv no input VC in a port granted switch access 2490

misroute1 one packet routed to random destination 1724

misroute2 two packets routed to random destinations 1810

router_bug hardware monitors in routers detect a bug 1764

average 2633

Table 3: Functional bugs injected in ForEVeR. Table reports av-

erage recovery time (recover) for each bug.

On average, ForEVeR spends approximately 2,633 cycles in the

packet recovery phase. Since, ForEVeR’s main overhead is because

of draining packets stuck in the primary NoC through the checker

network to their respective destinations, the recovery time directly

depends on the number of stranded packets. Therefore bugs that af-

fect larger parts of the design, such as an entire port (VA_port_strv),

take more time to recover than bugs that influence smaller por-

tions, such as one VC (VA_vc_strv), as they usually involve greater

number of packets. Similarly, deadlock errors that potentially stop

many packets from progressing, require the highest number of cy-

cles to recover.

6.3 Area Results
Since verification dedicated hardware does not contribute to per-

formance or functionality of the design, it should be architected to

be as area efficient as possible. The amount of hardware required to

implement router level correctness is minimal and varies with the

designer’s ability to verify different router components and hence

we focus on the area overhead of ForEVeR’s network-level runtime

detection and recovery scheme. Table 4 reports our results indicat-

ing that ForEVeR leads to a 5.8% area overhead over a primary net-

work router. Area overhead is dominated by additions made to the

router for enabling the network-level recovery scheme, contribut-

ing 2.7%, whereas NI additions and checker router combined are

responsible for the remaining 3.06%. Moreover, wiring cost due to

additional buffer port used during recovery is the major contributor

to router area overhead.

baseline (8x8 mesh) ForEVeR’s overhead

design area (mm
2) % design area (mm

2) %

router 5.167 100 router additions 0.139 2.70

NI additions 0.077 1.49

checker router 0.081 1.57

total 5.167 100 overhead 0.298 5.76

Table 4: ForEVeR area overhead for network level correctness.

7. CONCLUSIONS
In this work, we presented ForEVeR, a complete verification so-

lution that complements the use of formal methods and runtime

verification to ensure functional correctness in NoCs. Formal ver-

ification is used to verify simple router functionality, leveraging a

network-level detection and recovery scheme to provide NoC sys-

tem correctness guarantees. ForEVeR augments the NoC with a

simple checker network used to communicate notifications of fu-

ture packet deliveries to corresponding destinations. A runtime de-

tection mechanism keeps a count of expected packets, triggering

a recovery on unusual behavior of the counter values. Following

error detection, all in-flight packets in the primary NoC are safely

drained to their intended destinations via the checker network. For-

EVeR’s detection scheme is highly accurate and can detect all de-

sign errors. The complete scheme incurs only 5.8% area cost for

8x8 mesh NoC, taking only up to 30K cycles to recover from errors.

8. REFERENCES
[1] System Verilog Assertions. http://www.systemverilog.org/.

[2] K. V. Anjan and T. M. Pinkston. An efficient, fully adaptive deadlock recovery

scheme: DISHA. In Proc. ISCA, 1995.

[3] T. M. Austin. DIVA: A reliable substrate for deep submicron microarchitecture

design. In Proc. MICRO, 1999.

[4] A. A. Bayazit and S. Malik. Complementary use of runtime validation and

model checking. In Proc. ICCAD, 2005.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:

Characterization and architectural implications.

[6] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. A generic model for formally

verifying noc communication architectures: A case study. In Proc. NoCs, 2007.

[7] M. Boule, J.-S. Chenard, and Z. Zilic. Assertion checkers in verification, silicon

debug and in-field diagnosis. In Proc. ISQED, 2007.

[8] W. Dally et. al. Principles and Practices of Interconnection Networks. 2003.

[9] H. Foster, L. Loh, B. Rabii, and V. Singhal. Guidelines for creating a formal

verification testplan, 2006.

[10] J. Kim and H. Kim. Router microarchitecture and scalability of ring topology in

on-chip networks. In Proc. NoCArc, 2009.

[11] P. Lopez, J. M. Martinez, and J. Duato. A very efficient distributed deadlock

detection mechanism for wormhole networks. In Proc. HPCA, 1998.

[12] J. M. Martínez et. al. Software-based deadlock recovery technique for true fully

adaptive routing in wormhole networks. In Proc. ICPP, 1997.

[13] A. Meixner, M. E. Bauer, and D. Sorin. Argus: Low-cost, comprehensive error

detection in simple cores. In Proc. MICRO, 2007.

[14] S. Murali et. al. Analysis of error recovery schemes for networks on chips.

IEEE Design & Test, 22(5), 2005.

[15] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu. Next generation on-chip

networks: what kind of congestion control do we need? In Proc. Hotnets, 2010.

[16] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das. Exploring

fault-tolerant network-on-chip architectures. In Proc. DSN, 2006.

[17] D. Starobinski et. al. Application of network calculus to general topologies

using turn-prohibition. IEEE/ACM Trans. Networks, 11(3), 2003.

[18] Synopsys. Synopsys Design Compiler.

[19] Synopsys. Synopsys Magellan. http://www.synopsys.com.

[20] I. Wagner and V. Bertacco. Engineering trust with semantic guardians. In Proc.

DATE, 2007.

