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Hierarchical MPC for Robust Eco-Cooling of
Connected and Automated Vehicles and Its

Application to Electric Vehicle Battery
Thermal Management

Mohammad Reza Amini , Ilya Kolmanovsky , Fellow, IEEE, and Jing Sun , Fellow, IEEE

Abstract— Connected and autonomous vehicles (CAVs) have
situational awareness that can be exploited for optimal power and
thermal management. In this article, we develop a hierarchical
model predictive control (H-MPC) strategy for eco-cooling of
CAVs, which reduces energy consumption through real-time
prediction and multi-timescale and multi-layer optimization. The
application of the proposed H-MPC is studied for battery thermal
and energy management of an electric vehicle (EV). Our H-MPC
approach addresses the uncertainty in the long-term preview of
the vehicle speed through robust constraint handling to prevent
constraint violation. The simulation results show that compared
with a conventional battery thermal management (BTM) strategy,
the proposed robust H-MPC saves the battery energy by up
to 5.4% under the uncertainties in the long-term vehicle speed
predictions in an urban CAV operation scenario.

Index Terms— Connected and automated vehicles (CAVs),
hierarchical model predictive control (H-MPC), thermal
management.

NOMENCLATURE

Cnom Battery nominal capacity [Wh].
Cth,bat Battery heat capacity [J/kg · K].
Hs Scheduling layer prediction horizon [step].
Hp Piloting layer prediction horizon [step].
Ibat Battery current [A].
m Vehicle mass [kg].
mbat Battery mass [kg].
PBTM BTM [ower [W].
Ptrac Traction power [W].
Q̇ Battery cooling/heating flow rate [W].
Rbat Battery resistance [�].
SOC Battery state-of-charge [−].
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Tbat Battery pack temperature [◦C].
T Sampling time [s].
Ts Sampling time of the scheduling layer [s].
Tp Sampling time of the piloting layer [s].
Ubat Battery voltage [V].
Vveh Vehicle speed [m/s].
�, ξ , ο, and ζ Slack variables [◦C].

ACRONYMS

A/C Air conditioning.
BTM Battery thermal management.
CAV Connected and automated vehicle.
CT Constraint tightening.
HEV/EV Hybrid electric vehicle/electric vehicle.
H-MPC Hierarchical model predictive control.
S-MPC Single-layer model predictive control.
UDDS Urban dynamometer driving schedule.
V2I/V2V Vehicle-to-infrastructure/vehicle.

I. INTRODUCTION

CAVs equipped with advanced sensors for perception and
localization are expected to provide enhanced safety

and improved mobility [1], and there is a growing inter-
est in fuel/energy efficiency improvements possible with
CAVs [2], [3]. Most of the recent CAV-related studies, such
as on eco-driving and on platooning, has been focused on
reducing traction power-related losses (see [2], [3] and the
references therein). Relatively little has been reported, on the
other hand, on efficient thermal management (i.e., eco-driving)
of CAVs exploiting information accessible through V2V and
V2I communications [4], [5].

Thermal management of electrified vehicles, including
HEVs and pure EVs, is a significant factor in the overall
vehicle energy consumption optimization. For EVs with rel-
atively large battery packs, the need to cool the battery in
hot summer days takes a substantial amount of energy and
reduces the driving range [6], [7]. Moreover, since the power
for cooling the battery pack is delivered by the battery itself,
the operation of the BTM system directly interacts with other
power loads, such as the traction power, forming intricate
feedback loops. Therefore, optimization of BTM system is
essential for improving the overall vehicle energy efficiency.
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An overview of the literature on optimization of BTM
in EVs is provided in [8]. Pontryagin’s maximum principle
is used in [6] to optimize the battery thermal and energy
management dynamics. In [9], dynamic programming (DP)
is exploited to find the global optimal solution to the BTM
optimization problem. Bauer et al. [6] and Masoudi et al. [9]
have shown the benefits of using optimization in minimizing
the required cooling power to maintain the battery temperature
within the optimal operating range. However, their approaches
are predicated on the assumption that the whole driving cycle
is known a priori. Furthermore, despite the reported energy
savings, the dependencies of the BTM strategy on the driving
cycle, the coupling between the thermal and traction loads on
the battery, and the sensitivity of the BTM performance to
the accuracy of the future vehicle speed and the traffic event
predictions have not been fully evaluated.

There are several challenges in the development of a
real-time optimization strategy for BTM in electrified CAVs
that are associated with the following special characteristics:

1) Large Thermal Inertia: A long time horizon is required
for the optimization of the battery thermal response due
to the slow thermal dynamics, leading to an increase in
the computational footprint to an extent that can make
it infeasible for real-time implementation.

2) Coupling Between Traction and Thermal Loads: For
EVs, the electric battery is the only power source to
meet both traction and thermal management demands.
The maximum heat generation within the battery occurs
during high-acceleration and high-deceleration periods
when the traction power demand is high.

3) Sensitivity to Traffic Forecast Uncertainty: While
the vehicle speed profile can be accurately pre-
dicted using V2V/V2I information over a short time
horizon [10], [11], its accurate longer term prediction
is difficult.

To address the challenges in designing a real-time controller
for eco-cooling of connected EVs, a hierarchical two-layer
model predictive control (MPC) formulation for battery ther-
mal and energy management optimization is presented in
this article. The approach that we are taking is built upon
our preliminary work [12] and is inspired—in part—by the
recent literature on multilayer optimization and prediction for
systems with multiple timescales, including microgrids [13],
power flow [14], building energy management [15], and auto-
motive climate control [16] systems. The proposed H-MPC
cools the battery pack by keeping its temperature within a
prescribed range based on traffic conditions and vehicle power
demand. Assuming that traffic conditions can be predicted
either onboard of a CAV or by CAV supporting infrastruc-
ture, the proposed H-MPC exploits the timescale separa-
tion between the power and thermal responses to shift the
BTM load, thereby improving the overall vehicle energy effi-
ciency. Compared with [12], this article significantly expands
the baseline H-MPC by: 1) exploiting the concept of eco-
cooling enabled by thermal load shift; 2) investigating the
impact of extending the prediction horizon and long-term
vehicle speed prediction uncertainty on the BTM and vehicle
energy consumption, as well as the computational footprint

through extensive simulations; and 3) developing a new robust
H-MPC strategy.

The contribution of this article is fourfold. First,
the energy-saving potential of the MPC-based BTM sys-
tem in EVs is exploited by utilizing the vehicle speed pre-
view inferred from the traffic flow information over a long
prediction horizon. Second, a two-layer MPC framework
is developed to reduce the computation footprint and to
account for different timescales of prediction and control of
power and thermal systems. Third, the impact of accuracy
in vehicle speed prediction on BTM performance is explored
and quantified. Fourth, two CT algorithms are developed and
incorporated into the H-MPC to improve the robustness against
the demand preview uncertainty.

This article is organized as follows. In Section II,
control-oriented models for EV battery thermal and electrical
subsystems are presented. In Section III, a single-layer eco-
nomic MPC-based BTM strategy is developed, which serves as
the baseline MPC for performance evaluation of the proposed
H-MPC. The impact of prediction horizon length on the
BTM performance and the importance of thermal load shifting
for eco-cooling are also discussed in this section. Moreover,
the sensitivity of the MPC-based BTM to the uncertainty in
the future vehicle speed prediction is explored. In Section IV,
an H-MPC framework for BTM with vehicle speed prediction
incorporated over accurate, but short, and long, but uncertain
prediction horizons is proposed. CT approaches for robust
H-MPC are developed in Section V. Next, different aspects of
the baseline and robust H-MPC performances for BTM will be
discussed in detail in Section VI. Finally, concluding remarks
are presented in Section VII.

II. BATTERY THERMAL AND ELECTRICAL MODELS

To implement an MPC for BTM system, both electrical and
thermal characteristics of the battery have to be captured by
the prediction model. The thermal sub-model approximates the
battery pack as a lumped mass (mbat) with heat capacity Cth,bat

and has the form [6]

Ṫbat(t) = 1

mbatCth,bat

�
I 2
bat Rbat + Q̇ + Q̇a

�
(1)

where Tbat, Ibat, and Rbat are the battery temperature, current,
and internal resistance, respectively. The heat exchange with
ambient is denoted by Q̇a . Q̇ ≤ 0 is the heat flow rate
for cooling the battery, which is treated as the input to the
battery thermal model in this article. In practice, Q̇ is provided
through a combination of air- and liquid-cooling loops in
EVs [17]. The liquid cooling is provided by an electric A/C
compressor and a coolant loop. The air cooling regulates the
battery temperature by blowing the passenger compartment
air into the battery pack using a fixed or a variable-speed fan.
Since the compartment air is cooled by the A/C compressor,
the battery air cooling loop is also coupled to the A/C system.
The schematic of BTM system in an EV with air- and
liquid-cooling loops is shown in Fig. 1.

The electric system sub-model of the battery includes the
battery voltage (Ubat), which can be expressed as a function
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Fig. 1. Schematic of the BTM system in an EV with A/C refrigerant and air-
and liquid-cooling loops. The generated heat within the battery, depending on
its rate, is rejected (Q̇) through a combination of air- and liquid-coolant loops.

of the open-circuit voltage (Uoc), internal resistance Rbat, and
current drawn Ibat, as follows:

Ubat = Uoc − Ibat Rbat. (2)

In (2), Uoc and Rbat are functions of the battery state-of-charge
(SOC) and Tbat. The battery current can be written as a
function of the total demanded power as follows:

Ibat = (Ptrac + PBTM)/Ubat (3)

where Ptrac is the demanded traction power and PBTM is the
power required to provide Q̇ for the BTM system. Equation (3)
assumes that Ptrac and PBTM are the main power loads on the
battery, and other auxiliary loads on the battery are neglected.
By substituting Ubat into (2) by (Ptrac+PBTM)/Ibat based on (3),
Ibat can be rewritten as

Ibat(t) = Uoc − �
U 2

oc − 4Rbat(Ptrac + PBTM)

2Rbat
. (4)

Using (4), (1) becomes

Ṫbat(t) =

�
Uoc−

√
U2

oc−4Rbat Ptrac+PBTM

�2

4Rbat
+ Q̇ + Q̇a

mbatCth,bat
. (5)

Moreover, the evolution of SOC is governed by

˙SOC(t) = − Ibat

Cnom
(6)

where Cnom is the nominal capacity of the battery. The
demanded traction power can be estimated as [6]

Ptrac =
⎧⎨
⎩

Vveh
�
Fr + Fa + mV̇veh

�
η

, propelling

Vveh
�
Fr + Fa + mV̇veh

�
η, braking

(7)

where Vveh and m are the vehicle speed and mass, η = η(τ, ω)
is the traction system efficiency, which is a function of the
torque (τ ) and the rotation speed (ω) of the electric motor,
and it is calculated by using a lookup table, and Fr and Fa are

rolling and aerodynamic resistances, respectively, calculated as
follows:

Fr = Cr mg (8)

Fa = 0.5ρ A f Cd V 2
veh. (9)

In (8) and (9), Cr and Cd are the rolling resistance and
aerodynamic drag coefficients, A f is the vehicle frontal area,
and ρ is the air density. In this article, we assume that all
the brakings can be accommodated through electric brakes;
thus, we have not considered the friction braking in the
vehicle dynamic model (7). Note that the regenerative braking,
unlike the friction braking, directly affects the battery thermal
response during the battery charging. In the absence of the
friction braking, the vehicle model considered in this article
represents the maximum thermal load on the battery due to
regenerative braking. This assumption is consistent with the
practice, where the use of friction brakes is minimized to
improve energy efficiency and reduce wear.

The BTM cooling power PBTM is modeled as a linear
function of the rejected heat flow rate Q̇ from battery [6]

PBTM
�
Q̇

� = ac Q̇, Q̇ ≤ 0, ac < 0 (10)

where ac is a constant. We assume that the maximum PBTM

is limited at 1.5 kW, which is associated with the maximum
heat rejection rate (Q̇max) of 500 W, i.e., ac = 3. This value
of ac is selected based on the SAE J3073 standard [18]. The
parameters of the battery and vehicle longitudinal dynamics
are adopted from the Autonomie [19] software library for
an EV. A virtual testbed to carry out simulations has been
implemented based on the high-fidelity thermal and electrical
models of the battery, along with Rbat, Uoc, and η lookup tables
extracted from Autonomie.

Remark 1: As we are optimizing the BTM system oper-
ation at the system level, the details of the underlying
electric/fluid/thermal systems and their controllers (shown
in Fig. 1) are not considered. The delivery of Q̇ is per-
formed by lower level controllers with multiple actuators
(e.g., compressor, fan, and pump). Similarly, while the elec-
tric/fluid/thermal hysteresis is an important characteristic for
the open-loop controller dynamics, at the system level, it is
assumed that this hysteresis is compensated by the components
controllers. This approach is consistent with the number of
other studies (see [6], [9]).

Remark 2: While the linear relationship considered in (10)
may be oversimplifying the underlying thermal loops, it is
adequate for the purpose of demonstrating approaches to
optimizing the thermal load of BTM system (Q̇).

III. S-MPC

In this section, an economic S-MPC is developed to min-
imize the required battery cooling power and maintain the
battery temperature within the desired operating range. This
approach differs from the traditional BTM that attempts to
maintain the battery temperature at a specified level, without
considering the traffic information.

In order to formulate the S-MPC, first, the thermal and
electric models [see (6) and (5)] are discretized by applying
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the Euler forward method to obtain

SOC(k + 1) = fSOC(k) = SOC(k)

− T



Uoc(k) − �

U 2
oc(k) − 4Rbat(k)(Ptrac(k) + PBTM(k))

2Cnom Rbat(k)

�

(11)

Tbat(k + 1) = fTbat (k) = Tbat(k)

+ T

⎛
⎜⎝

(Uoc(k)−
√

U2
oc(k)−4Rbat(k)Ptrac(k)+PBTM(k))2

4Rbat(k)
+ Q̇(k) + Q̇a

mbatCth,bat

⎞
⎟⎠

(12)

where T is the sampling period between the control updates.
Over the prediction horizon of the MPC-based BTM controller,
we assume a constant Q̇a at the constant ambient temperature
of Ta = 30 ◦C. Q̇a is updated based on the feedback from
the high-fidelity model at next time step. Our S-MPC uses
an economical cost function that is defined over a finite-time
horizon (N) and is minimized with respect to Q̇ sequences

min
Q̇(·|k),ο (·|k)

N�
i=0

PBTM(i |k)+γ1ο(i |k)

s.t. Tbat(i + 1|k) = fTbat (i |k), i = 0 :N
SOC(i + 1|k) = fSOC(i |k), i = 0 :N
T LL

bat ≤ Tbat(i |k) ≤ T UL
bat +ο(i |k), i = 0 :N

0.3 ≤ SOC(i |k) ≤ 0.9, i = 0 :N
− Q̇max ≤ Q̇(i |k) ≤ 0, i = 0 :N − 1

0 ≤ ο(i |k), i = 0 :N − 1

Tbat(0|k) = Tbat(k), SOC(0|k) = SOC(k) (13)

where (i |k) designates the prediction for the time instant
k + i T made at the time instant k. In (13), T UL

bat and T LL
bat are the

upper and lower limits of the battery operating temperature,
which are set to 40 ◦C and 20 ◦C [20], respectively. Since
the battery temperature upper limit T UL

bat is often considered
to be a soft constraint [6], [20], temporary violations of
this constraints are allowed by introducing slack optimization
variable ο in the MPC stage cost and Tbat constraint. The
weighting factor for the slack variable in the state cost is
constant (γ1 = 107). If the battery temperature remains above
this limit for a prolonged period of time, however, it could
be detrimental to the battery state-of-health [7]. Note that
Q̇ is always nonpositive for battery cooling scenario. In this
article, simulations and the analysis of simulation results are
done for zero-grade road. The optimization problem is solved
at every time step, and then, the horizon is shifted by one
step (T ); only the current control is commanded to the system
(Q̇(k) = Q̇(0|k)). The closed-loop simulations with S-MPC
controller are carried out on a desktop computer, with an
Intel Core i7 at 2.60 GHz processor, in MATLAB/SIMULINK
using YALMIP [21] for formulating the optimization problem
and Interior Point OPTimizer (IPOPT) [22] for solving the
optimization problem numerically.

Remark 3: Due to the nonlinearity in the battery SOC ( fSOC)
and Tbat ( fTbat ) models, the optimization problems considered
and solved in this article [e.g., (13)] are nonconvex. We note

Fig. 2. Time histories of the battery temperature with the S-MPC for
different prediction horizons and with the rule-based controller for BTM for
Tbat(0) = 35 ◦C (top) and Tbat(0) = 39 ◦C (bottom) over the UDDS (T = 1 s).

that there are effective techniques that can be leveraged to
facilitate the nonlinear optimization by using convex approxi-
mation of the battery system [23], [24], considering them falls
outside the scope of this article.

A. Impact of Prediction Horizon on the S-MPC Performance

Fig. 2 illustrates the sensitivity of the S-MPC (13) to the
prediction horizon length for initial battery temperatures of
Tbat(0) = 35 ◦C (top) and 39 ◦C (bottom). The initial value
for the battery SOC is set to SOC(0) = 0.85 (85%) for all the
simulated cases. The simulated driving cycle is the first 600 s
of the Environmental Protection Agency (EPA) UDDS, which
includes both city and highway (with high traction power
demand) driving scenarios with multiple stops. It is assumed
that the vehicle velocity over the whole driving cycle is known
a priori to the S-MPC; this assumption will be relaxed in
Section III-C.

In addition to MPC-based BTM results, Fig. 2 shows the
results of implementing a rule-based controller for BTM as the
benchmark case. This rule-based controller has a simple logic
which tries to maintain the battery temperature at a constant
set-point (T s.p.

bat ) regardless of the vehicle speed and traction
power demand preview. The command of the rule-based BTM
controller is calculated as follows:

Q̇ =
�

−Q̇max, if Tbat > T s.p.
bat

0, if Tbat ≤ T s.p.
bat .

(14)

For the rule-based controller, the conventional approach to
reduce the battery temperature limit violations is to set the set-
point (T s.p.

bat ) in the middle of the optimal temperature range
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of the battery operation. Since the battery temperature can
change rapidly during aggressive vehicle accelerations and
the BTM has limited bandwidth to respond, the set-point
T s.p.

bat is usually selected well below the upper limit of the
optimum operation range. For instance, in the simulations of
the rule-based controller, T s.p.

bat = 35 ◦C is used. As will be
shown later, this conservative rule-based approach may lead
to considerable extra energy consumed for battery cooling.

As can be observed from Fig. 2, increasing the prediction
horizon N from 30 (30 s) to 180 (180 s) leads to a signif-
icant change in the battery temperature behavior. When the
prediction horizon is relatively short (60 or less), S-MPC min-
imizes the BTM power consumption within the short window;
consequently, it leads the battery temperature to the upper
temperature limit (T UL

bat ). When the vehicle enters the highway
segment part of the trip around t = 180 s, the demanded
traction power rises suddenly, and, as a result, S-MPC is not
able to maintain the battery temperature below the specified
limit of 40 ◦C. Note that for N = 30, the controller does not
have enough lead time to take mitigating actions to prevent
constraint violation caused by sudden increase in the traction
power, and the battery temperature can rise to almost 46 ◦C for
the initial battery temperature equal to 39 ◦C. It is also noted
that for Tbat(0) = 39 ◦C and N = 30, the battery temperature
remains above the upper limit for a prolonged period of time,
including after the highway driving segment is over, which,
as discussed earlier, is not preferred.

Frequent violation of T UL
bat is the price paid for allowing

the battery temperature to operate near its limit to minimize
the BTM power consumption with a relatively short prediction
horizon. On the other hand, Fig. 2 shows that as the prediction
horizon N is being extended, S-MPC takes proactive actions to
reduce the temperature before the vehicle enters the highway
segment and the heating load increases, therefore significantly
reducing the time for the battery to stay in overtemperature
condition. When Tbat(0) = 35 ◦C, by increasing the prediction
horizon from 30 to 180, S-MPC decreases Tbat from the
beginning, which eventually results in zero constraint viola-
tion. A similar behavior is observed for Tbat(0) = 39 ◦C
with different prediction horizons. With Tbat(0) = 39 ◦C,
battery temperature constraint violation cannot be avoided
due to higher initial battery temperature and limited capacity
of the BTM system. It should be noted that depending on
the battery sizing and configuration, the vehicle dynamics,
and the BTM system structure, the rate of the change in
the battery temperature could vary. Despite these variations,
the observation from Fig. 2 is generalizable in the sense that
there are benefits of extending the prediction horizon and
incorporating more information from the “predicted future” to
enhance the battery temperature constraint enforcement using
an economic MPC formulation [e.g., S-MPC (13)].

As illustrated in Fig. 2, depending on the prediction/preview
horizon, S-MPC results in either.

1) BTM with “Post-Cooling” if the horizon is short.
2) BTM with “Pre-Cooling” if the horizon is longer.

The “post-cooling” is essentially a reactive strategy that
cools the battery after the generated heat within the battery

Fig. 3. Impact of the prediction horizon for S-MPC. (a) BTM energy con-
sumption. (b) BTM energy consumption compared with rule-based controller.
(c) Overall battery energy consumption for Tbat(0) = 35 ◦C and T = 1 s.

drives the temperature to/above the upper operating limit
T UL

bat . As shown in Fig. 2, the “post-cooling” approach is
not able to prevent the temperature constraint violations and,
as shown in Figs. 3 and 4, does not lead to smallest BTM
power consumption even though it operates the battery near its
upper temperature limit and with lowest energy consumption
before the acceleration event. By comparing the closed-loop
responses with S-MPC for N = 30 and S-MPC for N = 180,
it can be observed that the longer horizon S-MPC pre-cools the
battery when the traction load is not considerable (i.e., before
t = 180 s), and then, it reduces the BTM energy consumption
rate after t = 180 s when the demanded traction power on the
battery is higher. Since the generated heat within the battery is
higher when power draw from the battery is higher, reducing
cooling load when the traction load is higher translates into
overall reduced energy consumption. Note that the S-MPC
with long horizon precools the battery temperature within
the optimum temperature range (e.g., 20 ◦C–40 ◦C), where
the variations of Rbat and Uoc, as a function of Tbat, are not
considerable [25].

Compared with the rule-based controller (14), Fig. 3 shows
the benefits of the economic S-MPC in saving the energy
consumed for cooling the battery. The percentage of the battery
energy consumption in Fig. 3(c) is calculated with respect to
the change in the battery SOC at the end of the driving cycle
(SOC(k f )) compared with the initial state of charge (SOC(0))

Battery Energy Consumption= SOC(0) − SOC
�
k f

�
SOC(0)

×100.

(15)

Depending on the prediction horizon length, S-MPC reduces
the energy consumed for BTM [see Fig. 3(b)] and the overall
battery energy consumption [see Fig. 3(c)] by 23%–27.0%
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Fig. 4. Impact of the prediction horizon for S-MPC. (a) BTM energy
consumption compared with a rule-based controller. (b) Overall battery energy
consumption for Tbat(0) = 39 ◦C and T = 1 s.

and 5%–6.8%, respectfully, compared with the rule-based
controller. It can be seen that by increasing N from 30 to 180,
first, the total energy consumed for BTM slightly increases,
and then, as N increases, it decreases. For the overall battery
energy consumption, Fig. 3(c) shows the drop in the consumed
energy as the prediction horizon is extended. At N = 180,
S-MPC improves the overall battery energy consumption by
6.8% compared with the rule-based controller. Note that
despite the impact of the BTM system on vehicle energy
consumption, any changes in BTM power consumption do not
necessarily translate linearly to the power consumption at the
vehicle level. As an example, Fig. 3(b) and (c) show that when
N is increased from 30 to 60, the BTM energy consumption
slightly increases, while the overall battery energy consump-
tion decreases. This observation is investigated in detail in
Section III-B.

Similar BTM performance improvements are observed for
Tbat(0) = 39 ◦C, as shown in Fig. 4. The economic S-MPC
reduces the energy consumed for BTM by 17%–19.2% com-
pared with the rule-based controller. This reduction in the
BTM energy consumption leads to 4.3%–5.3% decrease in
the overall battery energy consumption, depending on N .
The extensive simulation results showed that extending N
to beyond 180 has no significant impact on the BTM
performance.

B. Battery Eco-Cooling Enabled by Thermal Load Shift

While the results shown in Figs. 3 and 4 are for UDDS
driving cycle, similar battery energy consumption reduction
benefits of the battery pre-cooling strategy are expected for
other urban driving cycles that consist of city driving segments
with moderate speeds and frequent stops and of highway
driving segments with higher speeds. For such urban driving
cycles, when the prediction horizon N becomes sufficiently
large, the S-MPC pre-cools the battery and shifts the BTM
power demand from the highway driving segment to the
city driving part where the traction power demand is gen-
erally lower. The concept of thermal load shift is illustrated
in Fig. 5. Note also that the optimization over the longer
horizon reduces the propensity to the battery constraint vio-
lation. The energy-efficient BTM achieved via pre-cooling
and long-horizon optimization by incorporating the traffic

preview information is referred to as “eco-cooling” in the
remainder of this article. Fig. 6 summarizes and illustrates the
battery cooling concept as a function of the prediction horizon
length with BTM energy consumption and battery temperature
constraint violations being the performance indices.

Remark 4: While, in this article, we only consider UDDS
driving cycle to illustrate MPC-based solution for BTM in
EVs, we have investigated the MPC-based power and thermal
management (PTM) of CAVs (e.g., climate control, engine,
and after treatment cooptimization) over different urban
driving cycles in our previous works, including New York City
Cycle [12], New European Driving Cycle [26], and real-world
city driving cycles in Ann Arbor, MI, USA [5]. Despite
the special characteristics of each of these PTM problems
(i.e., constraints, sensitivity to the length of the prediction
horizon, and speed prediction uncertainty), our studies have
confirmed the benefits of incorporating traffic preview to
achieve efficient PTM.

C. Sensitivity of S-MPC to Accuracy of the Speed Preview

It was shown in Section III-A that the information about
future driving conditions, in particular, the vehicle speed
profile over a long horizon, can facilitate the design of an
energy-efficient BTM system. However, there are two imped-
iments to the implementation of S-MPC over a long horizon.

1) The accuracy of the vehicle speed preview over a longer
horizon cannot be guaranteed.

2) It is computationally demanding.
While the vehicle speed profile can be accurately estimated

using traffic and infrastructure information (V2I/V2X) over
a short horizon [11], [27], its prediction over an extended
horizon may be inaccurate, and this can degrade MPC/BTM
performance.

We note that long-term forecasts of future vehicle speed
needed by our control algorithms can be informed by the
average traffic flow velocity (Vflow) following the approach
proposed in [27]. In [27], the traffic flow data are extracted
from a traffic monitoring system described in [28] based on
GPS-enabled smartphones. This system exploits the extensive
coverage of the cellular network, GPS-based position and
velocity measurements, and the communication infrastructure
of cellphones. Here, the traffic flow speed is calculated accord-
ing to the moving average of the recorded speed trajectories
of 100 vehicles traveling following the same route as the
ego-vehicle (driving with the actual driving cycle speed) over
a moving time window of 180 s. To this end, first, we make
several assumptions. Specifically, we assume that before the
start of the ego-vehicle trip with a known route, the historic
data of another 100 vehicles traveling on the same route are
available. These historic data, while different than that of
the ego-vehicle, are representative of the traffic pattern. It is
assumed all the vehicles stay on the same route (i.e., they
enter the corridor at the same point in space, as well as
exiting the corridor at the same point—but different than the
entrance point. Note that the exiting time (total travel time)
could be different as these vehicles travel at different speeds).
Furthermore, we assume no vehicle, including the ego-vehicle,
is driving outside of normal speed limits. These assumptions
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Fig. 5. Concept of thermal load shift for energy-efficient battery cooling.

Fig. 6. Conceptual schematic of the BTM performance and energy con-
sumption sensitivity to prediction horizon length, and associated prediction
accuracy and computational complexity tradeoffs for a generic urban cycle.

are made to simplify the exposition. Next, these historic data
are used to calculate a moving average that is considered as
the long-term preview for the ego-vehicle.

With the above-mentioned approach, it is possible to build
a dynamic map of average traffic velocity over a long horizon.
The traffic flow data are assumed to be collected, analyzed,
and updated by a central/cloud server in real-time, and they
are available to the vehicle control system at no extra compu-
tational cost. Fig. 7 illustrates the concept of the average traffic
flow speed trajectory (gray band) and compares it against the
actual speed profile (blue line).

In order to assess the robustness of S-MPC in (13) to
vehicle speed preview uncertainty, three cases are considered.

1) Case I: The preview of vehicle speed over the prediction
horizon is exact and updated, along with the control
action, at the nominal sampling period of T = 1 s.

2) Case II: The preview of vehicle speed over the predic-
tion horizon is exact and updated, along with the control
action, at the slower sampling period of T = 5 s.

3) Case III: The preview of vehicle speed over the predic-
tion horizon is not accurate and is based on the average
traffic flow speed (see Fig. 7); this and the control
action are updated at the nominal sampling period of
T = 1 s.

Fig. 7. Concept of average traffic flow speed estimate versus the actual speed
over a driving cycle.

These three cases have been simulated for different prediction
horizons, and the results are summarized in Fig. 8 in terms
of battery energy consumption [see Fig. 8(a)], average com-
putation time per iteration and execution [see Fig. 8(b)], and
battery temperature constraint violation [see Fig. 8(c)].

The battery energy consumption results from Fig. 3(c) at
Tbat(0) = 35 ◦C are repeated in Fig. 8(a) as Case I. With the
exact vehicle speed preview, when the update rate is increased
from T = 1 to 5 s (Case II), Fig. 8(a) shows that the
battery energy consumption increases for N = 120 s (24 with
T = 5 s) and 180 s (36 with T = 5 s). It can be seen that,
as expected, increasing the prediction horizon leads to a reduc-
tion in the battery energy consumption for Case II. Compared
with the first two cases, Case III exhibits the highest energy
consumptions. Moreover, unlike Cases I and II, Case III does
not show a monotonic decrease—mainly because the results
are affected by the uncertainty in the vehicle speed preview—
in the battery energy consumption as the prediction horizon
increases; however, the minimum battery energy consumption
is observed again at N = 180.

For the first and third cases with T = 1 s, Fig. 8(b) shows
that the average computation time per time step of the S-MPC
increases significantly as the prediction horizon becomes
longer. The S-MPC with a long horizon (e.g., N > 120) is
computationally expensive with average computation time
exceeding the sampling time T = 1 s. This indicates that the
real-time implementation of the S-MPC over a long prediction
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Fig. 8. Sensitivity of S-MPC performance to vehicle speed preview accuracy and sampling rate for different prediction horizons and Tbat(0) = 35 ◦C.
(a) Battery energy consumption. (b) Average computation time per iteration. (c) Battery temperature constraint violations.

horizon will require significant algorithmic and computational
simplifications. On the other hand, with T = 5 s (Case II),
the average computation time of S-MPC is much lower.

Fig. 8(c) compares the violation of the battery temperature
limit T UL

bat in terms of the time period during which the
battery temperature has stayed over T UL

bat . While increasing
the prediction horizon decreases battery temperature constraint
violation in all three cases, it can be seen that when the
sampling time is increased to 5 s (Case II), the battery
temperature constraint violation increases. Furthermore, when
S-MPC is implemented with the forecast vehicle speed and not
the exact vehicle speed and with T = 1 s (Case III), Fig. 8(c)
shows that battery temperature constraint violations increase
for all choices of the prediction horizon.

Remark 5: Fig. 8(c) shows the time period during which
the battery temperature exceeds the constraint, reflecting the
performance of the MPC-based BTM in enforcing the battery
temperature constraint. To measure this violation intensity,
which is of importance, the normalized constraint violation
intensity (NCVI) index defined as follows is introduced:

NCVI =

� t f

t0

fNCVI(t)dt

t f − t0
(16)

where t0 and t f denote the initial and end times of the trip,
respectively. The function fNCVI is defined as

fNCVI(t) =
�

0, if Tbat ≤ T UL
bat

Tbat − T UL
bat , if Tbat > T UL

bat

. (17)

For Case I shown in Fig. 8, the NCVI index is shown in Fig. 9.
By comparing the trend in Fig. 9 with that of Fig. 8(c), one
can see that the intensity of the battery temperature constraint
violation has a direct relationship with the period of the
violation. When the MPC has a shorter lead time (prediction
horizon), the intensity of the constraint violation is larger as
it takes a longer time to recover while the traction power and
BTM power consumption are both at their peaks.

In conclusion, the benefits of S-MPC with a long predic-
tion horizon for BTM are sensitive to the accuracy and the
update rate of the vehicle speed preview. Fig. 6 highlights the
complexity and challenges of implementing S-MPC over long
horizons as well. Besides the BTM energy consumption and

Fig. 9. NCVI index for Case I in Fig. 8.

Tbat constraint violations indices, as shown in Fig. 6, the com-
putation time and vehicle speed preview accuracy affect the
design and implementation of S-MPC. Based on the results
in Fig. 8, the S-MPC with long prediction horizon cannot
address all the BTM design challenges and requirements,
mainly due to its lack of robustness against the uncertainty in
the vehicle speed preview and high computational demands.

IV. H-MPC

In order to leverage the energy-saving potential of the
long-horizon vehicle speed forecasts and reduce the computa-
tion time of the S-MPC, we propose an H-MPC with schedul-
ing and piloting layers, as shown in Fig. 10. The scheduling
layer has a relatively long horizon (Hs) and a large sampling
period Ts . The piloting layer has a short prediction horizon Hp

with a sampling period Tp < Ts , which is an integer fraction
of Ts . In this article, we assume that the vehicle speed can
be accurately forecast over the short horizon Hp. Over the
long horizon Hs and beyond Hp horizon, the vehicle speed
prediction is based on the average traffic flow data that are
updated every Ts s as the traffic flow changes downstream.

A. Scheduling Layer MPC With a Long Horizon

The scheduling layer MPC is based on the following opti-
mization problem formulation:

min
Q̇(·|ks ),ζ (·|ks )

Hs�
i=0

PBTM(i |ks) + γ2ζ (i |ks)

s.t. Tbat(i + 1|ks) = fTbat,s(i |ks), i = 0 :Hs

SOC(i + 1|ks) = fSOC,s(i |ks), i = 0 :Hs
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Fig. 10. Schematic of the H-MPC for eco-cooling of CAVs.

T LL
bat ≤ Tbat(i |ks) ≤ T UL

bat + ζ (i |ks), i = 0 :Hs

0.3 ≤ SOC(i |ks) ≤ 0.9, i = 0 :Hs

− Q̇max ≤ Q̇(i |ks) ≤ 0, i = 0 :Hs − 1

0 ≤ ζ (i |ks), i = 0 :Hs − 1

Tbat(0|ks) = Tbat(ks), SOC(0|ks) = SOC(ks). (18)

The scheduling layer MPC optimizes Q̇ over the long hori-
zon Hs , and the solution (Q̇∗) is used to determine the
desired trajectories of the battery temperature (T ∗

bat) and the
state-of-charge (SOC∗) for the piloting layer. The sequence
of control input Q̇∗ is updated every Ts s and is indexed
by ks . In addition, fTbat,s and fSOC,s are the discretized non-
linear dynamics of SOC and Tbat calculated according to (11)
and (12) with larger sampling time of Ts . This results in a
reduced computational load, as shown in Fig 8(b). Note that
the structure of the scheduling layer MPC is similar to the
S-MPC in (13) but with a slower sampling rate. Similar to
the S-MPC, an slack optimization variable (ζ ) is introduced
to soften T UL

bat with constant γ2 = 107 in the stage cost.

B. Piloting Layer MPC With a Short Horizon

The planned trajectories, T ∗
bat and SOC∗, computed by the

scheduling layer are passed on to the piloting layer, where
these values are used by a short-horizon MPC for tracking.
Within each update interval of the scheduling layer MPC,
the output of the short-horizon MPC is updated Ts/Tp times.
The “block” of the scheduled values that need to be passed on
to the piloting layer depends on the piloting layer prediction
horizon (Hp). Following a similar approach to [15] for trans-
mitting the planned states from the scheduling layer controller
to the lower layer piloting controller, the scheduled T ∗

bat and
SOC∗ are passed on as piecewise constant functions: T ∗

bat(t|k)
and SOC∗(t|k), where the integer k denotes the time step of
the piloting layer with a faster update rate. Fig. 10 shows the
communication process between the two layers of the H-MPC.

The short-horizon MPC of the piloting layer for tracking the
scheduled T ∗

bat and SOC∗ references is based on the solution

of the following optimization problem:

min
Q̇(·|k)

Hp�
j=0

���
Tbat( j |k) − T ∗

bat( j |k)
�2

+ w1
�
SOC( j |k) − SOC∗( j |k)

�2
�

s.t. Tbat( j + 1|k) = fTbat ( j |k), j = 0 :Hp

SOC( j + 1|k) = fSOC( j |k), j = 0 :Hp

− Q̇max ≤ Q̇( j |k) ≤ 0, j = 0 :Hp − 1

Tbat(0|k) = Tbat(k), SOC(0|k) = SOC(k) (19)

where w1 = 0.2 is a constant weighting factor. When
performing optimization in the piloting layer, we assume
that an accurate preview of vehicle speed and the demanded
traction power are available over the short horizon. Moreover,
the constraints on the battery temperature and SOC are not
considered, as the scheduling layer MPC enforces these con-
straints over a long horizon. Not including these constraints
reduces the computation time of the piloting layer optimization
problem and avoids the infeasibility of the short-horizon MPC,
as the scheduled trajectories based on the average traffic
speed may be infeasible at the piloting layer where the actual
driving speed is incorporated. For the EV BTM case study,
we consider Ts = 5 s and Tp = 1 s.

Fig. 11 compares the battery energy consumption and the
temperature constraint violation of the H-MPC with Hs =
36 (180 s) and Hp = 30 (30 s) and of the S-MPC from
Section III with N = 180 (180 s) for different values of
sampling rate and vehicle speed preview accuracy. With the
same forecast vehicle speed used for the S-MPC and H-MPC,
and with the same sampling time (Ts = T = 5 s), H-MPC
results in less frequent constraint violation (by 55%), while its
energy consumption is slightly higher (0.4%) than the S-MPC.

The reduced battery temperature constraint violations with
the H-MPC compared with the S-MPC can be explained
in reference to the BTM operation in adjusting the battery
temperature, as shown in Figs. 12 and 13. Fig. 12 shows
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Fig. 11. Performance of the baseline H-MPC compared with S-MPC with
a different vehicle speed preview information accuracy. (a) Battery energy
consumption. (b) Battery temperature constraint violation. The prediction
horizon of the S-MPC is N = 180, while the prediction horizons of the
H-MPC are Hs = 36 (180 s) in the scheduling layer, and 30 (30 s) in the
piloting layer. Tbat(0) = 35 ◦C.

Fig. 12. Planned (predicted) and actual battery temperatures based on the
estimated long-horizon forecast vehicle speed. (a) H-MPC with Hs = 36,
Hp = 30, Ts = 5 s, and Tp = 1 s. (b) S-MPC with N = 36 and T = 5 s.
For both cases, Tbat(0) = 35 ◦C.

Fig. 13. Time histories of the control input (PBTM = ac Q̇) with the S-MPC
and H-MPC at scheduling and piloting layers. (a) S-MPC with N = 36 and
T = 5 s. (b) H-MPC with Hs = 36, Hp = 30, Ts = 5 s, and Tp = 1 s. For
both cases, Tbat(0) = 35 ◦C.

that the “block” of planned temperature trajectories (shown
in red) to be tracked by the piloting layer MPC over the short
horizon satisfies the temperature constraint. Moreover, since
the piloting layer MPC tracks these trajectories, the actual

battery temperature (shown in dark blue) will remain close
to the block of scheduled T ∗

bat. The error in tracking the
scheduled trajectories by the piloting layer MPC is mainly
due to the mismatch between the long-term forecast vehicle
speed and the actual vehicle speed, which makes the ideal
tracking of the planned trajectories infeasible for the piloting
layer controller. On the other hand, when the S-MPC calculates
and applies the optimal Q̇∗, the actual Tbat (shown in dotted
black) is different than the predicted one, where the latter is
calculated according to the model ( fTbat ) used in S-MPC after
finding the optimal control action. The S-MPC mechanism
to compensate this deviation is to further reduce the planned
battery temperature in the next time steps so that the actual
temperature also decreases. However, Fig. 12 shows that once
the actual battery temperature rises, decreasing the planned
thermal trajectory cannot avoid the constraint violation, as the
slow thermal dynamics requires cooling actions in advance to
avoid violation of T UL

bat .
The H-MPC adjusts the control commands at the piloting

layer [see Fig. 13(b)] by tracking the planned trajectory,
while it has access to more accurate vehicle speed prediction
over the short horizon. Thus, thanks to the piloting layer of
H-MPC for enforcing the tracking of the planned trajectories
and utilizing the short horizon accurate speed prediction,
the sensitivity of the battery thermal response to vehicle speed
forecast uncertainty over the long horizon is reduced. Note that
the first element of the computed optimal control sequence of
S-MPC (P∗

BTM(k)) and H-MPC at the scheduling (P∗
BTM(ks))

and piloting (P∗
BTM(k)) layers are plotted in Fig. 13.

Furthermore, the H-MPC framework can be extended
by additional algorithms to monitor the deviation in the
planned and actual battery temperature trajectories between
the scheduling and piloting layers, primarily caused by the
uncertainty in the long-term vehicle speed prediction. Upon
the detection of these deviations in the BTM performance,
the constraint sets in the scheduling layer can be tightened for
reducing the likelihood of battery temperature constraint vio-
lation. This mitigating strategy will be discussed in Section V.

V. ROBUST H-MPC FOR ECO-COOLING

In this section, first, a “passive” CT algorithm is proposed
and added to the structure of the H-MPC at the scheduling
layer to tighten the battery temperature constraint after the
violation of the constraint is detected. Second, a novel “proac-
tive” CT algorithm is developed, which, unlike the passive
CT approach, proactively determines the constraint violation
over the short prediction horizon of the piloting layer MPC.
In this approach, the piloting-layer MPC shares the constraint
violation predictions with the scheduling layer MPC, and
the scheduling layer MPC tightens the constraint before the
violation occurs. The passive- and proactive-CT algorithms
are operating according to internal feedback from the piloting
layer MPC to the scheduling layer MPC. This feedback is
highlighted in Fig. 10 as the robustness feedback.

A. Robust H-MPC With Passive CT

A “passive” CT (passive-CT) algorithm is added to the
structure of the H-MPC to reduce the battery temperature
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limit violation. The passive-CT algorithm takes into account
the violation of the battery temperature limits after it occurs,
and it monitors the difference between Tbat and T UL

bat . The
addition of the passive-CT algorithm introduces an extra slack
optimization variable �, which modifies the upper temperature
bound at the scheduling layer to reduce temperature limit
violations at the piloting layer. For this purpose, the scheduling
layer cost function in (18) is modified as follows:

min
Q̇(i|ks ),�(i|ks )

Hs�
i=0

PBTM(i |ks)+γ
�
δ
�
Tbat, T UL

bat

�−�(i |ks)
�2

(20)

where γ is a weighting factor to adjust the controller effort
for tightening T UL

bat . The scheduling layer MPC is subject to
all the constraints listed in (18), except the one on Tbat(i |ks),
which is modified to

Tbat(i |ks) ≤ T UL
bat − �(i |ks), i = 0 :Hs

0 ≤ �(i |ks), i = 0 :Hs − 1. (21)

The function δ(Tbat, T ∗
bat) in (20) is defined as follows:

δ
�
Tbat, T UL

bat

� =
�

0, if Tbat < T UL
bat

Tbat − T UL
bat , if Tbat ≥ T UL

bat .
(22)

B. Robust H-MPC With Proactive CT

The proactive-CT approach exploits the fact that the piloting
layer has access to more accurate vehicle speed prediction and
model of the dynamics due to a higher sampling rate than
the scheduling layer. Hence, it can predict the deviation in
the temperature tracking compared with the planned set-point
over the short horizon. Then, the constraints of the scheduling
layer MPC at next time instant can be proactively tightened
to accommodate such predicted deviations.

At the piloting layer, first, the sequence of optimal con-
trol inputs over the short horizon ( ˙̄Q = [ ˙̄Q( j |k), ˙̄Q( j +
1|k), . . . , ˙̄Q( j + Hp|k)]�) is computed once the optimization
problem (19) is solved at time step k. Next, based on ˙̄Q
and the prediction model fTbat , and according to the accurate
traction power demand available over the short horizon Hp,
the sequence of future battery temperature T̂bat states is calcu-
lated (T̂bat = [T̂bat( j + 1|k), T̂bat( j + 2|k), . . . , T̂bat( j + Hp +
1|k)]�). The error (e) between T̂bat and the planned trajectory
by the scheduling layer MPC (T∗

bat) is then predicted as e =
T̂bat−T∗

bat, where T∗
bat is upsampled to the rate of short horizon

MPC. The maximum of e is used as the robustness feedback
[emax = max(e)] from the piloting layer to the scheduling
layer for the next iteration, e.g., ks + 1, thereby enabling
the long-horizon scheduling MPC to proactively tighten the
temperature constraint based on the prediction of the constraint
violation made at the piloting layer. This process is illustrated
and summarized in Fig. 14.

For the H-MPC with proactive-CT, the scheduling layer
MPC (18) is subject to all the constraints listed in (18), except
the one on Tbat(i |ks), which is now modified to

Tbat(i |ks) ≤ T UL
bat − emax(ks − 1) + ζ (i |ks) (23)

where i = 0, . . . , Hs . Note that emax in (23) is computed from
the previous time instant ks − 1.

Fig. 14. Concept and process of estimating the deviation in the thermal
response over the piloting-layer short horizon (Hp) for incorporation in
H-MPC with proactive-CT.

Fig. 15. Performance of the proposed robust H-MPCs compared with baseline
H-MPC and S-MPC for Tbat(0) = 35 ◦C over UDDS. (a) Battery temperature.
(b) BTM energy consumption. (c) Constraint violation. (d) Battery energy
saving compared with the rule-based BTM controller.

VI. PERFORMANCE OF THE ROBUST H-MPC

The overall performance of the baseline H-MPC and the
proposed H-MPCs with passive- and proactive-CT algorithms
from Section V are now compared, and the results are shown
in Fig. 15 with Tbat(0) = 35 ◦C. The performance of the
S-MPC with N = 180, T = 1 s and exact knowledge of
the vehicle speed profile is also plotted in Fig. 15 as the
ideal case. Fig. 15(b) shows that the proposed robust H-MPCs
are reducing the battery temperature constraint violations
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Fig. 16. Average computation time per iteration for different MPCs evaluated
for BTM.

compared with the baseline H-MPC. While the proactive-CT
strategy is able to reduce the constraint violations significantly
by 73%, it is observed that the passive-CT algorithm reduces
the T UL

bat violations only by 5%.
Fig. 15(a) shows the battery energy consumed for BTM, and

Fig. 15(c) depicts the achieved battery energy saving using
MPC-based BTM solutions compared with the rule-based
controller. It is noted that while the passive-CT algorithm
has the highest BTM energy consumption [see Fig. 15(a)]
and the lowest overall battery energy saving [see Fig. 15(c)],
it fails to reduce the constraint violations effectively. The
H-MPC with proactive-CT, on the other hand, outperforms the
H-MPC with passive-CT in all of the performance indices.
The H-MPC with proactive-CT reacts to the potential tem-
perature violations in advance, thereby reducing the BTM
energy consumption after the violation occurs. With an approx-
imate knowledge of the future driving cycle, the H-MPC
with proactive-CT shows that how we can capitalize on the
vehicle speed preview knowledge to achieve a robust eco-
cooling, without making the controller too conservative.

The computation times of different MPCs for BTM are
compared in Fig. 16 with N = 180, Hs = 36, Hp = 30,
T = 1 s, Ts = 5 s, and Tp = 1 s. Compared with
the S-MPC, H-MPCs show significantly lower computation
demands at both layers because of the larger sampling time
used at the scheduling layer and the nonredundant constraint
enforcement. In addition, Fig. 16 shows that H-MPC with
proactive-CT has the lowest computation demands. This could
be due to better handling of constraint violations by the
proactive-CT algorithm, which results in less frequent opti-
mization iteration with active constraints.

VII. CONCLUSION

A robust H-MPC-based battery thermal and energy man-
agement strategy was developed in this article to improve
energy efficiency and extend the driving range of connected
and automated battery EVs.

1) First, given the relatively slow thermal dynamics of
the battery, the importance of long-horizon optimization
for BTM to achieve energy efficiency benefits was
shown. The long-horizon BTM optimization allows for
eco-cooling of the battery by shifting the major BTM
system power demand to low/moderate traction power
demand periods, thereby reducing the BTM load on the
battery during high-acceleration periods of the vehicle

driving cycle. It was shown that the S-MPC is highly
sensitive to the accuracy and update rate of the future
vehicle speed predictions. In addition, the S-MPC with
a long prediction horizon was shown to be computation-
ally demanding.

2) Second, in order to exploit the energy-saving potential
of the long-horizon MPC-based BTM and reduce the
computation complexity of the S-MPC with a long
horizon, we proposed an H-MPC for battery thermal and
energy management.

3) Third, to achieve robust eco-cooling, we developed and
evaluated two constraint tightening algorithms integrated
within the H-MPC framework. We showed that since the
H-MPC is able to utilize the future vehicle speed predic-
tions with different accuracies over different prediction
horizons at each layer, the deviation of the actual battery
temperature response from the planned trajectories can
be estimated over a short horizon. The resulting estimate
was then used to proactively tighten constraints in the
scheduling layer, leading to a more robust performance
with fewer constraint violations, while consuming less
battery energy for BTM.

The simulation results over UDDS and under the vehicle speed
forecast uncertainty showed that the H-MPC with proactive-
CT regulates the battery temperature within the prescribed
operating range with minimum constraint violations while
consuming, on average, 25% less energy for BTM compared
with the conventional strategy that tracks a constant tem-
perature set-point. This translates into 5.4% energy savings
at the vehicle level over the conventional strategy. The pro-
posed H-MPC approach may have other use for control of
autonomous systems beyond the system considered here.

While the performance, robustness, and effectiveness of
the proposed eco-cooling strategy were studied and con-
firmed over UDDS, a comprehensive study of evaluating the
MPC-based BTM performance for electrified vehicles over
different representative driving cycles, including real-work
urban cycles, is left as the topic for future research. Another
possible direction for future works could be the study of
opportunities to use friction brakes to shift the thermal load
on the battery.
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