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A Multirange Vehicle Speed
Prediction With Application to
Model Predictive Control-Based
Integrated Power and Thermal
Management of Connected
Hybrid Electric Vehicles
Connectivity and automated driving technologies have opened up new research direc-
tions in the energy management of vehicles which exploit look-ahead preview and
enhance the situational awareness. Despite this advancement, the vehicle speed preview
that can be obtained from vehicle-to-vehicle/infrastructure (V2V/I) communications is
often limited to a relatively short time-horizon. The vehicular energy systems, specifically
those of the electrified vehicles, consist of multiple interacting power and thermal subsys-
tems that respond over different time-scales. Consequently, their optimal energy manage-
ment can greatly benefit from long-term speed prediction beyond that available through
V2V/I communications. Accurately extending the look-ahead preview, on the other hand,
is fundamentally challenging due to the dynamic nature of the traffic environment. To
address this challenge, we propose a data-driven multirange vehicle speed prediction
strategy for arterial corridors with signalized intersections, providing the vehicle speed
preview for three different ranges, i.e., short-, medium-, and long-range. The short-range
preview is obtained by V2V/I communications. The medium-range preview is realized
using a neural network (NN), while the long-range preview is predicted based on a
Bayesian network (BN). The predictions are updated in real-time based on the current
state of traffic and incorporated into a multihorizon model predictive control (MH-MPC)
for integrated power and thermal management (iPTM) of connected vehicles. The results
of design and evaluation of the performance of the proposed data-informed MH-MPC for
iPTM of connected hybrid electric vehicles (HEVs) using traffic data for real-world city
driving are reported. [DOI: 10.1115/1.4052819]

Keywords: power and thermal management, model predictive control, multitimescale
optimization

1 Introduction

Connected and automated vehicles (CAVs) can exploit the
look-ahead preview of vehicle speed and enhance situational
awareness to improve energy efficiency, particularly for electrified
vehicles including hybrid electric vehicles (HEVs), plug-in HEVs,
and electric vehicles. While many studies have highlighted the
energy saving potential using vehicle speed preview information,
the current approaches can accurately forecast vehicle speed over
a relatively short horizon [1,2]. At the same time, since the power
and thermal subsystems of CAVs have very different time con-
stants, it is beneficial for the integrated power and thermal man-
agement (iPTM) to leverage both short- and long-range vehicle
speed prediction [3–5]. In Ref. [5], the simulation results showed
a 2–5% increase in energy savings by exploring longer-range pre-
view when compared to a conventional strategy with only short-
range preview. Unfortunately, accurate long-range vehicle speed
forecasting is fundamentally challenging, particularly for city
driving scenarios with more uncertain traffic conditions.

Existing vehicle speed prediction methods can be divided into
model-based and data-driven methods [6,7]. Model-based vehicle
speed prediction methods rely on predefined parametric models

reflecting driver behavior. One example of this approach was the
car-following model proposed by Jing et al. [8]. The result showed
that the proposed algorithm can accurately predict the vehicle
speed over a short horizon (e.g., 5 s) under low CAV penetration
rates. In Ref. [9], the vehicle speed over a 3-s horizon was esti-
mated using random forest regressor when the vehicle approaches
signalized intersections. Overall, such parametric models are often
applicable for short-term vehicle speed prediction under determin-
istic driving scenarios.

Data-driven methods for vehicle speed prediction have also
been considered, including nonparametric regressions [10], neural
networks (NNs) [11–13], and support vector machines [14,15].
The focus in much of these works has been on vehicle speed pre-
diction over a short horizon, and only limited studies have been
pursued to address long-range speed forecasts. In particular, Park
et al. [16] first developed an NN for vehicle speed prediction at
traffic sensor locations along a given route, demonstrating that the
proposed NN provides an accurate speed prediction over a horizon
of 30 s. Next, based on the speed prediction and the distance
between adjacent sensors, the traveling time and average vehicle
speed between sensors were calculated. Finally, the long-range
vehicle speed profile was predicted by combining the average
speed of every segment. In Ref. [17], a two-level vehicle speed
prediction framework was developed. At the first level, the aver-
age vehicle speed of traffic flow was estimated based on an NN.
At the second level, a hidden Markov model was utilized for
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individual vehicles. While Refs. [16] and [17] aimed at extending
the vehicle speed prediction horizon, they only focused on pre-
dicting the average speed over road segments, and the traffic
events (e.g., stops) within the segments were not captured.

To address the aforementioned problem, in Ref. [18], an urban
driving route was considered and decomposed into segments of
four types, i.e., free flow, stop sign, traffic light, and turn. For
each segment type, an NN was trained for vehicle speed predic-
tion. It was shown that the proposed approach can outperform two
baseline methods based on the speed limit and traffic pattern over
urban routes. While the study in Ref. [18] showed an improvement
in vehicle speed prediction in terms of the mean absolute error, the
prediction performance for traffic events (e.g., stops, acceleration/
brake at intersections) was not investigated. Moreover, the traffic sig-
nal information was not available, and the NN was trained regardless
of the signal status, which may lead to large errors in speed prediction
of a vehicle arriving/departing intersections. Overall, vehicle speed
prediction in arterial corridors with multiple intersections and over
relatively long horizons has not been sufficiently studied.

In this paper, a multirange vehicle speed prediction approach
for urban driving scenarios is proposed. This approach leverages
both historical and real-time vehicle-to-vehicle/infrastructure
(V2V/I) communications data to predict vehicle speed over multi-
ple horizons with different levels of fidelity. For the short-range hori-
zon, e.g., 5–10 s, the vehicle speed prediction obtained through V2V/
I communications is assumed of high accuracy. For the long-range
horizon (until the end of the trip), a Bayesian network (BN) is devel-
oped to estimate the most probable driving scenario and provide the
corresponding speed trajectory. In the process, the passing/stopping
events at all intersections, average cruise speed between intersec-
tions, and the end time of the trip are estimated. Furthermore, to miti-
gate the uncertainty of long-range prediction, this paper explores a
medium-range speed prediction, where the accuracy lies between
that of the short- and long-range preview. This medium-range pre-
view is designed to predict the passing/stopping event at the next
intersection using an NN. Additionally, based on V2V communica-
tion, the stop time, departure time, and queue length are estimated.

To demonstrate the benefits of the proposed multirange vehicle
speed prediction framework in enhancing the energy efficiency of
CAVs, we integrate it with an optimization-based energy management
strategy for iPTM of power-split HEVs. The objective of iPTM is to
minimize fuel consumption while enforcing the power and thermal
constraints over the trip. The wintertime condition is considered in
this study with cold ambient temperature and constant cabin heating
demands. A model predictive control (MPC) is applied to implement
iPTM given its ability to handle state/input constraints and optimize a
cost function reflective of fuel/energy consumption [19–23]. The per-
formance of the controller with different speed predictions is assessed
in order to quantify the impact on energy consumption.

The contributions of this paper include (i) the development of a
multirange vehicle speed prediction framework for urban driving,
and (ii) the incorporation of the multirange vehicle speed predic-
tion into a multihorizon MPC for iPTM of power-split HEVs and
demonstration of the associated fuel savings using real-world
driving scenarios.

The rest of the paper is organized as follows: Sec. 2 introduces
our data-driven multirange vehicle speed prediction strategies,
including the long-range speed prediction based on BN and the
medium-range prediction based on NN. Section 3 introduces the
physics-based and control-oriented models representing the power
and thermal loops of the HEVs system. Next, the MPC algorithm
developed for minimizing the fuel consumption of HEVs is
described in Sec. 4. Section 5 reports the simulation results of
iPTM which incorporates the proposed speed prediction strategy.
Finally, the conclusion and future work are summarized in Sec. 6.

2 Data-Driven Multirange Vehicle Speed Prediction

In this section, a multirange vehicle speed prediction frame-
work is introduced for urban driving cycles which enables

efficient iPTM of CAVs. We assume that all the intersections in
the driving route are signalized and that the destination is known
from the beginning of the trip. As shown in Fig. 1, the vehicle
speed preview is divided into three ranges as follows:

� Short-range preview: For the short-range, e.g., 5� 10 s
ahead, the vehicle speed prediction could be obtained by
exploiting V2V/I communications available to connected
HEVs.

� Long-range preview: The long-range preview covers the
entire trip, for which the most probable driving scenario is
predicted. Additionally, the passing/stopping at all remaining
intersections, the cruise speed between intersections, and the
end time of the trip are predicted according to the predicted
driving scenario.

� Medium-range preview: In order to mitigate the uncertainty
of long-range speed prediction, this paper also explores a
medium-range preview. This medium-range preview
addresses the portion of the trip from the current vehicle
location to the next intersection and involves prediction for
passing/stopping event, arrival/stop time, and departure time
at the next intersection.

Our approach to implement the proposed multirange vehicle
speed prediction is data-driven. The dataset and the prediction
algorithms are detailed in what follows.

2.1 Real-World Traffic Simulation Data. As a representa-
tive case study, a traffic simulation model of a city corridor built
in the microscopic traffic simulation software VISSIM [24,25] is
adopted. The city corridor is located on Plymouth Road, in Ann
Arbor, MI with six intersections. This corridor is one of the busi-
est commuting routes connecting the downtown of Ann Arbor to
the U.S.-23 highway. Its total length is around 2.2 mi, and it has
two lanes in each direction. Moreover, in this case study, all the
intersections in the Plymouth Road corridor are signalized, and
the distance between intersections is within 1000 m.

The VISSIM traffic simulation model has been calibrated with
real-world data collected during the afternoon rush hour
(4:00–5:00 p.m.). The collected data obtained from infrastructure-
based sensors include traffic volume and turning ratio at each
intersection, see Refs. [25] and [26] for details on calibration and
validation of the VISSIM model. Since the actual signal timing pol-
icy implemented over the Plymouth Road is unknown and is con-
sidered proprietary to the city of Ann Arbor, a coordinated fixed-
time signal timing policy with a cycle length of 150 s was applied
to all six intersections. The VISSIM model was used to generate the
vehicle trajectory data.

The VISSIM model was run for two and a half hours, while the
parameters of the traffic model were kept fixed and the traffic
congestion-level did not change during the simulation. The
congestion-level was set to medium (roughly 900 vehicles per
hour, which may vary from one intersection to another). This
congestion-level represents undersaturated traffic, in which the
queues at signalized intersections can be fully discharged during
the traffic signal green interval. The embedded driver model used
in VISSIM is kept fixed for all the simulated vehicles, meaning the
key parameters associated with a driver’s behavior (e.g., rate of
change in speed, maximum speed) are the same.

Fig. 1 The concept of multirange vehicle speed previews
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During the simulation period, the time-series speed data of each
simulated vehicle were collected and stored. Next, among all the
stored vehicles’ speed data, the speed profiles of 1478 vehicles
driving through the entire corridor in the same direction (i.e.,
entering from the west and exiting from the east side) were identi-
fied and used for our case study. Data of other vehicles that either
exited the corridor before reaching the destination or entered the
corridor in between were not included. For the remainder of the
paper, we refer to these vehicle speed data generated by the VISSIM

model as the traffic data. Note that all the vehicles in the simula-
tion model are of the same type, i.e., small size passenger
vehicles.

2.2 Short-Range Preview. In this study, an accurate vehicle
speed prediction over a relatively short-range horizon, e.g.,
5–10 s, is assumed to be available and known. A sufficiently accu-
rate short-range speed prediction can be informed by V2V/I com-
munications through model-based [25], stochastic [20,27], data-
driven [28,29], and learning-based [30] methods.

Remark 1. It should be noted that, in actual traffic, short-range
speed predictions are subject to uncertainties, e.g., unexpected
events such as vehicle cut-in that could lead to speed prediction
errors. This study, however, is focused on enhancing the speed
prediction accuracy over long and medium horizons.

2.3 Long-Range Preview. We first present the long-range
speed prediction strategy and motivate the need for a medium-
range speed prediction, which will be presented in Sec. 2.4. The
long-range vehicle speed prediction becomes necessary given rel-
atively slow thermal dynamics. As shown in Fig. 1, the long-range
vehicle speed preview defined in this work covers the segment
from the end of the short-range preview until the end of the trip.
Accurately predicting vehicle speed over such a long-range is fun-
damentally challenging. Figure 2 shows the mean value and stand-
ard deviation of all 1478 vehicle speed trajectories collected over
the Plymouth Road as described in Sec. 2.1. It can be seen that
this aggregated average speed, with large standard deviation, does
not provide insightful information about the traffic flow. For
example, the stop-and-go behavior at the signalized intersections
cannot be predicted, making the aggregated average speed not
meaningful for long-range vehicle speed prediction. The afore-
mentioned observations of the aggregated vehicle speed suggest
that additional data processing is needed to get clearer patterns of
the long-range preview and reduce the error of forecast.

To enable long-term vehicle speed prediction, a BN is adopted
to classify the traffic data and generate a long-term driving sce-
nario tree. Specifically, we treat passing/stopping events at inter-
sections as stochastic variables (x) dependent on the observed
events at upstream intersections. These events influence the prob-
ability distributions of the variables at downstream intersections.
A BN can take into account the causal relationship between the
variables of interest and represent conditional dependencies
between a set of random variables [31]. The BN can be exploited
to generate a dynamic scenario tree to obtain the joint probability

distribution of passing/stopping events at different intersections,
from which the “most probable” driving scenario is determined.
The concept of this BN for urban driving is presented in Fig. 3, in
which the most probable driving scenario is updated in real-time
after the vehicle passes each intersection according to (i) observa-
tions obtained from the actual driving, and (ii) changes in the
probability distribution of passing/stopping events as the traffic
evolves. As an example and according to Fig. 3, while from the
beginning the vehicle is predicted to pass the first intersection
(Fig. 3(a)) as the computed probability of passing is larger than
that of stopping, the actual observation indicates that the vehicle
stops at the first intersection. Consequently, the most probable
driving scenario is updated once the vehicle departs the first inter-
section (Fig. 3(b)).

For the BN that is developed for an arterial corridor, we inter-
pret an arc from intersection k to kþ 1 as stop/pass at intersection
k followed by stop/pass at intersection kþ 1. For a corridor with
H intersections, each intersection is considered as a node repre-
sented by xk (k ¼ 1;…; p;…;H), where xk takes the values of
“true” for passing and “false” for stopping. At intersection p, the
joint probability distribution for the remaining trip is updated as

Prðxp;…; xHÞ ¼
YH
k¼p

PrðxkjxPk
Þ (1)

Fig. 2 The mean value and standard deviation of all simulated
vehicle speed data collected over the Plymouth Road corridor

Fig. 3 Driving scenario generation for estimation of most
probable driving scenario over an arterial corridor using BN
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Here, PrðxkjxPk
Þ is the conditional probability distribution associ-

ated with intersection k, and Pk is the set of indices labeling the
upstream intersections of the kth intersection [31,32]. For
instance, Prðx4jx1 ¼ True; x2 ¼ False; x3 ¼ FalseÞ indicates the
probability of the ego-vehicle passing the fourth intersection after
it has passed the first, but stopped at the second and at the third
intersections. Note that the directed arc of the BN should flow for-
ward both in the time direction and in the traffic flow direction
[31].

The conditional probability distribution of the passing/stopping
events at intersections is inferred from the traffic data according
to Eq. (1). Note that, while in this paper the dataset is built based
upon the VISSIM traffic simulation model, in practice, the connected
vehicles’ speed data can be collected, analyzed, and updated by a
central/cloud server in real-time, constructing the historical traffic
dataset for a specific memory length. The speed of a vehicle trav-
eling through the corridor is estimated using the branch with the
highest product of probabilities, which represents the most proba-
ble driving scenario until the end of the trip. The branch selection
is updated during the trip based on the observed states (i.e., obser-
vation of actual passing/stopping events at given intersections).

The vehicle data collected over the Plymouth Road driving cor-
ridor are used to inform the proposed BN. The results are pre-
sented in Fig. 4. It can be seen that the BN for the section of
Plymouth Road consists of ten main branches. Note that there are
three minor branches with a probability of less than 0.01 that are
excluded from the BN. The time-varying mean and standard devi-
ation of the vehicle speed for each of the ten branches of the BN
are reported in Fig. 5. It can be observed that the prediction of
vehicle speed over a given branch provides a marked improve-
ment over using the average speed of all trajectories. Therefore,
this BN will be leveraged for long-range vehicle speed prediction.
Additionally, the BN can be used to predict passing/stopping
events at signalized intersections and the end time of the trip that
are useful in energy management optimization.

To summarize, a BN is developed to provide the conditional
probabilities of passing/stopping events at signalized intersec-
tions. When used in real-time for vehicle speed prediction, the

vehicle speed profile prediction corresponds to the branch with
the highest probability. The probability for each branch is updated
each time a stop/pass event is observed. The developed BN is
designed to capture an “average” behavior of drivers based on the
data described in Sec. 2.1. In actual traffic, drivers have different
levels of aggressiveness, requiring the adaptation of the long-term
speed prediction for each “ego” vehicle. For automated vehicles,
the sensitivity of the long-term speed predictions to these types of
individual vehicles’ behaviors is expected to be smaller. The
developed BN treats vehicles with noticeably different behaviors,
as compared to the average traffic, as outliers that have less
impact on the average traffic flow dynamics.

Remark 2. Expanding the proposed BN-based approach to cor-
ridors with more intersections requires a more systematic way to
generate a scalable driving scenario tree. To that end, insights
from scenario tree generation in stochastic MPC [20,33] may be
considered.

2.4 Medium-Range Preview. In Sec. 2.3, a BN is developed
to provide a long-range vehicle speed forecast by predicting the
most probable driving scenario. However, sometimes, the predic-
tion error of forecast passing/stopping events at intersections can
be large. For example, as shown in Fig. 4, for the vehicles passing
through the first intersection, the probabilities of passing and stop-
ping at the second intersection are 51.7% and 48.3%, respectively.
Thus, almost half of the vehicles (passing the first intersection)
are expected to be mispredicted using the BN, and this introduces
substantial uncertainty into the long-range vehicle speed predic-
tion due to significant differences between the average speed of
the branches. Another limitation of this long-range vehicle speed
prediction is the uncertainty around the stop time and departure
time at intersections. As shown in Fig. 6, branch 3 displays large
variations in the stop times and departure times at intersections.
This variation may be attributed to the queuing dynamics and traf-
fic signal phase switch. Additionally, most of the vehicles have
similar acceleration/deceleration profiles but shifted in time which
confounds the average speed. To address these issues, a medium-
range preview is introduced.

Fig. 4 The BN developed based on the historical data over an arterial corridor. The numbers
over the arrows indicate probability.
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Assuming an urban driving scenario with signalized intersec-
tions, the medium-range preview involves the prediction of vehi-
cle speed from the end of the short-range preview to the next
intersection. Figure 7 illustrates the models of vehicle speed tra-
jectories assumed in the medium-range that are dependent on the
forecasted passing/stopping events at the next intersection. The
vehicle speed between intersections is assumed to be equal to the
average cruise speed (Vcruise). Note that the cruising here means
that the vehicles travel at the speed limit of the segments (in VIS-

SIM, the cruising speed between intersections is set to the speed
limit of the corresponding segment) and varies within a range of
2 m/s. For vehicles stopping at the next intersection, we define the
stop time (Tstop) and stop duration (Tdura) as shown in Fig. 7. For
vehicles passing through the next intersection, the arrival time
(Tarrival) is defined as the time to reach the stop bar at the next
intersection, see Fig. 7, and is estimated as

Tarrival ¼
sbar

Vcruise

(2)

where sbar is the distance between the vehicle and the stop bar at
the next intersection. Note that it is assumed that the location of
the vehicle and the stop bar of intersections are available during
the trip, and thus sbar can be calculated in real-time. As shown in
Fig. 8, for vehicles stopping at the next intersection, both Tstop and
Tdura are significantly influenced by the queue length (squeue) and
thus are predicted as follows:

Tstop ¼
sbar � squeue

Vcruise

(3)

Tdura ¼ Tsignal þ Tqueue (4)

Fig. 5 The mean value and standard deviation of vehicles in ten branches classified by BN

Fig. 6 The variation of the stop time and departure time at
intersections for the vehicle data in branch 3

Fig. 7 Predicted vehicle speed in the medium-range for ego-
vehicles (a) stopped at next intersection and (b) passing
through the next intersection
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where Tsignal and Tqueue are the time duration that an ego-vehicle
needs to wait for (i) the traffic signal phase switch and (ii) the dis-
charge of the queue, respectively. It can be seen that, in order to
predict the vehicle speed using the aforementioned models, pass/
stop and queue length information for the next intersection are
needed.

To this end, a real-time vehicle speed prediction is proposed,
based on V2V/I communication and passing/stopping prediction
over the medium-range. Figure 9 presents the flowchart of the pro-
posed strategy. Once an ego-vehicle enters a segment between
two intersections, the model of the vehicle speed trajectory in
Fig. 7 is selected based on the predicted passing/stopping event at
the next intersection. If this vehicle is predicted to pass through
the intersection, the arrival time is calculated by Eq. (2), and the
vehicle speed trajectory in the medium-range is predicted using
the model in Fig. 7(b). If this vehicle is predicted to stop, Tstop,
Tdura, as well as squeue need to be predicted. To accomplish this,
first, we assume the number of vehicles (N) ahead of this ego-
vehicle in the respective road segment is known. Note that, in a
road segment between two intersections, if coordinates of the
vehicles in front are known either through the vehicle-to-vehicle
communications [34], through the individual vehicle-to-

infrastructure (cloud) communications, or through infrastructure-
based sensing, the number of vehicles in front of an ego-vehicle
(N) can be inferred. Approaches that are based on vision-based
systems onboard of the ego-vehicle can also be used.

In the next step, the passing/stopping events for all these N
vehicles are predicted, and as a result, K vehicles are predicted to
stop and the remaining N�K vehicles pass. With K being the
number of vehicles in the queue, squeue can be estimated assuming
that every vehicle adds a fixed length to the queue. Additionally,
the dependence of squeue on Tqueue based on Plymouth Road vehi-
cle data is shown in Fig. 10. It can be observed that the relation-
ship can be reasonably represented by a second-order polynomial,
Tqueue ¼ as2

queue þ bsqueue þ c. Then, Tstop and Tdura are calculated
using Eqs. (3) and (4), and the vehicle speed trajectory is pre-
dicted using the model in Fig. 7(a).

Remark 3. Depending on the method used to estimate the num-
ber of vehicles in front of an ego-vehicle (N), communication
gaps between vehicles could occur, leading to uncertainty in esti-
mating N. While it is outside the scope of this paper, the impact of
such uncertainties and the nonhomogeneous behavior of the
vehicles are topics that warrant future investigations.

To implement the above approach, the prediction of the pass-
ing/stopping event is required. The algorithm shown in Fig. 9 is
generic and is not restricted to a particular model to predict the
passing/stopping event. In this paper, a NN-based solution is used
for this purpose. In this paper, we propose a decentralized NN
design process, in which one NN is trained for each road segment
between two adjacent intersections. An alternative approach to
this strategy is to develop one single centralized NN covering all
the road segments. The main reason for adopting a distributed NN
in this paper is because it greatly helps to keep the NN structure
and its training process simple and computationally fast.

Fig. 8 The concept of vehicle speed in the medium-range preview

Fig. 9 The flowchart to generate the vehicle speed trajectory
in medium-range

Fig. 10 The relationship between queue length (squeue) and the
discharge time of queue (Tqueue)
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Moreover, since the ratio of the vehicles that may enter/exit at an
intersection and the traffic flow and the length of one segment
could be different than other segments, different NNs for different
segments may be needed to represent traffic patterns more accu-
rately to inform the medium-range speed forecast.

The proposed NN, shown in Fig. 11, has four inputs, i.e., the
current vehicle speed, trip distance (to the start point of the route),
trip time in the route, and current signal timing and phase of the
next intersection, and one output, i.e., passing/stopping at the next
intersection. Note that it is assumed that the current signal phase
of intersections is available by V2I communications. The NN is a
feedforward network and consists of three hidden layers with ten
neurons each (a in Fig. 11). The logistic sigmoid function is used
as the activation function. The NN is developed using MATLAB

DEEP LEARNING TOOLBOX for pattern recognition. The weight and
bias values of the NN are trained with the scaled conjugate gradi-
ent method. Twenty percent of the Plymouth Road simulation
data is used to train the NN, as using a higher percentage of train-
ing data did not improve the predictions. The remaining 80% of
the data is used to assess prediction accuracy, which is summar-
ized in Table 1. For each intersection, one NN with the aforemen-
tioned structure is trained independently of others. Note that
because all the vehicles in the dataset stop at intersection IV, the
accuracy of NN prediction is 100%. As compared with the BN,
NN provides a better accuracy (higher than 90% for all intersec-
tions) in predicting passing/stopping events at the next intersec-
tion which inform a more accurate vehicle speed forecast over a
medium-range.

Remark 4. The proposed long-range speed prediction approach
based on the BN’s branch with the highest probability is computa-
tionally very fast and can be updated in real-time. However, there
might be branches with slightly smaller probabilities that will not
be picked up as the long-term preview by the BN. The integration
of the medium-range preview could compensate for such

scenarios. For example, if based on the most probable driving sce-
nario, a vehicle is predicted to “pass” an upcoming intersection,
but the medium-range predictor estimates it to “stop,” then in the
final speed preview, the stop event is implemented as the more
reliable prediction.

3 Hybrid Electric Vehicle Power and Thermal Models

We now consider the integration of our proposed multirange
vehicle speed prediction approach into a model predictive control
for energy management of a power-split HEV, operating at cold
ambient temperature in wintertime. The power and thermal mod-
els adopted in this study were developed and validated in
Ref. [35]. They are briefly reviewed in this section for completeness.

3.1 Battery Power-Balance Model. For a power-split HEV,
the battery power (Ptrac

bat ) and the internal combustion engine power
(Peng) are blended to meet the traction power demand (Ptrac)

Ptrac ¼ Ptrac
bat þ Peng (5)

Pbat ¼ Ptrac
bat þ Paux

bat (6)

The battery, in addition to assisting the engine in driving, also
provides the auxiliary power (Paux

bat ) to the engine and cabin heat-
ing actuators (e.g., radiator fan, engine coolant pump, and heating,
ventilation, and air conditioning blower). Note that in Eq. (6), Pbat

is the total power provided by the battery.
The battery dynamics are represented by

_SOC tð Þ ¼ fSOC tð Þ ¼ Uoc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

oc � 4RintPbat

p
2RintCbat

(7)

where Uoc, Rint, and Cbat are the open-circuit voltage, internal
resistance, and capacity of the battery, respectively.

3.2 Engine Coolant Temperature Model. Engine coolant
temperature (Tcl) dynamics are modeled based on an energy bal-
ance equation [36]

_T cl tð Þ ¼ fTcl
tð Þ ¼ 1

MengCeng

_Qfuel � Peng � _Qexh � _Qair � _Qheat

� �
(8)

where Ceng and Meng are the equivalent thermal capacity and
mass of the engine cooling system, respectively. Additionally,
_Qfuel; _Qexh; _Qair, and _Qheat represent the heat rates released from

the fuel combustion, exchanged through exhaust gases, dissipated
by air convection, and delivered for cabin heating, respectively. In
particular, _Qfuel is a function of the fuel consumption rate ( _mfuel)
and lower heating value (LHV) of the fuel

_Qfuel ¼ LHV � _mfuel (9)

where _mfuel is a function of engine speed (xe), torque (se), and Tcl

_mfuelðxe; se; TclÞ ¼ aðTclÞ � _mfuel;nomðxe; seÞ (10)

and where _mfuel;nomðxe; seÞ is the nominal fuel consumption rate
calculated based on brake-specific fuel consumption map at fully
warm conditions, while aðTclÞ is a multiplier reflecting the sensi-
tivity of fuel efficiency to the coolant temperature. These func-
tions have been extracted from the AUTONOMIE

1 software for a
power-split HEV [35]. In particular, when Tcl is higher than 60

Fig. 11 The structure of NN designed in medium-range
preview

Table 1 The accuracy of NN in predicting passing/stopping
events at six intersections

Intersection number I II III IV V VI

Accuracy (%) 97.3 99.4 94.9 100.0 94.8 99.1

1
AUTONOMIE is a MATLAB/SIMULINK-based system simulation tool for vehicle energy

consumption and performance analysis developed by Argonne National Laboratory
[37].
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�C, a¼ 1, and when Tcl is less than 60 �C, a increases, reflecting
the degradation of engine efficiency caused by low temperatures.
Moreover, the experimental validation of the models in Eqs. (7)
and (8) can be found in our previous works [26,35].

4 Model Predictive Control-Based Integrated Power

and Thermal Management of Hybrid Electric Vehicles

The objective of iPTM is to minimize the fuel consumption
while enforcing the battery state-of-charge (SOC) and Tcl con-
straints and meeting the traction and cabin heating demands
[5,38]. In our previous work, a multihorizon MPC was developed
to account for multitimescale characteristics of power and thermal
subsystems of HEVs [4,39]. The multihorizon model predictive
control (MH-MPC) is based on the solution to the following
discrete-time optimal control problem:

min
PbatðiÞ

XtþNr�1

i¼t

_mfuelðiÞDt1þ
Xtend

i¼tþNr

_mfuelðiÞDt2

subject to SOCðiþ 1Þ ¼ SOCðiÞ þDtj � fSOCðiÞ; j 2 f1;2g
Tclðiþ 1Þ ¼ TclðiÞ þDtj � fTcl

ðiÞ; j 2 f1;2g
0:4� SOCðiÞ � 0:8

40 �C� TclðiÞ � 90 �C

0:99� SOCð0Þ � SOCðtendÞ � SOCð0Þ � 1:01

Tclð0Þ ¼ Tcl;init; SOCð0Þ ¼ SOCinit

(11)

where Nr is length of the short receding horizon, tend is the end
time of the trip, and Dt1; Dt2 are sampling times over the short
receding and long shrinking horizons, respectively. Note that j 2
f1; 2g and

j ¼
1; if i � tþ Nr � 1

2; if i � tþ Nr

(
(12)

The MH-MPC cost function represents the cumulative fuel con-
sumption over (i) the short receding horizon calculated based on
accurate short-range vehicle speed preview, and (ii) over the
entire remaining trip beyond the receding horizon calculated
based on the medium-range and long-range vehicle speed predic-
tion. Additionally, a terminal constraint is applied to enforce the
battery charge sustainability condition (i.e., enforce the final SOC
close to the initial SOC). In order to enhance the feasibility of
solving the optimization problem, a deviation of 61% from the
initial SOC is allowed for the final SOC.

To reduce the computational footprint of the MH-MPC over the
long shrinking horizon, Dt2 > Dt1 is used. The MH-MPC is
solved every 1 s with Dt1 ¼ 1 s and Dt2 ¼ 10 s, and the first ele-
ment of the computed control input is applied to the system. Then,
the receding horizon is shifted by Dt1, and the shrinking horizon is
shortened by Dt1. Note that when the remaining trip time is
shorter than Dt1N, the multihorizon is no longer needed, and there
is only one shrinking horizon remaining in the cost function with
the sampling time of Dt1.

5 Results and Discussions

In order to assess the benefits of the proposed framework, the
multirange vehicle speed prediction strategy is applied to enable
the iPTM of MH-MPC. Three cases shown in Fig. 12 are consid-
ered over the long shrinking horizon as following:

Case A: The vehicle speed over the long shrinking horizon is
assumed to be constant and equal to the current cruise speed.
Case B: The BN is used to provide the vehicle speed trajectory
until the end of the trip.

Case C: On the basis of case B, the vehicle speed preview in
the medium-range is enhanced by the NN, while BN provides
the vehicle speed prediction beyond the next intersection to the
end of the trip.

Figure 12 illustrates the concepts of cases A–C. Note that in all
three cases, the vehicle speed prediction over the short-range hori-
zon (i.e., the receding horizon N ¼ 5 s) is assumed to be accurate.
For case A, the cruise speed in the long-range horizon varies at
different segments of the corridor; specifically, it is around
15.6 m/s from intersections I–V and 20.8 m/s after intersection V.
The trip end time is estimated based on the remaining distance
and estimated vehicle speed profile, which will be updated each
time when the estimated vehicle speed is updated.

Figure 12 shows how the predicted speeds over different ranges
from Fig. 1 are combined for implementation in MH-MPC for
iPTM. In case C, while the predicted speed over the medium-
range is already available from the BN, the more accurate predic-
tion obtained from the NN is used.

In order to analyze the performance of MH-MPC for three cases
defined above, 140 vehicles are randomly selected among all the
vehicles traveling through the entire corridor. The initial condi-
tions, ambient temperature, and cabin heating demands are set to
be the same for all the vehicles. The results of applying an offline
dynamic programing (DP) are used as the benchmark [40] to
show how the uncertainty and lack of information about the speed
preview degrade the fuel consumption from its optimal value,
thereby demonstrating how the proposed speed prediction frame-
work helps to stay close to the global optimal solution. Figure 13
shows the probability density functions for fuel consumption
increase of cases A–C as compared to DP solution. Note that for
DP implementation, it is assumed that the entire vehicle speed is

Fig. 12 The three cases (A–C) defined to evaluate the perform-
ance of MH-MPC with different types of information incorpo-
rated in the look-ahead

Fig. 13 The probability density function of the fuel consump-
tion increase from cases A–C
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known a priori with a sampling period of 1 s. To compute the
probability densities in Fig. 13, we have used ksdensity function
in MATLAB, which returns a kernel distribution through a nonpara-
metric representation of the probability density function of a ran-
dom variable [41]. In our case, the random variable is the fuel
consumption increase percentage from the simulated vehicles as
compared to the DP solution. The mean value of fuel consumption
increase in case B is 2.04%, which is 0.37% lower than case A. It
shows that by enhancing the vehicle speed prediction over the
long shrinking horizon using the BN, the MH-MPC can improve
fuel consumption.

The addition of medium-range speed prediction (case C) enhan-
ces the fuel consumption by 0.9% on average as compared to case
B. In this case, 0.9% is nearly half the distance between case B
and DP, meaning that case C provides significant incremental ben-
efits of 50%, as compared to case B. Given the higher probability
density of case C, as compared to case B, Fig. 13 suggests that an
improved prediction of vehicle speed and passing/stopping events
in the medium-range provides extra fuel savings. Overall, while a
long prediction horizon is needed given the slow responding ther-
mal dynamics of the system, further refining the speed prediction
in the medium-range provides significant incremental benefits
without the complexity of refining the entire long horizon.

In order to investigate the sensitivity of fuel consumption to the
errors in the speed forecast, we consider two vehicles following
two different branches of the BN (i.e., vehicle #1 from branch 5
and #2 from branch 3). Figure 14 shows the predicted vehicle
speed profiles of these two vehicles before they approach intersec-
tion III. According to the BN, before intersection III, branch 5 has
the highest probability for both vehicles. One can see that while
the BN predicts all the passing/stopping events for vehicle #1 cor-
rectly, it mispredicts the event for vehicle #2 at intersection III
(t ¼ 170 s), see Fig. 14(b).

Figure 15 shows the fuel consumption of these two vehicles. It
can be seen that, as compared to DP, the fuel consumption is
larger in case A by 2.25% and 2.93% for vehicles #1 and #2,
respectively. Additionally, as compared to case C, in case B the
fuel consumption is increased by 0.51% and 0.90% for vehicles
#1 and #2, respectively.

The state trajectories of two vehicles are shown in Figs. 16 and
17. It can be seen that the SOC and Tcl trajectories show a similar
trend for all cases. At the beginning of the trip, when Tcl is not
warm enough, i.e., around 50 �C, the engine is used to meet the
traction power demand and at the same time charge the battery.

While SOC is pushed toward its upper limit, i.e., 80%, Tcl rises to
around 60 �C. Note that when the Tcl is lower than 60 �C, the
engine efficiency degrades significantly [37]. Therefore, by run-
ning the engine at a higher load, the controller is able to warm up
the engine faster to enable fuel savings later during the drive.
Note that, in order to fully recuperate the kinetic energy during
braking, as shown in Figs. 16(b) and 17(b), the controller uses the
battery to satisfy traction power demand prior to a stop/braking
event. The subsequent reduction in SOC increases the amount of
regenerative braking energy that can be recovered before reaching
the maximum SOC constraint. Enabling this energy recovery
requires the controller to accurately predict the upcoming stop/
braking event. For case A, the controller cannot detect the stop
event until the intersection is within the short receding horizon,
leaving insufficient time for battery discharge. Therefore, the
kinetic energy during the braking phases is not fully recuperated
in case A. Moreover, for vehicle #2, the BN makes a

Fig. 14 The comparison of actual and predicted vehicle speed
profiles before the vehicle approaches intersection III: (a) vehi-
cle #1 and (b) vehicle #2

Fig. 15 Fuel consumption (kg) of DP, cases A–C

Fig. 16 State trajectories for vehicle #1: (a) vehicle speed, (b)
battery SOC, (c) coolant temperature, and (d) engine power
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misprediction at intersection III (around 170 s), and in case B, the
stop is not detected in advance, and thus, the energy is not fully
recuperated during braking.

6 Conclusion

In this paper, a novel data-driven multirange vehicle speed pre-
diction strategy was proposed for urban corridors with signalized
intersections. The proposed strategy exploits historical traffic data
collected from connected vehicles to provide a prediction of vehi-
cle speed over short-range, medium-range, and long-range. Over
the short-range horizon, the vehicle speed prediction is obtained
based on V2V/I communication, which is assumed of high accu-
racy. Over the long-range horizon, a BN provides the vehicle
speed prediction and estimates the most probable driving scenario
until the end of the trip. The medium-range prediction (from the
end of the short-range to the next intersection) exploits a NN that
is able to forecast the passing/stopping event at the next intersec-
tion with 90% accuracy based on the validation data. Then, the
medium-range vehicle speed trajectory forecast is informed by
exploiting the prediction of passing/stopping events and estimates
of the queue length and stop/arrival time.

The effectiveness of the proposed vehicle speed prediction
framework was demonstrated by exploiting it for vehicle speed
preview in a MH-MPC scheme used for HEV iPTM. The MH-
MPC exploits a short receding horizon and a longer shrinking
horizon that extends to the end of the trip. The vehicle speed pre-
view over the receding horizon is informed by V2V/V2I-based
short-range vehicle speed prediction, while NN and BN-based
approaches are used to inform the vehicle speed preview over the
shrinking horizon. The simulation results show that by incorporat-
ing the medium- and long-range speed preview, the MH-MPC
achieves a fuel consumption within a 1% deviation from the off-
line dynamic programing solution. Furthermore, the sensitivity
analysis revealed that by enhancing the accuracy of predicting the
passing/stopping events, the performance of MH-MPC can be
improved. Compared with constant vehicle speed preview, the

proposed multirange vehicle speed prediction reduces the fuel
consumption by around 1.28%.

Potential future research directions include: (i) expanding the
speed prediction framework to more complex scenarios where the
signal timing policy is not fixed-time and may vary over time
according to a specific policy, (ii) investigating the scalability of
the BN-based driving scenario tree approach and distributed NN
for longer corridors with a larger number of intersections, (iii) tak-
ing into account the variation in the driver behavior and aggres-
siveness level by adapting the long-term speed predictions with
respect to individual vehicles’ speeds in real-time, (iv) accounting
for uncertainties associated with speed prediction over the short-
range, and (v) assessing the robustness of the speed prediction and
the iPTM to disturbances and uncertainties that are often hard to
capture through historical traffic data, e.g., unscheduled stop or
break.
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Nomenclature

Cbat ¼ battery capacity (A h)
Ceng ¼ engine specific heat capacity (J=kg �C)

LHV ¼ lower heating value (J/kg)
Meng ¼ equivalent thermal mass (kg)
_mfuel ¼ fuel consumption rate (kg/s)

_mfuel;nom ¼ nominal fuel consumption rate (kg/s)
Pbat ¼ battery power (W)
Peng ¼ engine power (W)
Ptrac ¼ traction power (W)
Paux

bat ¼ battery power for auxiliary systems (W)
Ptrac

bat ¼ battery power for traction (W)
_Qair ¼ heat rate rejected by air convection (W)

_Qexh ¼ heat rate rejected in the exhaust (W)
_Qfuel ¼ heat rate released in combustion process (W)
_Qheat ¼ heat rate exchanged for cabin heating (W)
Rbat ¼ battery resistance (X)
Rint ¼ battery internal resistance (X)
sbar ¼ distance to stop bar (m)

squeue ¼ queue length (m)
SOC ¼ battery state-of-charge

Tarrival ¼ arrival time (s)
Tcl ¼ engine coolant temperature (�C)

Tdura ¼ stop duration (s)
Tqueue ¼ stop duration for queue discharge (s)
Tsignal ¼ stop duration for signal switch (s)

Tstop ¼ stop time at next intersection (s)
Uoc ¼ battery open-circuit voltage (V)
Dt ¼ sampling time (s)

Acronyms

BN ¼ Bayesian network
CAV ¼ connected and automated vehicle

DP ¼ dynamic programing

Fig. 17 State trajectories for vehicle #2: (a) vehicle speed, (b)
battery SOC, (c) coolant temperature, and (d) engine power
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HEV ¼ hybrid electric vehicle
iPTM ¼ integrated power and thermal management

MH-MPC ¼ multihorizon model predictive control
MPC ¼ model predictive control

NN ¼ neural network
V2V/I ¼ vehicle-to-vehicle/infrastructure
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