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Abstract:
This paper explores the synergy between battery thermal management (BTM) in an electric
vehicle (EV) and battery charging. A model predictive control (MPC) based approach is
proposed to minimize the energy used for BTM during the drive and fast charging stages and the
estimated charging time while enforcing constraints imposed on state-of-charge (SOC), power,
and thermal conditions of the battery. An adaptive strategy is developed to adjust the weight
of the two competing objectives in the MPC cost function to manage the trade-off between
BTM energy consumption and charging time. The sensitivity of the proposed MPC-based BTM
strategy to uncertainties in the fast charging station availability is also investigated. Our results
show that a 12.3% of decrease in the charging time could be achieved by optimally performing
BTM at the cost of negligibly higher BTM energy usage in the case study conducted.
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1. INTRODUCTION

Electric vehicles (EVs) are becoming more popular due
to their expected advantages in reducing carbon emission,
when paired with renewable electricity production (Notter
et al., 2010; Choi et al., 2018). However, anxiety about
driving range and relatively long charging times impede
EV’s market penetration (Lee and Park, 2013; Chen et al.,
2021). To address these issues, fast-charging stations have
been rapidly built in recent years to expand the charg-
ing infrastructure (Shafiei and Ghasemi-Marzbali, 2022).
While fast-charging technology significantly reduces the
charging time, the large charging power, typically higher
than 50 kW (Parchomiuk et al., 2019), could result in rais-
ing battery temperature over desired thresholds (Keyser
et al., 2017; Tomaszewska et al., 2019). Thus, an effective
power and thermal management strategy during the fast-
charging process is of essential importance for EVs.

Although various approaches have been developed for
battery thermal management (BTM) (Masoudi et al.,
2015; Amini et al., 2020; Park and Ahn, 2021) and battery
charging optimization (Hoke et al., 2014), only a few
aim to improve the battery fast charging performance
by exploiting the coupling of battery charging power
and thermal behavior. In (Hamednia et al., 2022), an
optimal BTM was developed to reduce the charging time
in cold ambient. The simulation results illustrated that
for a cold battery, performing thermal pre-conditioning
for the battery prior to charging increases the charging
power, and thus reduces the charging time. Moreover,
the optimization results presented in (Hamednia et al.,
2022) reveal a trade-off among traveling time, energy
efficiency, and charging cost. In (Dahmane et al., 2021),
an optimal scheduling strategy was proposed for charging
an EV to minimize the charging cost and charging time, by

leveraging vehicle to grid connectivity. The charging power
degradation caused by low ambient temperature was also
considered in (Dahmane et al., 2021) to avoid a lower final
state-of-charge (SOC).

Unlike cold ambient conditions, which restrict the battery
charging power and thus extend the charging time, hot
ambient conditions reduce the heat rejection capacity of
the battery and its cooling system. If the heat generation
due to fast charging exceeds this reduced cooling capacity,
it can lead to throttling of the charging rate to keep
the battery within acceptable temperature limits, slowing
charging, forcing trade-offs between charging time and/or
target battery SOC.

This study proposes a multi-objective model predictive
control (MPC) to leverage vehicle usage preview informa-
tion to precondition battery temperature prior to charg-
ing, optimally balancing charging time, target SOC, and
thermal management energy consumption. This approach
may be particularly beneficial for commercial EVs, where
charging time and target SOC requirements are typically
determined by the trip/mission after leaving the charging
station, and it is also more likely that the vehicle mission
is known a priori. For example, a commercial delivery
EV may be time constrained by arrival/departure times
at designated locations, constraining charging time, while
the target SOC may be prescribed by the energy required
to complete the scheduled delivery tasks up to the next
charging event.”

The contributions of this study are threefold. Firstly, an
MPC-based integrated power and thermal management
(iPTM) strategy is developed for battery fast charging
optimization. Secondly, an adaptive strategy is proposed
to adjust the weight on the charging time in the MPC
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driving range and relatively long charging times impede
EV’s market penetration (Lee and Park, 2013; Chen et al.,
2021). To address these issues, fast-charging stations have
been rapidly built in recent years to expand the charg-
ing infrastructure (Shafiei and Ghasemi-Marzbali, 2022).
While fast-charging technology significantly reduces the
charging time, the large charging power, typically higher
than 50 kW (Parchomiuk et al., 2019), could result in rais-
ing battery temperature over desired thresholds (Keyser
et al., 2017; Tomaszewska et al., 2019). Thus, an effective
power and thermal management strategy during the fast-
charging process is of essential importance for EVs.

Although various approaches have been developed for
battery thermal management (BTM) (Masoudi et al.,
2015; Amini et al., 2020; Park and Ahn, 2021) and battery
charging optimization (Hoke et al., 2014), only a few
aim to improve the battery fast charging performance
by exploiting the coupling of battery charging power
and thermal behavior. In (Hamednia et al., 2022), an
optimal BTM was developed to reduce the charging time
in cold ambient. The simulation results illustrated that
for a cold battery, performing thermal pre-conditioning
for the battery prior to charging increases the charging
power, and thus reduces the charging time. Moreover,
the optimization results presented in (Hamednia et al.,
2022) reveal a trade-off among traveling time, energy
efficiency, and charging cost. In (Dahmane et al., 2021),
an optimal scheduling strategy was proposed for charging
an EV to minimize the charging cost and charging time, by

leveraging vehicle to grid connectivity. The charging power
degradation caused by low ambient temperature was also
considered in (Dahmane et al., 2021) to avoid a lower final
state-of-charge (SOC).

Unlike cold ambient conditions, which restrict the battery
charging power and thus extend the charging time, hot
ambient conditions reduce the heat rejection capacity of
the battery and its cooling system. If the heat generation
due to fast charging exceeds this reduced cooling capacity,
it can lead to throttling of the charging rate to keep
the battery within acceptable temperature limits, slowing
charging, forcing trade-offs between charging time and/or
target battery SOC.

This study proposes a multi-objective model predictive
control (MPC) to leverage vehicle usage preview informa-
tion to precondition battery temperature prior to charg-
ing, optimally balancing charging time, target SOC, and
thermal management energy consumption. This approach
may be particularly beneficial for commercial EVs, where
charging time and target SOC requirements are typically
determined by the trip/mission after leaving the charging
station, and it is also more likely that the vehicle mission
is known a priori. For example, a commercial delivery
EV may be time constrained by arrival/departure times
at designated locations, constraining charging time, while
the target SOC may be prescribed by the energy required
to complete the scheduled delivery tasks up to the next
charging event.”

The contributions of this study are threefold. Firstly, an
MPC-based integrated power and thermal management
(iPTM) strategy is developed for battery fast charging
optimization. Secondly, an adaptive strategy is proposed
to adjust the weight on the charging time in the MPC
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charging event.”

The contributions of this study are threefold. Firstly, an
MPC-based integrated power and thermal management
(iPTM) strategy is developed for battery fast charging
optimization. Secondly, an adaptive strategy is proposed
to adjust the weight on the charging time in the MPC

Electric Vehicle Enhanced Fast Charging Enabled
by Battery Thermal Management and Model

Predictive Control

Qiuhao Hu ∗, Mohammad Reza Amini ∗, Ashley Wiese ∗∗,
Julia Buckland Seeds ∗∗, Ilya Kolmanovsky ∗∗∗, Jing Sun ∗
∗ Department of Naval Architecture and Marine Engineering, University of

Michigan, Ann Arbor, MI 48109, USA (e-mails:
{qhhu,mamini,jingsun}@umich.edu)

∗∗ Ford Motor Company, Dearborn, MI 48126, USA (e-mails:
{awiese,jbucklan}@ford.com)

∗∗∗ Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI
48109, USA (e-mail: ilya@umich.edu)

Abstract:
This paper explores the synergy between battery thermal management (BTM) in an electric
vehicle (EV) and battery charging. A model predictive control (MPC) based approach is
proposed to minimize the energy used for BTM during the drive and fast charging stages and the
estimated charging time while enforcing constraints imposed on state-of-charge (SOC), power,
and thermal conditions of the battery. An adaptive strategy is developed to adjust the weight
of the two competing objectives in the MPC cost function to manage the trade-off between
BTM energy consumption and charging time. The sensitivity of the proposed MPC-based BTM
strategy to uncertainties in the fast charging station availability is also investigated. Our results
show that a 12.3% of decrease in the charging time could be achieved by optimally performing
BTM at the cost of negligibly higher BTM energy usage in the case study conducted.

Keywords: Model predictive control, Electric vehicles, Battery fast charging, Integrated power
and thermal management

1. INTRODUCTION

Electric vehicles (EVs) are becoming more popular due
to their expected advantages in reducing carbon emission,
when paired with renewable electricity production (Notter
et al., 2010; Choi et al., 2018). However, anxiety about
driving range and relatively long charging times impede
EV’s market penetration (Lee and Park, 2013; Chen et al.,
2021). To address these issues, fast-charging stations have
been rapidly built in recent years to expand the charg-
ing infrastructure (Shafiei and Ghasemi-Marzbali, 2022).
While fast-charging technology significantly reduces the
charging time, the large charging power, typically higher
than 50 kW (Parchomiuk et al., 2019), could result in rais-
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Although various approaches have been developed for
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2015; Amini et al., 2020; Park and Ahn, 2021) and battery
charging optimization (Hoke et al., 2014), only a few
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optimal BTM was developed to reduce the charging time
in cold ambient. The simulation results illustrated that
for a cold battery, performing thermal pre-conditioning
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power, and thus reduces the charging time. Moreover,
the optimization results presented in (Hamednia et al.,
2022) reveal a trade-off among traveling time, energy
efficiency, and charging cost. In (Dahmane et al., 2021),
an optimal scheduling strategy was proposed for charging
an EV to minimize the charging cost and charging time, by

leveraging vehicle to grid connectivity. The charging power
degradation caused by low ambient temperature was also
considered in (Dahmane et al., 2021) to avoid a lower final
state-of-charge (SOC).

Unlike cold ambient conditions, which restrict the battery
charging power and thus extend the charging time, hot
ambient conditions reduce the heat rejection capacity of
the battery and its cooling system. If the heat generation
due to fast charging exceeds this reduced cooling capacity,
it can lead to throttling of the charging rate to keep
the battery within acceptable temperature limits, slowing
charging, forcing trade-offs between charging time and/or
target battery SOC.

This study proposes a multi-objective model predictive
control (MPC) to leverage vehicle usage preview informa-
tion to precondition battery temperature prior to charg-
ing, optimally balancing charging time, target SOC, and
thermal management energy consumption. This approach
may be particularly beneficial for commercial EVs, where
charging time and target SOC requirements are typically
determined by the trip/mission after leaving the charging
station, and it is also more likely that the vehicle mission
is known a priori. For example, a commercial delivery
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at designated locations, constraining charging time, while
the target SOC may be prescribed by the energy required
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1. INTRODUCTION

Electric vehicles (EVs) are becoming more popular due
to their expected advantages in reducing carbon emission,
when paired with renewable electricity production (Notter
et al., 2010; Choi et al., 2018). However, anxiety about
driving range and relatively long charging times impede
EV’s market penetration (Lee and Park, 2013; Chen et al.,
2021). To address these issues, fast-charging stations have
been rapidly built in recent years to expand the charg-
ing infrastructure (Shafiei and Ghasemi-Marzbali, 2022).
While fast-charging technology significantly reduces the
charging time, the large charging power, typically higher
than 50 kW (Parchomiuk et al., 2019), could result in rais-
ing battery temperature over desired thresholds (Keyser
et al., 2017; Tomaszewska et al., 2019). Thus, an effective
power and thermal management strategy during the fast-
charging process is of essential importance for EVs.

Although various approaches have been developed for
battery thermal management (BTM) (Masoudi et al.,
2015; Amini et al., 2020; Park and Ahn, 2021) and battery
charging optimization (Hoke et al., 2014), only a few
aim to improve the battery fast charging performance
by exploiting the coupling of battery charging power
and thermal behavior. In (Hamednia et al., 2022), an
optimal BTM was developed to reduce the charging time
in cold ambient. The simulation results illustrated that
for a cold battery, performing thermal pre-conditioning
for the battery prior to charging increases the charging
power, and thus reduces the charging time. Moreover,
the optimization results presented in (Hamednia et al.,
2022) reveal a trade-off among traveling time, energy
efficiency, and charging cost. In (Dahmane et al., 2021),
an optimal scheduling strategy was proposed for charging
an EV to minimize the charging cost and charging time, by

leveraging vehicle to grid connectivity. The charging power
degradation caused by low ambient temperature was also
considered in (Dahmane et al., 2021) to avoid a lower final
state-of-charge (SOC).

Unlike cold ambient conditions, which restrict the battery
charging power and thus extend the charging time, hot
ambient conditions reduce the heat rejection capacity of
the battery and its cooling system. If the heat generation
due to fast charging exceeds this reduced cooling capacity,
it can lead to throttling of the charging rate to keep
the battery within acceptable temperature limits, slowing
charging, forcing trade-offs between charging time and/or
target battery SOC.

This study proposes a multi-objective model predictive
control (MPC) to leverage vehicle usage preview informa-
tion to precondition battery temperature prior to charg-
ing, optimally balancing charging time, target SOC, and
thermal management energy consumption. This approach
may be particularly beneficial for commercial EVs, where
charging time and target SOC requirements are typically
determined by the trip/mission after leaving the charging
station, and it is also more likely that the vehicle mission
is known a priori. For example, a commercial delivery
EV may be time constrained by arrival/departure times
at designated locations, constraining charging time, while
the target SOC may be prescribed by the energy required
to complete the scheduled delivery tasks up to the next
charging event.”

The contributions of this study are threefold. Firstly, an
MPC-based integrated power and thermal management
(iPTM) strategy is developed for battery fast charging
optimization. Secondly, an adaptive strategy is proposed
to adjust the weight on the charging time in the MPC

cost function to enforce the soft constraint on the charging
time and minimize the BTM energy consumption. Thirdly,
the robustness of the algorithm is evaluated against uncer-
tainties in the availability of the fast charging station that
impacts the queuing time before the start of charging.

The paper is organized as follows. The power and thermal
models representative of a commercial EV are presented
in Section 2. Section 3 presents the details of the proposed
MPC-based iPTM strategy. The simulation results of the
proposed method are presented in Section 4. Finally,
Section 5 concludes the paper and outlines possible future
directions.

2. POWER AND THERMAL MODELS OF A
COMMERCIAL ELECTRIC VEHICLE

The models of the thermal and power subsystems, rep-
resentative of a commercial EV used in this study are
described in this section.

2.1 Battery Power-Balance Model

The equivalent circuit model (He et al., 2011) used to
represent the battery SOC dynamics is given as:

˙SOC = fSOC(t) =
−Ibat
Cbat

= −
Uoc −

√
U2
oc − 4RintPbat

2RintCbat
,

(1)

where Ibat and Cbat are the battery current and capacity,
respectively. Moreover, Ibat is determined by the battery
power (Pbat), open circuit voltage (Uoc), and internal
resistance (Rint). When the vehicle is moving, the battery
power is the sum of the vehicle traction power (Ptrac) and
the power consumed for the auxiliary subsystems (Paux):

Pbat = Ptrac + Paux. (2)

Note that Ptrac is negative when braking, as the electrical
braking system recuperates kinetic energy to charge the
battery. When the vehicle is charging at the station, Pbat is
the auxiliary power minus battery charging power (Pchg):

Pbat = Paux − Pchg. (3)

In this study, the BTM system is the only auxiliary power
demand, which is expressed as:

Paux = Pcl =
Q̇cl

COP
, (4)

where Q̇cl is the rate of the heat rejection from the battery
through the cooling system, and COP is the coefficient
of the performance, which describes the efficiency of the
cooling system. According to (Lee et al., 2012), COP

monotonically decreases with Q̇cl, indicating that the
efficiency of the cooling system decreases as cooling power
demand increases.

2.2 Battery Thermal Model

The battery is modeled as a lumped thermal mass and its
temperature dynamics are expressed using the following
equation:

Ṫbat = fbat(t) =
1

mbat,thmCbat,thm
(Q̇gen − Q̇amb − Q̇cl),

(5)

where mbat,thm, Cbat,thm are the battery thermal mass and

specific heat capacity, respectively. Q̇gen is the irreversible
battery heat generation rate attributed to the internal

resistance and is expressed as Q̇gen = I2batRint. Q̇amb is
the rate of the heat dissipation to ambient through air
convection, which is driven by the temperature difference
between ambient and battery.

3. MPC-BASED INTEGRATED POWER AND
THERMAL MANAGEMENT OF AN EV

We consider a commercial EV operating under a hot
ambient temperature and with a low initial SOC, requir-
ing the battery to be charged at a nearby fast charging
station. The objectives of the iPTM for the EV in this
study are threefold. Firstly, to ensure the final SOC after
charging is above a certain threshold. Secondly, to keep
the total charging time within the desired range. Lastly, to
minimize the energy consumption for the battery thermal
management system while enforcing power and thermal
constraints. In a real-world application, the requirements
on the final SOC and charging time are typically deter-
mined by the type of trip and mission of the commercial
vehicle after the charging event.

∆𝑡𝑡1 ∆𝑡𝑡2

∆𝑡𝑡2

𝑁𝑁2

𝑁𝑁2

Fig. 1. The implementation concept of the proposed MPC-
based iPTM strategy with two different scenarios: (a)
before the charging starts, when the vehicle moves to-
wards the charging station, and (b) after the charging
starts, when the vehicle stays in the charging station.

To address the aforementioned objectives, an MPC-based
iPTM is proposed in this paper. As shown in Fig. 1,
two different scenarios, before and after the start of the
charging event, are represented. Before the start of the
charging event, the vehicle moves towards the charging
station, and the prediction horizon of the MPC extends
from the current time until the projected end time of the
charging event. This time horizon is divided into two stages
of driving and charging. After the charging starts, the
vehicle stays at the charging station, and the prediction
horizon only has one stage from the current time to the end
of the charging event. In both cases, the discrete-time finite
horizon optimization problem in MPC can be expressed as:
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cost function to enforce the soft constraint on the charging
time and minimize the BTM energy consumption. Thirdly,
the robustness of the algorithm is evaluated against uncer-
tainties in the availability of the fast charging station that
impacts the queuing time before the start of charging.

The paper is organized as follows. The power and thermal
models representative of a commercial EV are presented
in Section 2. Section 3 presents the details of the proposed
MPC-based iPTM strategy. The simulation results of the
proposed method are presented in Section 4. Finally,
Section 5 concludes the paper and outlines possible future
directions.

2. POWER AND THERMAL MODELS OF A
COMMERCIAL ELECTRIC VEHICLE

The models of the thermal and power subsystems, rep-
resentative of a commercial EV used in this study are
described in this section.

2.1 Battery Power-Balance Model

The equivalent circuit model (He et al., 2011) used to
represent the battery SOC dynamics is given as:

˙SOC = fSOC(t) =
−Ibat
Cbat

= −
Uoc −
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U2
oc − 4RintPbat

2RintCbat
,

(1)

where Ibat and Cbat are the battery current and capacity,
respectively. Moreover, Ibat is determined by the battery
power (Pbat), open circuit voltage (Uoc), and internal
resistance (Rint). When the vehicle is moving, the battery
power is the sum of the vehicle traction power (Ptrac) and
the power consumed for the auxiliary subsystems (Paux):

Pbat = Ptrac + Paux. (2)

Note that Ptrac is negative when braking, as the electrical
braking system recuperates kinetic energy to charge the
battery. When the vehicle is charging at the station, Pbat is
the auxiliary power minus battery charging power (Pchg):

Pbat = Paux − Pchg. (3)

In this study, the BTM system is the only auxiliary power
demand, which is expressed as:

Paux = Pcl =
Q̇cl

COP
, (4)

where Q̇cl is the rate of the heat rejection from the battery
through the cooling system, and COP is the coefficient
of the performance, which describes the efficiency of the
cooling system. According to (Lee et al., 2012), COP

monotonically decreases with Q̇cl, indicating that the
efficiency of the cooling system decreases as cooling power
demand increases.

2.2 Battery Thermal Model

The battery is modeled as a lumped thermal mass and its
temperature dynamics are expressed using the following
equation:

Ṫbat = fbat(t) =
1

mbat,thmCbat,thm
(Q̇gen − Q̇amb − Q̇cl),

(5)

where mbat,thm, Cbat,thm are the battery thermal mass and

specific heat capacity, respectively. Q̇gen is the irreversible
battery heat generation rate attributed to the internal

resistance and is expressed as Q̇gen = I2batRint. Q̇amb is
the rate of the heat dissipation to ambient through air
convection, which is driven by the temperature difference
between ambient and battery.

3. MPC-BASED INTEGRATED POWER AND
THERMAL MANAGEMENT OF AN EV

We consider a commercial EV operating under a hot
ambient temperature and with a low initial SOC, requir-
ing the battery to be charged at a nearby fast charging
station. The objectives of the iPTM for the EV in this
study are threefold. Firstly, to ensure the final SOC after
charging is above a certain threshold. Secondly, to keep
the total charging time within the desired range. Lastly, to
minimize the energy consumption for the battery thermal
management system while enforcing power and thermal
constraints. In a real-world application, the requirements
on the final SOC and charging time are typically deter-
mined by the type of trip and mission of the commercial
vehicle after the charging event.
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before the charging starts, when the vehicle moves to-
wards the charging station, and (b) after the charging
starts, when the vehicle stays in the charging station.

To address the aforementioned objectives, an MPC-based
iPTM is proposed in this paper. As shown in Fig. 1,
two different scenarios, before and after the start of the
charging event, are represented. Before the start of the
charging event, the vehicle moves towards the charging
station, and the prediction horizon of the MPC extends
from the current time until the projected end time of the
charging event. This time horizon is divided into two stages
of driving and charging. After the charging starts, the
vehicle stays at the charging station, and the prediction
horizon only has one stage from the current time to the end
of the charging event. In both cases, the discrete-time finite
horizon optimization problem in MPC can be expressed as:
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min
Q̇cl(i),

Pchg(i), ∆t2(i)

t+N1−1∑
i=t

(
Q̇cl(i)

COP (i)
∆t1)

2 +

t+N1+N2−1∑
i=t+N1

{(
Q̇cl(i)

COP (i)
∆t2)

2 + α(∆t2(i))
2 + βϵ2},

s.t. SOC(i+ 1) = SOC(i) + fsoc(i)∆tj , j ∈ {1, 2}
Tbat(i+ 1) = Tbat(i) + fbat(i)∆tj , j ∈ {1, 2}
SOC(t+N1 +N2) = SOCtarg ,

SOCmin ≤ SOC(i) ≤ SOCmax,

Tbat,min ≤ Tbat(i) ≤ Tbat,max + ϵ,

− Q̇cl,max ≤ Q̇cl(i) ≤ 0,

0 ≤ Pchg(i) ≤ Pchg,max,

0 ≤ ∆t2(i) ≤ ∆t2,max,
(6)

where fSOC and fbat designate the right hand sides of
(1) and (5). ∆t1 and ∆t2 are the sampling periods over
the driving and charging stages, respectively, and N1 and
N2 correspond to the numbers of sampling points over
these two stages. Therefore, the prediction horizon length
is ∆t1N1 +∆t2N2 where ∆t1N1 is the remaining time for
the vehicle to arrive at the charging station while ∆t2N2 is
the total predicted time spent at the charging station. Note
that N1 = 0 once the driving is completed and charging
started. The index j ∈ {1, 2} is determined as follows:

j =

{
1, if i ≤ t+N1 − 1,

2, if i ≥ t+N1.
(7)

It can be seen from (6) that the control/decision variables

are Q̇cl, Pchg, and ∆t2, and the cost function consists of
four terms. The first and second terms are the accumulated
energy consumption of the battery cooling system over the
driving and charging stages. The third term is the square of
∆t2, which penalizes the total charging time. The last term
is used to relax the constraint on the battery temperature
by introducing a slack variable (ϵ) treating the battery
temperature limit as a soft constraint. It avoids infeasibil-
ity in solving the discrete-time optimization problem.

As the prediction horizon always extends from the current
time to the end of the charging event, the horizon length
of the driving stage shrinks over time while the length of
the charging stage is not pre-determined and it depends on
the computed solution of problem (6) with ∆t2 being an
optimization variable. This makes the problem formulation
of (6) distinctively different from the conventional receding
or shrinking horizon MPC (Amini et al., 2020). To this
end, a novel sampling strategy with varying sampling time
and sampling points over different optimization horizons
is proposed to accommodate the iPTM problem in this
study, as summarized here.

During the driving stage, the sampling time ∆t1 is fixed,
and N1 is calculated based on the remaining time before
the vehicle arrives at the charging station. However, at
the charging stage, the sampling time ∆t2 is one of the
adjustable variables determined by the solution of the
optimization problem (6), and it is no longer fixed. Instead,
the number of samples, N2, is fixed. Such a sampling
strategy allows us to fix the dimension of the optimization
problem (6) and solve it numerically. Then, by applying
the first element of the computed control sequence to the
plant and repeating the optimization with updated initial
conditions, a feedback law is formed as in conventional
receding horizon MPC scheme.

4. SIMULATION RESULTS AND DISCUSSION

In this section, we present the simulation results of the
multi-objective MPC on a commercial EV. A sensitivity
analysis is conducted to evaluate the performance of the
controller. The ambient temperature is set to be 38oC and
the initial battery SOC is 0.3 (30%). The vehicle goes
through an urban route to arrive at the fast charging
station, and the battery is required to be charged to
SOC = 0.6. The maximum battery cooling power and
charging power of the station are 5 kW and 80 kW ,
respectively. Moreover, ∆t1 and N2 are set to 10 sec and
40, respectively.

For this study, during both driving and charging stages,
we design the MPC to maintain the battery within an
operating range of 15− 35 oC (Pesaran, 2013; Kim et al.,
2019). To discourage violation of the soft temperature
constraint, we set the slack variable β = 108, which is large
enough to avoid constraint violation over our example use
cases.

4.1 Trade-off between BTM energy use and charging time

We first assume that the vehicle speed profile over the
urban route is known a priori, based on which the arrival
time at the charging station can also be accurately pre-
dicted. This assumption will be relaxed in Section 4.3. To
investigate the impact of the weight (α) on the charging
time in (6), a sensitivity analysis is conducted, and the
results are summarized in Fig. 2.

Fig. 2. The energy consumption for battery cooling and
battery charging time results with different α.

A trade-off can be observed from Fig. 2 between the
energy consumed for battery cooling and battery charging
time. As α increases, the battery charging time decreases
while the energy consumed for battery cooling increases.
To account for the impact of different weights, the state
and input trajectories of two cases with different α are
presented in Fig. 3. It can be seen that for both cases,
thanks to the soft constraint settings and battery cooling
system, the battery temperature is maintained within the
desired range during the whole process. By comparing
the two cases, it can be seen that, with a larger α, the
controller tends to draw a larger battery charging power
during the charging stage to reduce the charging time, as
more focus is put on the penalty term for the charging time
in the cost function. However, a larger battery charging
power, on the other hand, requires a larger battery cooling
power to avoid raising temperature over desired thresh-
olds. Moreover, with accurate knowledge of the arrival
time and charging event timing, battery pre-cooling of bat-
tery is effected to create some room for the rise of battery
temperature, thereby enabling faster charging with larger

Fig. 3. State and input trajectories with different α values:
(a) vehicle speed, (b) SOC, (c) battery temperature,
(d) battery cooling power, and (d) battery charging
power.

charging power. The above observations explain the trade-
off between energy consumed for battery cooling and total
charging time, as well as the pre-cooling feature associated
with larger α.

4.2 A strategy for weight adaptation

The results shown in Section 4.1 demonstrate that in
order to balance the charging time and BTM energy
consumption, α needs to be properly tuned to enforce the
constraint on charging time while minimizing the energy
consumption. There are several challenges of scheduling
α in real time. Note that α is determined by the arrival
time at the charging station and by the required charging
time. It needs to be adjusted during the trip to deal
with uncertainties in vehicle speed preview, availability
of charging, etc. In this section, an adaptive strategy
to schedule α in real-time is proposed, which can be
summarized as follows:

• Step 1: An initial value of α is selected from the
range shown in Fig. 2, at t = 0 sec.

• Step 2: The optimization problem (6) is solved using
the current αt at time t, and an estimated charging
time (tchg,est) is calculated as ∆t2N2.

• Step 3: α is updated by the following adaptive law:

log(αt+∆tj ) = log(αt) + λ(tchg,est − tchg,req). (8)

• Step 4: Repeat Step 2 and 3 till the end of the
charging stage.

Here, λ is the adaptation rate, and ∆tj is the sampling
time defined in (6). It can been seen that the adaptive law
in Step 3 leverages the relationship presented in Fig. 2,
and α is updated by comparing the estimated charging
time (tchg,est) with the required charging time (tchg,req).
The use of logarithm in the adaptation law (8) allows us
to take large step in adaptation over a short period. Given

the range of the α values shown in Fig. 2, conventional
linear adaptation will not be able to serve the purpose.

To show the effectiveness of the proposed adaptive strategy
for updating α, the required charging time is set to be
within 30 min, and different λ values are applied in
(8). The simulation results are presented in Fig. 4, and
the actual charging times of three cases are summarized
in Table. 1. It can be seen that for these three cases,
the initial guess for α is too small, which leads to an
estimated battery charging time of almost 50 min. With
the α updated by the adaptive law, the estimated charging
time converges to the value near tchg,req. Moreover, as λ
increases, the convergence rate increases, and the steady-
state error in the final charging time decreases. Based on
these results, λ = 0.1 is adopted for this study, to better
adhere to the charging time constraint.

Driving Stage Charging Stage
(a)

(b)

(c)

(d)

(e)

Fig. 4. State and input trajectories with different adap-
tive rate λ: (a) vehicle speed, (b) SOC, (c) battery
temperature, (d) weight on charging time, and (e)
estimated charging time.

Table 1. The actual charging time with differ-
ent adaptive rates.
λ 0.01 0.05 0.1

tchg [min] 32.2 30.4 30.2
BTM energy consumption [kWh] 1.00 1.06 1.07

It can be seen in Figs. 3 and 4 that, MPC incorporates the
knowledge of the upcoming charging event to pre-cool the
battery, allowing larger battery charging power to reduce
the charging time. To quantify the benefits of leveraging
the preview information and identify the conditions under
which the pre-cooling is beneficial, the following three
cases are considered for comparison:

• Case I: The charging event is predicted accurately
over the prediction horizon,

• Case II: The charging event is not predicted until
the vehicle arrives at the charging station, and the
maximum cooling power is 5 kW ,

• Case III: The charging event is not predicted until
the vehicle arrives at the charging station, and the
maximum cooling power is 3 kW .
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Fig. 3. State and input trajectories with different α values:
(a) vehicle speed, (b) SOC, (c) battery temperature,
(d) battery cooling power, and (d) battery charging
power.

charging power. The above observations explain the trade-
off between energy consumed for battery cooling and total
charging time, as well as the pre-cooling feature associated
with larger α.

4.2 A strategy for weight adaptation

The results shown in Section 4.1 demonstrate that in
order to balance the charging time and BTM energy
consumption, α needs to be properly tuned to enforce the
constraint on charging time while minimizing the energy
consumption. There are several challenges of scheduling
α in real time. Note that α is determined by the arrival
time at the charging station and by the required charging
time. It needs to be adjusted during the trip to deal
with uncertainties in vehicle speed preview, availability
of charging, etc. In this section, an adaptive strategy
to schedule α in real-time is proposed, which can be
summarized as follows:

• Step 1: An initial value of α is selected from the
range shown in Fig. 2, at t = 0 sec.

• Step 2: The optimization problem (6) is solved using
the current αt at time t, and an estimated charging
time (tchg,est) is calculated as ∆t2N2.

• Step 3: α is updated by the following adaptive law:

log(αt+∆tj ) = log(αt) + λ(tchg,est − tchg,req). (8)

• Step 4: Repeat Step 2 and 3 till the end of the
charging stage.

Here, λ is the adaptation rate, and ∆tj is the sampling
time defined in (6). It can been seen that the adaptive law
in Step 3 leverages the relationship presented in Fig. 2,
and α is updated by comparing the estimated charging
time (tchg,est) with the required charging time (tchg,req).
The use of logarithm in the adaptation law (8) allows us
to take large step in adaptation over a short period. Given

the range of the α values shown in Fig. 2, conventional
linear adaptation will not be able to serve the purpose.

To show the effectiveness of the proposed adaptive strategy
for updating α, the required charging time is set to be
within 30 min, and different λ values are applied in
(8). The simulation results are presented in Fig. 4, and
the actual charging times of three cases are summarized
in Table. 1. It can be seen that for these three cases,
the initial guess for α is too small, which leads to an
estimated battery charging time of almost 50 min. With
the α updated by the adaptive law, the estimated charging
time converges to the value near tchg,req. Moreover, as λ
increases, the convergence rate increases, and the steady-
state error in the final charging time decreases. Based on
these results, λ = 0.1 is adopted for this study, to better
adhere to the charging time constraint.

Driving Stage Charging Stage
(a)

(b)

(c)

(d)

(e)

Fig. 4. State and input trajectories with different adap-
tive rate λ: (a) vehicle speed, (b) SOC, (c) battery
temperature, (d) weight on charging time, and (e)
estimated charging time.

Table 1. The actual charging time with differ-
ent adaptive rates.
λ 0.01 0.05 0.1

tchg [min] 32.2 30.4 30.2
BTM energy consumption [kWh] 1.00 1.06 1.07

It can be seen in Figs. 3 and 4 that, MPC incorporates the
knowledge of the upcoming charging event to pre-cool the
battery, allowing larger battery charging power to reduce
the charging time. To quantify the benefits of leveraging
the preview information and identify the conditions under
which the pre-cooling is beneficial, the following three
cases are considered for comparison:

• Case I: The charging event is predicted accurately
over the prediction horizon,

• Case II: The charging event is not predicted until
the vehicle arrives at the charging station, and the
maximum cooling power is 5 kW ,

• Case III: The charging event is not predicted until
the vehicle arrives at the charging station, and the
maximum cooling power is 3 kW .
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Driving Stage Charging Stage
(a)

(b)

(c)

(d)

(e)

3 kW

Fig. 5. State and input trajectories with different α for
Cases I, II, and III: (a) vehicle speed, (b) SOC, (c)
battery temperature, (d) battery cooling power, and
(d) battery charging power.

For Case I, it is assumed that the preview information
is known a priori, and the proposed MPC-based iPTM
is applied at driving and charging stages. For Case II
and Case III, before vehicle arrives at the station, as
the charging event is not predicted over the prediction
horizon, the cost function only has the first term in (6)
to minimize the BTM energy consumption during the
driving stage. After vehicle arrives at the station and starts
charging, the same optimization problem in (6) is solved
by MPC. The only difference between Case II and Case
III is the maximum battery cooling power. Fig. 5 presents
the state and input trajectories of these three cases, and
the charging time and BTM energy consumption results
are compared in Fig. 6.

30.2 30.2 33.9

+12.3%

+3.8%

-11.4%1.05 1.09
0.93

(a)

(b)

Case I Case II Case III
Fig. 6. Simulations results of Cases I, II, and III: (a)

charging time, (b) BTM energy consumption.

It can be seen in Fig. 5 that pre-cooling is only performed
in Case I, while the battery temperature in Cases II and
Case III follows the upper bound constraint before arriving

at the charging station to minimize the cooling loads.
While the initial battery temperatures at the beginning of
the charging stage are different, Cases I and II have similar
charging times. This is because the battery charging power
of these two cases is almost the same, as shown in Fig. 5-
(e). Compared to Case I which has a lower initial battery
temperature at the start of the charging stage, Case II
needs to increase the battery cooling power to avoid
constraint violation, when applying the same charging
power. It can be seen from Fig. 5-(d) that the battery
cooling power for Case I is always below 3 kW , while
the cooling power for Case II is above 4 kW during the
charging stage, leading to a slight increase in the BTM
energy consumption, as shown in Fig. 6-(b).

As a result, when the maximum cooling power is re-
duced to 3 kW in Case III, the same charging power is
unattainable without pre-cooling, and the charging time
is increased by 12.3%. Note that because the upper bound
constraint of cooling power in Case I is inactive, the
optimal performance would remain the same when the
maximum cooling power is reduced from 5 kW to 3 kW .
This case study illustrates that pre-cooling can distribute
the cooling load over time such that the cooling demand
remains within the available capacity.

4.3 Robustness of the MPC-based iPTM algorithm against
selected uncertainties

In Sections 4.1 and 4.2, the effectiveness of the proposed
MPC-based iPTM framework was demonstrated. While
the controller successfully enforces the power and thermal
constraints during the battery charging process and keeps
the charging time to the desired range, such favorable
performance requires preview information, e.g., vehicle
speed prediction, availability of charging, etc. The previous
simulations assume that accurate preview information is
available. This assumption is relaxed in this subsection
and the robustness of the algorithm is studied.

We consider a scenario in which the vehicle needs to wait
in a queue after arriving at the station and before starting
to charge. While it is assumed that the queuing time can
be estimated using connectivity information, this estimate
is still subject to uncertainty. The proposed scenario is
illustrated in Fig. 7-(a). The total time that vehicle allowed
to spend in the charging station is 40 min, including the
waiting time and charging time. It is assumed that the
estimated waiting time before the vehicle arrives at the
station is 5 min, but the actual waiting time is 10 min. We
also assume that the actual waiting time becomes available
when the vehicle arrives at the charging station.
The proposed MPC-based iPTM combined with the adap-
tive strategy for α weight adjustment is now applied for
this scenario. Simulation results are presented in Fig. 7.
Note that for comparison, a reference case with fixed α
is also presented in Fig. 7. In this case, α is determined
assuming that the waiting time is 5 min, and will not be
updated during the whole process.

Before the vehicle arrives at the station, with the estimated
waiting time of 5 min, the scheduled charging time for
both cases is 35 min to ensure the total time vehicle re-
mains at the station is 40 min. However, when the vehicle
arrives at the station, knowing the actual waiting time,
the responses of two cases diverge. With the adaptation
strategy, the controller is capable of re-scheduling the
charging time to 30 min, while with a fixed α, the total
time that vehicle remains at the charging station exceeds
40 min due to the uncertainty of the waiting time.

Driving Stage Queuing

40 min

Charging Stage
(a)

(b)

(c)

(d)

(e)

Fig. 7. State and input trajectories with different adaptive
rate: (a) vehicle speed, (b) SOC, (c) battery temper-
ature, (d) weight on charging time, and (e) estimated
total time staying at charging station.

It can be seen in Fig. 7-(d) that, with adaptation strategy,
α immediately rises once the controller knows the actual
waiting time is longer, which forces the controller to
penalize more for the charging time. Note that the values
of tchg,req in (8) are 35 and 30min, respectively, before and
after the vehicle’s arrival. This case study illustrates that
the adaptive weight scheduling strategy has the ability to
handle the uncertainty of waiting time for the MPC-based
iPTM framework.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a multi-objective model predictive control
(MPC) strategy was proposed to minimize charging time
and energy consumption for battery thermal manage-
ment of a commercial electric vehicle (EV). The proposed
method achieves a target battery state-of-charge (SOC)
within the required time while enforcing the power, and
thermal constraints of the battery system. The simulation
results showed that the proposed MPC-based strategy,
by leveraging the preview information, reduces the charg-
ing time via pre-cooling the battery before the start of
the charging event. Moreover, an adaptive strategy was
proposed for adjusting the weight on the charging time
in the MPC stage cost to manage the trade-off between
charging time and battery thermal management (BTM)
energy consumption. The case study with uncertainty in
the waiting time at the charging station indicated that the
adaptive strategy enhances the robustness of the algorithm
while meeting the operational requirements.
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(2019). An overview of electric vehicles fast charging
infrastructure. 2019 Progress in Applied Electrical En-
gineering (PAEE), 1–5.

Park, S. and Ahn, C. (2021). Model predictive control
with stochastically approximated cost-to-go for battery
cooling system of electric vehicles. IEEE Transactions
on Vehicular Technology, 70(5), 4312–4323.

Pesaran, A.A. (2013). Tools for designing thermal man-
agement of batteries in electric drive vehicles. National
Renewable Energy Laboratory.

Shafiei, M. and Ghasemi-Marzbali, A. (2022). Fast-
charging station for electric vehicles, challenges and
issues: A comprehensive review. Journal of Energy
Storage, 49, 104136.

Tomaszewska, A., Chu, Z., Feng, X., O’kane, S., Liu,
X., Chen, J., Ji, C., Endler, E., Li, R., and Liu, L.
(2019). Lithium-ion battery fast charging: A review.
ETransportation, 1, 100011.



 Qiuhao Hu  et al. / IFAC PapersOnLine 56-2 (2023) 10684–10689 10689

Driving Stage Queuing

40 min

Charging Stage
(a)

(b)

(c)

(d)

(e)

Fig. 7. State and input trajectories with different adaptive
rate: (a) vehicle speed, (b) SOC, (c) battery temper-
ature, (d) weight on charging time, and (e) estimated
total time staying at charging station.

It can be seen in Fig. 7-(d) that, with adaptation strategy,
α immediately rises once the controller knows the actual
waiting time is longer, which forces the controller to
penalize more for the charging time. Note that the values
of tchg,req in (8) are 35 and 30min, respectively, before and
after the vehicle’s arrival. This case study illustrates that
the adaptive weight scheduling strategy has the ability to
handle the uncertainty of waiting time for the MPC-based
iPTM framework.
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within the required time while enforcing the power, and
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results showed that the proposed MPC-based strategy,
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