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Abstract—Integrated power system (IPS) combines electrical
power for both ship service and electric propulsion loads by form-
ing a microgrid. In this paper, a battery/flywheel hybrid energy
storage system (HESS) is studied to mitigate load fluctuations in a
shipboard microgrid. This paper focuses on how to determine the
reference operation state of the flywheel, which depends on both
future power load and the power split between the battery and
flywheel. Two control strategies are proposed: an optimization-
based approach and a lookup-table-based approach. Case studies
are performed in different sea conditions, and simulation results
demonstrate that the proposed control strategies outperform
baseline control strategies in terms of power fluctuation mitiga-
tion and HESS power loss reduction. A comparison between the
two proposed approaches is performed, where their performances
are quantified, the advantages and disadvantages of each strategy
are analyzed, and the cases where they are most applicable are
highlighted.

Index Terms—Shipboard Microgrid; Battery and Flywheel
Hybrid Energy Storage; Power Fluctuation Mitigation; Model
Predictive Control.

I. INTRODUCTION

INTEREST in microgrid systems has increased as they
are required for considerable systems and services [1].

Energy sources (such as turbines, fuel cells, and solar panels),
as well as energy storage (such as batteries, flywheels, and
ultra-capacitors), interact with the electric loads of the micro-
grid system [2], [3]. In microgrid systems, smoothing power
fluctuations is important to maintaining system reliability
and improving efficiency [4]. Energy storage systems (ESS),
including batteries, flywheels, and ultra-capacitors, are an
effective solution, and typically work as a buffer to compensate
these fluctuations [5]. Given their high energy density, batteries
have been a common solution to smoothing power fluctuations
in microgrids [6]. However, due to the limitations of Li-Ion
batteries, such as cycle life and power density [7], a hybrid
energy storage system (HESS) consisting of multiple energy
storage provides a more robust and cost-efficient solution.

This paper focuses on shipboard microgrid systems for
all-electric ships, which have become a dominant trend for
both commercial and military ship development to improve

Manuscript received December 21, 2019; accepted January 16, 2020. Paper
no. TII-19-5427(Corresponding author: Ziyou Song.)

Jun Hou and Heath Hofmann are with the Department of Elec-
trical Engineering and Computer Science, Ziyou Song and Jing Sun
are with the Department of Naval Architecture and Marine Engineer-
ing, University of Michigan, Ann Arbor, Michigan 48109 USA (e-
mail: junhou@umich.edu; ziyou@umich.edu; hofmann@umich.edu; jing-
sun@umich.edu).

efficiency, support high-power mission systems, reduce emis-
sions, and provide a more comfortable environment [8]–[11].
However, because of the propeller rotation and encountered
waves, the resulting load fluctuations can significantly affect
both the mechanical and electrical systems [12]. In order to
address this issue, one solution is to incorporate an ESS to
smooth the load power [13], [14]. Compared to using one
single type of ESS, different combinations of ESSs, namely
HESS, can improve the system performance in terms of size,
weight, and cost for an electric ship. [15]. Flywheels have
been used as uninterruptible power supplies (UPS) [16], and
for wind power smoothing [17] and stationary power systems
[18]. The development of magnetic bearings, resulting in
significantly reduced friction losses, has facilitated high-speed
flywheels and made them more attractive for a wide range
of applications [19]. For electrified ships, the role of flywheel
technology has been mentioned in the US Naval Power System
Technology Development Roadmap [20]. In general, flywheels
have high power density, long lifetime (in both calendar
life and cycle life), and a superior ability to operate over a
much wider temperature range when compared to batteries
[19]. However, they have lower energy density and higher
standby losses. Given their complementary characteristics, a
battery combined with flywheel (B/FW) HESS is studied
in this paper to address propulsion-load fluctuations on the
shipboard microgrid. Control strategy is essential to achieve
the effectiveness of the B/FW HESS. In this work, we explore
model predictive control (MPC) based control strategies due
to its capability in dealing with constraints and achieving
optimal solutions [21], [22]. Given the nonlinear nature of
flywheel dynamics, the computational intensity involved with
the MPC will make it computationally intensive. Using a short
predictive horizon is one way to reduce the computational
burden of MPC, but it usually has a negative consequence
in performance.

In this paper, we address the challenge of B/FW HESS
energy management with short horizon MPC combined with
flywheel state of charge (SOC) planning. The SOC reference
is intended to provide an optimal operating point for energy
storage, so that the MPC can focus on short-horizon power
tracking. The reasons why only flywheel SOC planning is
considered are discussed in the following. The energy density
of Li-ion batteries is much higher than that of flywheels;
and in nominal conditions, flywheels are more efficient than
batteries [23]. Moreover, temperature and aging have signifi-
cant impacts on battery capacity and internal resistance [24].
The internal resistance of the battery can increase by over
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100% due to low temperature and battery aging [25]. Given
the high efficiency of flywheels, more fluctuations will be
compensated by the flywheel, leading to more usage of the
flywheel. Therefore, the SOC variation of the battery will
be smaller than that of the flywheel. Furthermore, compared
to the flywheel, at the nominal temperature (15C-35C), the
efficiency of the battery is insensitive to its SOC variation
during the operation range [25], [26], namely 20%-90% in this
study. Therefore, flywheel SOC planning is used to improve
the performance of a short predictive horizon MPC, and the
battery will be used to maintain the flywheel operating at
its reference SOC. SOC planning of the battery for plug-in
hybrid electric vehicles (PHEVs) via vehicle-to-vehicle (V2V)
connectivity has been investigated in [27]. The whole trip
information [28] is required to plan the optimal battery SOC
trajectory globally. Cloud computing and V2V connectivity
are used to achieve this goal. However, this might not be
available, and so is not considered in this study. To the best of
our knowledge, flywheel SOC planning has not been explored
well. Reference [17] investigates flywheel SOC planning for
wind power smoothing. In [17], a lookup table, which is pre-
calculated by an optimization routine designed to minimize
the losses of the flywheel at different power loads, is used
to generate the SOC reference. The mean value of forecasted
power loads (over a 10-minute horizon) is utilized as the input
of this lookup table. However, this approach might not be
suitable for our application for the following reasons. First of
all, it is difficult to predict future loads for a long horizon (such
as 10 minutes), because the propulsion-load fluctuations are
related to not only encountered waves, but also the operation
of the ship. As the predictive horizon increases, the predictive
errors become larger. Furthermore, a power split between
battery and flywheel must be taken into consideration for
HESS. Additionally, the mean value is not an indication of
the power associated with load fluctuations.

In order to provide effective SOC planning of the flywheel
with a short predictive horizon, a novel control strategy, which
integrates MPC with an SOC planning approach, is developed
in this paper. A lookup-table based approach, which uses the
mean value of the future power from MPC, is developed as
a baseline control strategy for performance evaluation and
analysis. This approach is similar to the one in [17]. Because
the mean value does not represent the power associated
with load fluctuations, another lookup-table based approach
is developed to use instantaneous power loads as inputs to the
lookup table for the SOC reference calculation. We propose
two different flywheel SOC planning approaches. One uses the
root mean square (RMS) power, instead of the mean power,
as the input for the SOC-reference determination, as it better
represents the power associated with load fluctuations. The
other is an optimization-based approach, which is developed
to integrate SOC planning with power tracking and loss min-
imization. A comparison study is performed to compare the
proposed approaches with the baseline approach. Furthermore,
the advantages and limitations of the proposed approaches are
discussed. A hardware-in-the-loop test has been performed to
demonstrate the real-time feasibility of the MPC approach. The
main contributions of this paper are summarized as follows:

• A novel optimization-based SOC-planning approach is
developed and combined with MPC. The outputs of MPC,
which take the power split into consideration, are used
to determine the flywheel SOC reference. This SOC-
planning approach is effective to address issues caused by
a short predictive horizon of MPC, leading to the mitiga-
tion of load fluctuations and improved energy efficiency.

• RMS power, instead of mean power, is used for the
proposed lookup-table-based approach to obtain the fly-
wheel SOC reference. Note that the optimization-based
approach is more suitable when the controller hardware
capability is sufficient; otherwise, the lookup-table-based
approach using RMS power is preferred.

This paper is organized as follows. The system description
and problem formulation are presented in Section II. Models
of the propeller/ship dynamics and B/FW HESS are also intro-
duced. In Section III, four different SOC-planning approaches
to obtain the flywheel SOC reference are developed. In Section
IV, comparison results are presented and analyzed. Section V
concludes the paper.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

In this paper, Medium voltage DC (MVDC) power gen-
eration is considered as the architecture of the shipboard
microgrid, where the prime mover and generator (PM/G) sets,
the B/FW HESS, and the propulsion motor(s) are connected
to the DC bus, as shown in Fig. 1. The PM/G sets provide
the average power to the DC bus, and the motor drives
the propeller to generate the thrust for the ship. The B/FW
HESS works as an energy buffer to absorb power when the
motor is under-loaded and supply power when over-loaded,
therefore mitigating the propulsion-load fluctuation effects.
Because of the encountered waves (relatively low frequency)
and the rotational motion of the propeller (relatively high
frequency), the propulsion-load fluctuations contain multi-
frequency components associated with wave frequencies and
propeller speed. Furthermore, if the propeller is in-and-out-of
water, additional frequency components will be included in the
load fluctuations. Through the mechanical connection between
the motor and the propeller, the reliability and efficiency of
the shipboard microgrid can be affected by these fluctuations.

In this section, a dynamic model of an electric ship propul-
sion system with B/FW HESS is presented. Following that,
the MPC problem formulation is developed. The research
challenge of obtaining the optimal flywheel SOC reference
is analyzed at the end of this section.

A. Propeller and Ship Dynamic Model

The propeller and ship dynamic model was developed in
[14] and is summarized in this section for easy reference.

The propulsion-load power is expressed as:

PLoad = 2πnQ, (1)

where Q is the load torque generated by the propeller, n is
the propeller rotational speed in revolutions-per-second, and
the motor speed is assumed to be the same as propeller speed.
The propeller output torque is presented as:
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Figure 1: The overall structure of the B/FW HESS in the
shipboard network.

Q = sgn(n)βKQ0ρn2D5, (2)

where β is the in-and-out-of-water loss factor, KQ0 represents
the torque coefficient without in-and-out-of-water behavior, ρ

is the water density, and D is the propeller diameter. The torque
coefficient KQ0 is a function of ship speed, advance ship speed,
and wake field. Note that this model is able to capture the
propeller and ship dynamics. The detailed dynamic equations
can be found in [14].

B. Hybrid Energy Storage System Model

The state of charge (SOC) of the batteries and flywheels are
defined as the state variables. The flywheel SOC is determined
as SOCFW = ω

ωmax
× 100% [29], where ω and ωmax are the

current and maximum speeds of the flywheel, respectively.
The SOC of the battery is expressed as SOCB =

Qbattery
QB

×100%,
where Qbattery and QB are the current and maximum capacities
of the battery, respectively. The battery current and flywheel
torque are defined as the control variables. The HESS model
is described in the following:

˙SOCB =− 1
3600QB

IB,

˙SOCFW =− b
ωmaxJFW

SOCFW − 1
ωmaxJFW

TFW ,

(3)

where b, JFW , and TFW are the drag coefficient, inertia, and
torque of the flywheel, respectively. The energy losses and
output powers of battery and flywheel modules are presented
in the following:

LossB = NBRBI2
B,

LossFW = NFW

3
2

Rs

(
TFW

3
4 pPMΛFW

)2

+b(ωmaxSOCFW )2

 ,
PB = NBVOC(SOCB)IB −LossB,

PFW = NFW ωmaxSOCFW TFW −LossFW ,
(4)

where NFW and NB are the number of flywheel and battery
modules, respectively; RB and VOC(SOCB) are the battery
equivalent series resistance (ESR) and open-circuit voltage;
pPM , Rs and ΛFW are the number of poles, the stator resis-
tance, and the permanent magnet (PM) flux linkage of the
PM motor/generator. The losses of HESS include conduction

Table I: Battery parameter identification results within 20%-
90% SOC at 25oC.

R0 R1 τ(RC)
[26] 9-9.5mΩ 21.3-75mΩ 431-1104sec
[30] 0.45-0.5Ω 0.02-0.03Ω 25-40sec
[31] 2mΩ 2mΩ 100sec
[32] 2-2.35mΩ 1.8-2.5mΩ 32-40sec
[33] 2mΩ 0.9-1mΩ 28-42sec
[34] 0.1Ω 0.03-0.01Ω 25-28sec
[35] 0.1062Ω 0.0523Ω 23.21sec
This paper 60mΩ 187mΩ 59sec

losses and standby losses. In (4), RBI2
B and 3

2 Rs

(
TFW

3
4 pPMΛFW

)2

are the conduction losses of the battery and flywheel, respec-
tively. In general, the standby losses of batteries [35] can be
ignored, but the standby losses of high-speed flywheels, due
to the spinning, cannot be neglected [36]. In this model, the
standby loss of the flywheel is captured by b(ωmaxSOCFW )2,
which includes windage loss and core loss [29]. The flywheel
motor/generator is controlled to operate at its minimum current
operating point to reduce losses.

In general, a first-order equivalent circuit model (ECM) can
capture the battery dynamics sufficiently. The parameters of
the first-order ECM have been studied by many researchers.
The identification results, including the battery used in this
paper, are summarized in Table I. In general, the RC time
constant of a battery is from tens of seconds to hundreds of
seconds. As shown in Table I, the RC time constant of our
battery pack is about 60 sec. The RC time constant is much
longer than the control horizon (0.02 sec) and the predictive
horizon (0.2 sec; NT = 10). Furthermore, the frequencies of
load fluctuations are also much higher than that of the RC
pair. Therefore, the RC pair has only a slight influence on
the MPC performance. Because the RC pair will introduce
another state into MPC, leading to increased computational
cost, a control-oriented HESS model with only one equivalent
series resistance is used in the paper. In order to evaluate the
control strategies, the first-order equivalent circuit model is
used in the simulation. Note that the internal resistance of
the battery changes with the battery SOC, temperature, and
aging [24], [25]. However, the time scales of these effects are
much longer than the RC time constant. Therefore, within the
predictive horizon, the internal resistance of the battery can
be assumed to be constant, and online parameter identification
can update the battery resistance accordingly.

C. Model Predictive Control Formulation

Compensating load fluctuations and reducing HESS losses
to improve system reliability and efficiency are two primary
objectives of the energy management strategy. Two cost func-
tions can be used to capture these objectives:

J1 =
t+NT Ts

∑
k=t

(PFL(k)−PHESS(k))2, (5)

J2 =
t+NT Ts

∑
k=t

(PHESSLoss(k)), (6)
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where NT Ts is the optimization window, Ts is the sampling
time, PFL is the power of load fluctuations; PHESS is the output
power of HESS; and PHESSLoss = LossB+LossFW represents the
power loss of the HESS. Because NT Ts is constant, minimizing
J1 is equivalent to minimizing the RMS tracking error. Future
load fluctuations can be predicted by model-based approaches
or data-based approaches. One approach for the prediction of
the future load information has been published in [5]. As the
prediction of the future load fluctuations is not the focus of
this paper, we assume that this prediction is known.

Reducing the tracking error could lead to increased HESS
losses and vice versa, so the multi-objective optimization
problem (MOP) of minimizing J1 and J2 has no single
optimal solution. In this paper, the MOP is converted to a
single-objective optimization problem using then weighted-
sum method:

JHESS =
t+NT Ts

∑
k=t

(1−λ )(PFL(k)−PB(k)−PFW (k))2

+λ (LossB(k)+LossFW (k)),

(7)

subject to the constraints:

SOCB,min ≤ SOCB ≤ SOCB,max,

SOCFW,min ≤ SOCFW ≤ SOCFW,max,

IB,min ≤ IB ≤ IB,max,

TFW,min ≤ TFW ≤ TFW,max,

PFW,min ≤ TFW SOCFW ωmax ≤ PFW,max,

(8)

[
SOCB(k+Ts)

SOCFW (k+Ts)

]
=

[
1 0
0 1− bTs

ωmaxJFW

][
SOCB(k)

SOCFW (k)

]
−

[
Ts

3600QB
0

0 Ts
ωmaxJFW

][
IB(k)

TFW (k)

]
,

(9)
where 0 ≤ λ ≤ 1 is the weighting factor that allows us to
put different emphasis on each attribute to investigate the
performance trade-off. Equation (9) is obtained by discretizing
(3) using Ts = 0.02sec. The sampling time is chosen based
on the system dynamics, where the high-frequency fluctuation
is around 8Hz. A high sampling rate increases the compu-
tational cost, so that the sampling rate is chosen to be a
reasonably value, i.e., 50Hz. In this study, the upper and lower
boundaries of the battery and flywheel are chosen SOCB,min =
20%, SOCB,max = 90%, SOCFW,min = 30%, SOCFW,max = 99%,
IB,min =−200A, IB,max = 200A, TFW,min =−40Nm, TFW,max =
40Nm, PFW,min = −90kW , and PFW,max = 90kW . In marine
applications, a longer self-sustained operation time, which is
defined as the time interval that the HESS does not require
charging or discharging from external power sources, such as
a diesel generator, could offer a more flexible schedule for the
generator sets, thereby resulting in a better system efficiency.
In this paper, the self-sustained operation time is chosen to
be 40 minutes. If the entire self-sustained operation period
is used as the optimization window, (7) would be solved for
N=120,000, making the optimization problem computationally
prohibitive for real-time applications [37]. Alternatively, a
receding-horizon based MPC formulation is developed for
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Figure 2: Global optimization solutions with different initial
SOCs determined using dynamic programming.

real-time applications. An MPC with a short predictive hori-
zon, however, cannot incorporate long-term aspects of the
operation.

In order to illustrate the issue of MPC with a short pre-
dictive horizon, a theoretical analysis is performed. Several
assumptions are made in order to provide an analytical so-
lution: the predictive horizon NT = 1; NBVOCIB � LossB and
NFW ωFW TFW � LossFW ; the load fluctuations are fully com-
pensated by the HESS (PFL(k)=PHESS(k)); and the constraints
are inactive. Then the cost function can be simplified as:

J(k) = NBRBI2
B(k)+NFW (RFW T 2

FW (k)+bω
2
FW (k+Ts)), (10)

where PFL(k) = PHESS(k) and RFW = 3
2 Rs

1
3
4 pPMΛFW

2
. Since

ωFW (k) is the speed at time k, the cost function minimizes
the standby loss bω2

FW (k+Ts), instead of bω2
FW (k). According

to the assumption, the battery current IB can be represented
by TFW and PFL: IB = PFL−NF ωFW TFW

NBVOC
. The optimal solution of

TFW can be obtained by solving ∂J(k)
∂TFW (k) = 0:

TFW =
RBJ2

FW ωFW PFL +(JFW −bTs)bTsNBV 2
OCωFW

NFW RBJ2
FW ω2

FW +NBV 2
OC(RFW J2

FW +bT 2
s )

. (11)

Because (JFW − bTs) > 0 and ωFW > 0, there always
exists a discharge component in TFW to decrease the fly-
wheel rotational speed. Furthermore, the drag term bωFW
also decreases the rotational speed. Since PFL is a periodic
fluctuating term, the flywheel speed will continuously decrease
with oscillations until reaching the minimum speed constraint.
When the flywheel reaches the minimum speed constraint, the
HESS essentially becomes a battery system, leading to poor
performance in terms of both the fluctuation compensation
and HESS loss reduction. In order to consider the whole
self-sustained operation time, in contrast, global optimization
solutions with different initial flywheel SOCs are obtained
using dynamic programming, as shown in Fig. 2, where the
flywheel operates around an optimal reference SOC (speed) in
steady-state to achieve a high system efficiency.

To keep the flywheel operating in a high-efficiency range
without extending the predictive horizon, a penalty on the
SOC deviations from the defined flywheel SOC reference
γ(SOCFW (k)−SOCFWd )

2 is added into the cost function. The
MPC for the B/FW HESS is then expressed as follows:
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Figure 3: Lookup Table: optimal SOC vs flywheel output
power.

JMPC =
t+NT Ts

∑
k=t

LHESSMPC(k), (12)

where

LHESSMPC(x(k),u(k)) = (1−λ )(PFL(k)−PB(k)−PFW (k))2

+λ (LossB(k)+LossFW (k))+ γ(x2(k)−SOCFWd )
2;

(13)
subject to the constraints (8) and (9). By varying γ , we are
able to obtain the best achievable solution. In this study, γ

is tuned off-line. How to plan the flywheel SOC reference
(i.e., SOCFWd ) to achieve accurate power tracking and efficient
energy management is the major focus of this paper.

The flywheel optimal SOC reference highly depends on the
load. The optimal SOC reference at different sea states (SS)
varies significantly. For example, the SOC reference of fly-
wheel could vary from 25% to 70%. Due to the high-frequency
nature of the load fluctuations, the instantaneous power cannot
be used directly to determine the optimal SOC. Therefore, the
future power prediction from the MPC is very important. For
the B/FW HESS, compared to flywheel energy storage alone,
the power split between the battery and flywheel is another
important factor that affects the optimal SOC reference of
the flywheel. The battery and flywheel jointly compensate the
load fluctuations, so the SOC reference of the flywheel cannot
be obtained without the knowledge of the power split. Due
to the computational cost of MPC, a long predictive horizon
is almost impossible for this application, since the sampling
time is small. Therefore, an SOC-reference approach must take
advantage of the information available over a short predictive
horizon. A detailed analysis of stability, though important and
interesting, is not in the scope of this paper. To stabilize the
MPC, one of the following two approaches is usually adopted
[38]. One is to include the terminal cost and constraints in
the MPC formulation, while the other is to have a sufficiently
large horizon. In this paper, the first approach is adopted.

III. PLANNING FLYWHEEL REFERENCE SOC

In this paper, we develop two different approaches to find
the flywheel reference SOC: a lookup-table-based approach
and an optimization-based approach. The lookup-table based
approach is determined by minimizing the flywheel losses:

JFWLoss = LossFW , (14)

Figure 4: Lookup Table: Mean Power.

Figure 5: Lookup Table: Mean Speed

Figure 6: Lookup Table: RMS Power.

subject to the constraints:

PFW = NFW ωmaxSOCFW TFW −LossFW , (15)

and the physical constraints in (8). The resulting lookup table
is shown in Fig. 3. When implementing the lookup table, there
are several approaches:

• Mean-value based approach;
• Instantaneous-power based approach;
• RMS-value based approach.
The approach in [17], where the mean value of the future

power is used as the input of the lookup table, is labeled as
“Mean Power”, as shown in Fig. 4. However, the mean power
does not represent the fluctuating power. Therefore, a second
lookup-table based approach uses all the future load powers
from MPC as inputs to the lookup table. Instead of a single
SOC reference, the lookup table provides a sequence of SOC
references based on instantaneous power. However, this ap-
proach does not take the flywheel dynamics into consideration.
Therefore, the mean value of these SOC references is used as
the final SOC reference , as shown in Fig. 5. This approach is
labeled as “Mean Speed”. These two approaches serve as the
baseline approaches.

To capture the effects of load fluctuations, the RMS value
of the predicted power is used as an input to the lookup table
in the third approach, as shown in Fig. 6. This approach is
labeled as “RMS Power”.

Besides the lookup-table based approaches, an optimization-
based approach is developed as well, as shown in Fig. 7. This
approach minimizes the flywheel losses with the same output
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Figure 7: Optimization-based approach.

power as the MPC output power. The problem formulation is
presented in the following:

JOPT ( ¯SOCFW (k), T̄FW (k)) =
t+NT Ts

∑
k=t

LossFW (k), (16)

subject to the constraints:

P∗
FW (k) =NFW ×(ωmax ¯SOCFW (k)T̄FW (k)−LossFW (k)), (17)

the flywheel physical constraints in (8), and the flywheel dy-
namics constraint in (9), where P∗

FW (t),P∗
FW (t +Ts)...P∗

FW (t +
NT Ts) are the flywheel output power based on the MPC
optimized control sequence u∗(t), u∗(t +Ts), ..., u∗(t +NT Ts)
and the initial state SOCFW (t). Note that to distinguish the
optimization problem in MPC, ¯SOCFW and T̄FW are used
in this optimization-based approach. This approach aims to
provide a state variable for the SOC reference. The difference
between (14) and (16) is that the flywheel dynamic constraint
is considered in (16), and (14) is only based on the instanta-
neous power.

IV. PERFORMANCE EVALUATION AND DISCUSSION

In this section, case studies are performed for an electric
cargo ship. The performance of the proposed HESS control
strategies is presented and analyzed through case studies.

A. Key Parameters of Case Studies

The size of the HESS is determined, according to the fre-
quency characteristics of the power fluctuations. To quantita-
tively analyze the performance, three sea states, corresponding
to smooth (sea state 2), moderate (sea state 4), and severe (sea
state 6) operating conditions, are used in the simulation and
analysis. Key parameters used in the simulation are shown in
Tables II and III. A Li-ion battery module (BATVXLFP 100
Ah) and a high-speed flywheel module (Vycon) are used in this
study. The nominal voltage of one battery module is 128 V, and
its maximum current is 300 A. A maximum charge/discharge
power of the flywheel is 90 kW and its maximum rotational
speed is as high as 36,750 rpm. The three-phase permanent
magnet machine is used as the motor/generator for this Vycon
flywheel.

In this paper, the HESS sizing is designed based on an
energy and power requirement analysis of load fluctuations at
nominal sea state (SS4), as shown in Table IV. According to
the aforementioned requirements and the frequency character-
istics of the load power, the size of the HESS is selected as
NB = 6 and NFW = 3, with the assumed operating condition:
IB = 150A, TFW = 30N, SOCB = 80%, and SOCFW = 80%.

Table II: Key parameters.

Description Value
Ship length 190m
Ship breadth 28.4m
Draft 15.8m
Mass 20000ton
Added-mass 28755ton
Thrust deduction coefficient 0.2
Propeller diameter 5.6m
Wetted area 12297m2

Advance facing area in the air 675.2m2

Water resistance coefficients 0.0043
Air resistance coefficient 0.8
Wave period 12sec
Wave height 0.5m(SS2)/ 2m(SS4)/ 4m(SS6)
Wave length 40.29% ship length
Ship speed command 12.4 knot
Motor speed command 125 rpm

Table III: B/FW hybrid energy storage parameters.

Description Parameter Value
Battery ESR resistance RB 64mΩ

Flywheel maximum speed ωmax 36750rmp
Flywheel stator resistance Rs 6mΩ

Flywheel inertia JFW 0.6546kgm2

The control-oriented battery model is based on the equiv-
alent series resistance model, as discussed in Section II. The
simulation-oriented battery model uses the first-order equiva-
lent circuit model (an ohmic resistance with an RC pair). The
parameter identification results, as shown in Fig. ??, are used
to evaluate the performance of the proposed strategies.

B. Simulation Results of Case Studies

Three performance metrics over the 40 minutes of the self-
sustained operation period are defined in the following:

1) RMS tracking error:
√

J1/(NT Ts);
2) HESS losses: Loss% = J2

∑
NT Ts
k=t PFL(k)

×100%;

3) Loss difference: Lossdi f f % = Loss1−Loss2
Loss2

×100%.
The first two performance metrics are used for determin-

ing the Pareto fronts, and the third represents the HESS
losses difference between two approaches with the same RMS
tracking error; Loss1 and Loss2 represent the HESS losses
of the first and second approaches, respectively, and the
one with the larger losses is defined as the first approach.
The optimization problem (7) - (9) is solved by dynamic
programming to provide the global optimal solution, which
can be characterized in three phases: initial, steady, and final
operation, as shown in Fig. 2. In the initial phase, regardless
of the initial SOC, the flywheel SOC converges to the same
range, which is the high-efficiency range for the given load
fluctuations. The flywheel operates within this high-efficiency
range until it reaches the final phase. The behavior in the final
phase is similar to the short predictive horizon MPC without
SOC reference. As shown in Fig. 2, the optimal SOC reference
is around 55%.

The main results and key observations are summarized in
the following remarks:

Remark 4.1 (Reference SOC): As shown in Fig. 8, with
different initial SOCs (i.e., 80%, 55%, and 40%) and the
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Figure 8: SOC reference with different initial SOCs at sea state 4.

Table IV: Power and energy requirements at sea state 4.

Low Frequency High Frequency Total
Maximum Power 114kW 194kW 308kW
Energy Storage 121Wh 2.05Wh 123Wh

1 2 3 4 5 6 7 8 9 10
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Figure 9: Lookup output based on instantaneous power.

same γ , the convergence of the SOC reference represents
the effectiveness of each approach. The baseline approach,
namely “Mean Power”, has the largest difference from the
global optimal SOC (55%), as shown in Fig. 2. The reason is
that the average value of power fluctuation cannot represent
the fluctuation power condition. The average value could be
zero, even though the amplitude of the fluctuations is large.
The “Mean Speed” can capture all the instantaneous power of
load fluctuations. However, the flywheel dynamic is ignored,
resulting in large variations of SOC references (SOCre f (k),
SOCre f (k+Ts),...,SOCre f (k+NT Ts)), as shown in Fig. 9. The
average value of (SOCre f (k),SOCre f (k + T s), ...,SOCre f (k +
NT Ts)) still significantly differs from the optimal SOC ref-
erence. The proposed “RMS Power” approach has the best
performance among all three lookup-table based approaches,
because it represents the power load fluctuations. As shown in
Fig. 8, the SOC reference of “RMS Power” is around 49%.
The optimization-based approach achieves a reference SOC
of 51%, which is very close to the optimal SOC reference, as
shown in Fig. 2.

Remark 4.2 (Pareto fronts): Varying the weighting factor
λ allows us to put a different relative emphasis on each
attribute to investigate performance tradeoffs (i.e., the Pareto
front). The Pareto fronts provide insights into the tradeoff
between accurate tracking and efficient operation for different
approaches. Different initial SOCs of the flywheel are taken
into consideration at the nominal sea state (SS4). As shown
in Fig. 10, the optimization-based approach achieves the best
performance. The “RMS Power” approach also achieves very
impressive performance, and the results in Fig. 10 match
the analysis in Remark 4.1. At low sea state, i.e., SS2, the

difference between the optimization-base approach and the
“RMS Power” approach is smaller than that at SS4 or SS6. At
high sea state, i.e., SS6, the “Mean Power” has better perfor-
mance than “Mean Speed”. The reason is that the flywheel is
operating at its max power over a much longer time than that
at SS2 or SS4. When the flywheel is always working at its max
power, the mean value is close to the RMS value. According to
the performance metric Lossdi f f %, as compared to the baseline
approach using the “Mean Power”, the proposed optimization-
based approach can achieve an HESS loss reduction of 130%,
63.4%, and 58.6% at sea states 4, 2 and 6, respectively.
This comparison also shows the importance of flywheel SOC
planning.

Remark 4.3 (Optimization vs. lookup table): “RMS Power”
is the best lookup-table based approach, whose performance
is very close to the optimization-based approach. Compared to
“RMS Power”, the optimization-based approach can achieve
a 2% to 5% reduction in losses with the same tracking
error at nominal and high sea states. However, the computa-
tional cost of the optimization-based approach is much higher
than the lookup-table based approach. The computational
cost highly depends on the controller hardware, optimization
solver, predictive horizon, and initial value. Since the proposed
approaches focus on a short predictive horizon and the initial
value can be obtained by “RMS Power”, the controller hard-
ware and optimization solver are the major factors to decide
whether or not the optimization-based approach is possible. In
this study, Sequential Quadratic Programming (SQP) is used
to solve the optimization problem in the simulation. In general,
when the controller hardware capability is limited, the lookup-
table-based approach, namely “RMS Power”, is the preferred
solution, since it can achieve comparable performance with
low computational complexity. On the other hand, if the
controller hardware capability is sufficient, then the proposed
optimization-based approach is still the best solution.

The simulation results studied above are based on accurate
predictive load fluctuations. It is important to evaluate the
performance with uncertainties in the prediction. In general,
the predictive accuracy decreases as the predictive horizon
increases. In this paper, a short predictive horizon is used
to avoid significant errors in prediction. Random predictive
errors (up to 10% of the predictive load fluctuation) are added
into the future load prediction (PFL(t +Ts), ...,PFL(t +NT Ts))
at sea state 4. Since the instantaneous load fluctuation PFL(t) is
measurable, no error is added into this term. The Pareto fronts
of the proposed two strategies with and without predictive
uncertainties are shown in Fig. 11. The simulation results
show that the proposed algorithms are still effective even when
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Figure 10: Performance comparison: Pareto fronts of different approaches at sea states 4, 2 and 6.

including random predictive errors.
As discussed in Section II, the RC model, in general,

can capture the battery dynamics more accurate than the
ESR model, but the RC pair has only a slight influence on
the MPC performance in this application. In order to show
the differences between the RC model and ESR model, a
simulation study is performed. As shown in Fig. 12, the
performance of the more accurate model (R0+RC) is slightly
better than that of the simplified model (ESR) for the same
energy management strategy. The differences become even ig-
norable for the proposed approaches, compared to the baseline
approaches. Given the increased computational complexity of
the RC model, it is reasonable to use the ESR model in this
application. Furthermore, the proposed approaches with the
ESR model still outperform the baseline approaches with the
RC model, which demonstrates the importance of a proper
energy management strategy.

C. Hardware-in-the-loop Test

In order to evaluate the real-time feasibility of the pro-
posed MPC approach, a hardware-in-the-loop (HIL) test is
performed. As shown in Fig. 13, the Speedgoat control
system, which has an Intel Core i5-680 3.6GHz processor
with a 320GB SATA hard disk main drive and a 4096MB
DDR3 memory, is used in this HIL test. The proposed “RMS
Power” approach is tested by using the Integrated Perturbation
Analysis and Sequential Quadratic Programming (IPA-SQP)
algorithm. This solver estimates the optimal solution using
a combination of prediction and correction. In IPA-SQP, a
perturbation analysis approximates an optimal solution in the
prediction step, and the solution is corrected by SQP if the ap-
proximated solution is larger than the tolerance. The maximum
execution time of the “RMS Power” approach is 6.8722×10−5
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Figure 11: Pareto fronts of the proposed two strategies with
and without predictive uncertainties.

seconds, while the average execution time is 4.4876× 10−5

seconds. The task execution time represents the computational
time of the proposed algorithm at each sample step. Both the
maximum and average execution time are smaller than the
sample time (0.02 seconds), which demonstrates the real-time
feasibility of the proposed approach. The battery and flywheel
outputs in the HIL test are shown in Fig. 14. Note that the
Pareto fronts, which are calculated in offline simulations, aim
to provide insight into the tradeoffs between accurate tracking
and efficient operation. The HIL test herein is only one single
point in the Pareto front to evaluate the computational time.

V. CONCLUSIONS

In this paper, a battery with flywheel (B/FW) hybrid energy
storage system which compensates load fluctuations in ship-
board microgrids is investigated, leading to improved system
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Figure 12: Differences between the ESR model and the RC
model.

Figure 13: The real-time controller used in the HIL test.

efficiency and enhanced power reliability. The control strategy,
which integrates model predictive control (MPC) and flywheel
SOC reference planning, is developed to minimize the power
tracking error and HESS losses. In order to find the flywheel
SOC reference, both lookup-table-based and optimization-
based approaches are developed. Simulation results at different
sea conditions, namely sea states 2, 4 and 6, demonstrate
the effectiveness of the proposed approaches. The lookup-
table based approach, which uses the RMS value of power
fluctuations as the input of the lookup table, achieves compara-
ble performance to the optimization-based approach, but with
a substantial lower computational complexity. It is therefore
a preferred approach particular for applications with limited
computation resources. If the controller hardware capability
is sufficient, the proposed optimization-based approach is the
best option.
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Figure 14: Battery and Flywheel outputs in the HIL test.
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