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a b s t r a c t

When the State of Charge, State of Health, and parameters of a Lithium-ion battery are estimated
simultaneously, estimation accuracy is hard to be ensured due to uncertainties in the estimation process.
A sequential algorithm, which uses frequency-scale separation and estimates parameters/states
sequentially by injecting currents with different frequencies, is proposed in this paper to improve esti-
mation performance. Specifically, by incorporating a high-pass filter, the parameters can be indepen-
dently characterized by injecting high-frequency and medium-frequency currents, respectively. Using
the estimated parameters, battery capacity and State of Charge can then be estimated concurrently.
Experimental results show that the estimation accuracy of the proposed sequential algorithm is much
better than the concurrent algorithm where all parameters/states are estimated simultaneously, and the
computational cost can also be reduced. Finally, experiments are conducted at different temperatures to
verify the effectiveness of the proposed algorithm for varying battery capacities.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Condition monitoring of lithium-ion batteries, such as the esti-
mation of state of charge (SoC) and state of health (SoH), is essential
for practical applications [1]. Estimation of SoC and SoH is generally
intertwined with the estimation of battery parameters, which
significantly vary with battery aging and changes in operating
conditions [2] and are difficult to be adequately calibrated offline
[3]. However, when all states/parameters are estimated simulta-
neously, substantial uncertainties are introduced in the estimation
process [4], and the resulting inaccurate estimate of any parameter
or state will dramatically impair the overall estimation perfor-
mance. It has been proven that the estimation error of the multi-
parameter estimation scenario (i.e., all states and parameters are
estimated concurrently) is significantly increased when compared
to the single-parameter estimation scenario (i.e., only one param-
eter or state is estimated) [5]. Moreover, multi-parameter estima-
tion imposes a critical constraint on the battery current profile
since a persistently exciting (PE) input condition should be satisfied
to ensure convergence of the estimated parameters and states [6].
Generally speaking, the PE condition requires one frequency
component for every two estimated parameters [7]. Therefore, it is
worthwhile to investigate new algorithms which can separate the
estimation of battery states from parameters, and therefore
improve estimation performance.

Model-based algorithms have beenwidely used for battery state
estimation [8]. Commonly used models include the open circuit
voltage (OCV) model [9], equivalent circuit model (ECM) [10],
neural network model [11], and electrochemical model [12]. It is
shown that multiple models can be adopted and switched online to
improve SoC estimation performance [13]. A previous study has
shown that the first-order ECM is an acceptable choice for lithium-
ion batteries due to its adequate fidelity and low computational
cost [14]. It is recently reported that the first-order ECM can be used
for fresh cells and migrated to aged cells through the Bayes Monte
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Nomenclature

a OCV-SoC slope (V/%)
b Constant of the linearized OCV-SoC curve (V)
Ct Capacitance of the RC pair (F)
CX Observation matrix for states
Cq Observation matrix for parameters
ib Battery current (A)
ibf Filtered battery current (A)
K0eK4 Coefficients of OCV-SoC curve
KX Kalman gain for states
Kq Kalman gain for parameters
M Current magnitude (A)
Qb Battery capacity (Ah)
rk Process noise for parameters
Rs Ohmic resistance (U)cRs Estimated ohmic resistance (U)
Rt Resistance of the RC pair (U)cRt Estimated resistance of the RC pair (U)
s Complex Laplace variable
t Time (s)

t0 Start time (s)
Tc Time coefficient of the high-pass filter (s)
Ts Sampling time (s)
vb Battery terminal voltage (V)
vbf Filtered battery terminal voltage (V)
vC Voltage over the RC pair (V)
vk Measurement noise (V)
vOC Open circuit voltage of battery (V)
wk Process noise for states
Xk State vector
Yk Output vector
z Battery SoC (%)
z0 Battery initial SoC (%)
h Columbic efficiency of battery (%)
qk Parameter vector
uk Input vector
S Covariance matrix
t Time constant of the RC pair (s)bt Estimated time constant of the RC pair (s)
u Current speed (rad/s)
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Carlo method [15]. The first-order ECM employed in this paper
consists of an ohmic resistor Rs, an RC pair (Rt//Ct), and a DC voltage
source voc, as shown in Fig. 1 [16]. In practical applications, these
parameters, along with the SoC and SoH, should be estimated on-
line [17].

Many algorithms have been developed and presented for SoC
estimation. For example, coulomb counting is a basic open-loop
method [18], which however is dramatically influenced by an
inaccurate initial guess of SoC, and measurement noise [19]. The
extended Kalman filter (EKF) is one of the most widely used
methods [20]. In addition, unscented Kalman filters [21], sliding
mode observers [22], particle filters [23], and H∞ observers [24]
have also been proposed in the literature. Similarly, for SoH,
generally defined as the ratio of the remaining capacity to the
original capacity [25], there are also many methodologies available
for online implementation (e.g., adaptive EKF [26], multi-scale
estimator [27], Box-Cox transformation [28], optimization-based
method [29], co-estimation method [30]). We point out that the
battery resistance can also indicate SoH in some applications [31],
but in this paper SoH specifically corresponds to the available ca-
pacity of battery, despite the battery aging is not considered in the
experimental validation. Since the estimation processes of battery
Fig. 1. The first-order equivalent circuit model for battery.
parameter, SoC, and SoH are coupled [32], the combined estimation
has also been widely investigated [33]. Moreover, combined SoC/
SoH estimation has been specifically investigated using the stan-
dard dual-extended Kalman filter (DEKF) [34]. The joint estimation
of SoC and available energy of LiFePO4 batteries was conducted
using particle filters [35]. Even though the estimation algorithm is
important, scholars have also focused on shaping the input-output
data; i.e., the battery current and voltage, to further improve esti-
mation accuracy [36].

An over-actuated system (e.g., hybrid energy storage system)
offers an additional degree of freedom which provides the oppor-
tunity to inject desired input signals for identification objectives
while simultaneously achieving control objectives [37]. To improve
estimation performance, a sequential algorithm is proposed in this
paper to estimate the parameters/states sequentially through
active current injection. The first-order ECM is analyzed first to
exploit frequency-scale separation of different dynamics associated
with different parameters and states. Specifically, the battery dy-
namics is governed by the initial SoC, the SoC variation, the ohmic
resistance Rs, and the RC pair. It can be found that the initial SoC
dynamics can be removed from the battery voltage dynamics with
a high-pass filter. In addition, simulation results show that for the
18650 Lithium-ion battery studied in this work, SoC variations can
be neglected as long as the battery current frequency is not
extremely low (i.e., below 0.001 Hz), and the ECM dynamic
behavior is dominated by the resistance Rs when the battery cur-
rent frequency is high (i.e., above 0.1 Hz). Consequently, in Step #1
the proposed sequential algorithm estimates the ohmic resistance
Rs independently by injecting a high-frequency current and incor-
porating a high-pass filter, since the RC pair can be regarded as a
short-circuit under these conditions. In Step #2, based on the
estimated Rs, the RC pair can be characterized (i.e., the diffusion
resistance Rt and the time constant t) by injecting a medium-
frequency current. Finally, in Step #3, the battery capacity and
SoC can be estimated concurrently based on the previously esti-
mated parameters. The EKF is adopted in Steps #1 and #2 to esti-
mate battery parameters, and a DEKF is adopted in Step #3 to
estimate the battery SoC and SoH. The experimental results verify
the effectiveness of the proposed sequential algorithm, which



Table 1
Specifications for the Samsung 18650 battery cell.

Parameter Value

Nominal Voltage (V) 3.63
Cell Capacity (Ah) 2.47
Discharge/Charge Columbic Efficiency h (%) 98
OCV-SoC slope a (mV/100%) ~8.845
Standard Deviation of Voltage Measurement Noise sV (mV) 20
Battery Current Amplitude M (A) 1
Ohmic Resistance Rs (mU) ~100
Diffusion Resistance Rt (mU) ~30
Time Constant t (s) ~15
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significantly increases the estimation accuracy when compared to
the case where all parameters/states are estimated simultaneously.

The rest of the paper is organized as follows. In Section 2, the
parameter/state estimation problem for Lithium-ion batteries is
formulated and analyzed. In Section 3, the sequential algorithm is
proposed. In Section 4, experimental results are provided for vali-
dation. Conclusions are given in Section 5.

2. System description

2.1. The first-order equivalent circuit model

Defining the battery terminal voltage as vb and the battery
current as ib (positive for discharging and negative for charging), as
shown in Fig. 1, the ECM dynamics are derived as follows:8><
>:

_vC ¼ � 1
CtRt

vC þ 1
Ct
ib

vb ¼ vOC � Rsib � vC

; (1)

where vC is the RC pair voltage and vOC denotes the OCV. The OCV-
SoC relation is given by Ref. [38].

vOCðzÞ¼K0 �
K1

z
� K2zþ K3 lnðzÞ þ K4 lnð1� zÞ; (2)

where K0-4 are the constant coefficients and z represents the
normalized SoC, and the SoC dynamic is given as [39].

z¼ z0 �
ðt
t0

h

Qb
ibðtÞdt; (3)

where z0, h, t0, and Qb represent the initial SoC, the charging/dis-
charging efficiency, the start time, and the battery capacity,
respectively. To simplify the analysis, the OCV-SoC relationship is
linearized as [40].

vOCðtÞ¼ a
�
z0 �

ðt
t0

hibðyÞ
Qb

dy
�
þ b; (4)

where a and b are the corresponding coefficients. Note that this
linearized relationship is only used in the analysis, while in the
estimation process the nonlinear relationship shown in Eq. (2) is
used. The coefficients K0-4 in the OCV-SoC relationship are acquired
under 20 �C for a fresh cell (i.e., the SoH is 100%) in this paper. For
simplification, it is assumed that K0-4 do not change under different
SoH levels, as verified in existing literature [41,42]. However, we
note that the above assumption cannot be guaranteed for all bat-
tery chemistries. If coefficients K0-4 are significantly influenced by
battery degradation, the proposed sequential algorithm may
encounter challenges, as almost all existing estimation algorithms
do. In addition, ECM parameters, including Rs, Rt, and t, are
significantly influenced by battery degradation and operating
conditions, and are therefore difficult to calibrate for all practical
scenarios [26]. Especially, the influence of degradation on the bat-
tery characteristics is almost impossible to be entirely investigated
offline [43]. As a result, battery parameters should be estimated
online along with battery SoC and SoH. Since battery parameters
vary more slowly than the battery SoC [26], two assumptions are
made in the estimation process:

1) The initial value of vC is 0, and
2) The parameters of Rs, Rt, and t are assumed to be constant.
Under these assumptions, based on Eqs. (1) and (4), the transfer
function from ib to vb is obtained.

vbðsÞ¼
az0
s

þ b
s
� a

s
h

Qb
ibðsÞ�RsibðsÞ �

Rt
1þ ts

ibðsÞ; (5)

where s is the complex Laplace variable. There are therefore three
parameters (i.e., Rs, Rt, and Ct) and two states (i.e., z0 and Qb) in Eq.
(5) to be estimated.
2.2. The analysis of the first-order ECM dynamics

As shown in Eq. (5), the battery terminal voltage dynamics
include four parts. The first part (a∙z0/s þ b/s) is constant and
related to the initial SoC. The second (-a∙h∙ib(s)/s∙Qb) is related to
the SoC variation and is significantly influenced by the battery ca-
pacity. The third (-Rs∙ib(s)) is related to the ohmic resistance, and
the fourth (-Rt∙ib(s)/(1þt∙s)) is related to the RC pair. Since the first
part is constant, it can be removed by a high-pass filter. A first-order
high-pass filter is applied to Eq. (5), which yields:

vbf ðsÞ¼
ðaz0 þ bÞTc
1þ Tcs

� a
s

h

Qb
ibf ðsÞ�Rsibf ðsÞ �

Rt
1þ ts

ibf ðsÞ; (6)

where8>>><
>>>:

vbf ðsÞ ¼
Tcs

1þ Tcs
vbðsÞ

ibf ðsÞ ¼
Tcs

1þ Tcs
ibðsÞ

;

Tc is the time coefficient of the high-pass filter, and vbf and ibf are
the filtered battery voltage and current, respectively. The dynamics
of the filtered system can then be presented in the time domain
through the inverse Laplace transform. The effects of the initial SoC
are given as

L�1
�ðaz0 þ bÞTc

1þ Tcs

�
¼ðaz0 þ bÞe� t

Tc ; (7)

which will decay exponentially over time, at the rate defined by Tc.
To evaluate the effects of the high-pass filter on separating the
battery dynamics, we consider Samsung 18650 Lithium-ion batte-
ries. The parameters of an 18650 Lithium-ion battery are specified
in Table 1. The coefficients K0-4 of the OCV-SoC relationship for the
adopted cell are 2.6031, 0.0674, �1.527, 0.6265, and �0.0297,
respectively. The initial SoC dynamics vanish more quickly as Tc
decreases (i.e., the cut-off frequency increases). The initial SoC
dynamics are removed from the battery terminal voltage after
~6 min when Tc is 80s. Therefore the initial SoC can be neglected in
the filtered system and it will not influence the estimation of the
other parameters/states. As shown in Eq. (6), except for the initial
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SoC response, the other responses are significantly influenced by
the filtered current ibf. To quantify the influence of the current’s
frequency on the voltage dynamics a sinusoidal current is consid-
ered in this paper:8><
>:

ibðtÞ ¼ M cosðutÞ

ibðsÞ ¼
Ms

s2 þ u2

; (8)

where M and u are the current magnitude and frequency,
respectively.

To clearly show the influence of current frequency, the battery
voltage responses when the current frequency is 0.4 Hz, 0.004 Hz,
and 0.0004 Hz are shown in Fig. 2, where Tc is fixed at 80s. When
the current frequency is 0.4 Hz, as shown in Fig. 2 (a), the battery
terminal voltage is governed by its ohmic resistance component,
and the SoC variation component as well as the RC pair component
can be neglected. The RC pair can be regarded as a short circuit
when the current frequency is sufficiently high. In addition, the SoC
variation component is small because high-frequency current does
not induce a significant change in the battery SoC. This means that,
based on the filtered signals, Rs can be estimated independently by
injecting high-frequency current regardless of the other parame-
ters. As shown in Fig. 2 (b), the RC pair component is comparable
with the ohmic resistance component when the current frequency
decreases to 0.004 Hz, while the SoC variation dynamics can still be
neglected. Assuming that the parameters do not change quickly
[26], the estimated Rs can be used to estimate Rt and t when the
current frequency is around 0.004 Hz (i.e., medium-frequency
current). As the current frequency further decreases to 0.0004 Hz,
as shown in Fig. 2 (c), none of three components can be neglected.
The analysis presented above indicates the possibility of separating
battery dynamics in the frequency domain by injecting the current
with different frequencies, and therefore informs the sequential
estimation algorithm proposed in the next section.
3. The sequential algorithm for combined SoC and SoH
estimation

To reduce uncertainty in the estimation process and therefore
increase estimation accuracy, a sequential algorithm is proposed in
this paper, as shown in Fig. 3. A high-pass filter is used to block the
constant initial SoC component, and a high-frequency current is
injected to estimate the ohmic resistance Rs. Using the estimated Rs,
a medium-frequency current is injected to estimate the diffusion
resistance Rt and the time constant t. After obtaining the estimated
Rs, Rt, and t, the SoC and SoH can be estimated finally.

The sequential algorithm, which estimates the battery param-
eters and states separately, can reduce computational cost when
compared to the case when all states and parameters are estimated
simultaneously [44]. More importantly, the sequential algorithm
can improve estimation accuracy since it exploits frequency sepa-
ration and eliminates the interactions of parameter and state esti-
mation [36]. Three steps are involved in the sequential estimation,
and the associated algorithms are presented herein.
Fig. 2. The battery voltage component due to various current frequencies.
3.1. A review of EKF and DEKF

An EKF is used in Steps #1 and #2 of the sequential algorithm to
estimate the battery parameters. The EKF determines the optimal
feedback gain to suppress both process noise and measurement
noise [45]. The general discrete time state-space equation can be
illustrated as



Fig. 3. The flowchart of the sequential algorithm.

Table 3
DEKF algorithm.

Initialization:

8>>><
>>>:

bq0 ¼ E½q0�X
q0

¼ E
h
ðq0 � bq0Þðq0 � bq0ÞT

i
bX0 ¼ E½X0�X
X0

¼ E
h
ðX0 � bX0ÞðX0 � bX0ÞT

i ; (13)

where
P

X0
is the covariance matrix of state estimation error.

Parameter prediction:

8<
:

bq�
k k ¼ bqk�1X�

qk
¼

X
qk�1

þ
X
rk�1

; (14)

State prediction:

8<
:

bX�
k ¼ H

�bXk�1;
bq�
k ; uk

�
X�

Xk
¼ Ak

X
Xk�1

AT
k þ

X
wk

; (15)

where Ak ¼ vHðX; bq�
k ; ukÞ

vX


X ¼ bX�

k .

State update:

8>>>>><
>>>>>:

KX
k ¼

X�
Xk

�
CX
k

�Th
CX
k

X�
Xk

�
CX
k

�T þX
vk

i�1

bXk ¼ bX�
k þ KX

k
�
Yk � G

�bX�
k ;

bq�
k ; uk

�	
X
Xk

¼
�
I� KX

k C
X
k

�X�
Xk

; (16)

where CXk ¼ vGðX; bq�
k ; ukÞ

vX


X ¼ bX�

k .

Parameter update:

8>>>><
>>>>:

Kq
k ¼

X�
qk

�
Cq
k
�Th�

Cqk
�X�

qk

�
Cqk

�T þX
vk

i�1

bqk ¼ bq�
k þ Kq

k
�
Yk � G

�bXk;
bq�
k ; uk

�	
X
qk

¼ �
I� Kq

kC
q
k
�X�

qk

; (17)

where Cqk ¼ dGðbXk; q; ukÞ 

q ¼ bq�
k .
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8<
:

qkþ1 ¼ qk þ rk
Xkþ1 ¼ HðXk; qk; ukÞ þwk
Ykþ1 ¼ GðXk; qk; ukÞ þ vk

; (9)

where k is the time index, Xk is the state vector, qk is the parameter
vector, uk is the input vector, Yk is the output vector, rk is the process
noise for the parameters, wk is the process noise for the states, and
vk is the measurement noise. In Steps #1 and #2, only the battery
parameters are estimated, and the battery states are not involved.
The calculation process of the EKF is summarized in Table 2. In Step
#3, combined SoC and SoH estimation is conducted based on the
original system. We point out that the high-order OCV-SoC rela-
tionship (see Eq. (2)) is used to estimate SoC and SoH. The
remaining battery capacity, which is also one of the battery pa-
rameters, is estimated to determine the SoH.

As a result, both the parameter (i.e., battery capacity) and the
state (i.e., SoC) need to be estimated in Step #3. The DEKFmethod is
a commonly used technique to simultaneously estimate states and
parameters [46]. The DEKF adopts two EKFs run in parallel and
estimates the state/parameter using each other’s latest updates
[47]. Based on Eq. (9), the detailed algorithms of the DEKF is
specified in Table 3.
Table 2
EKF algorithm.

Initialization:

� bq0 ¼ E½q0�X
q0

¼ E
h
ðq0 � bq0Þðq0 � bq0ÞT

i
; (10)

where
P

q0
is the covariance matrix of parameter estimation error.

Parameter prediction:

8<
:

bq�
k k ¼ bqk�1X�

qk
¼

X
qk�1

þ
X
rk�1

; (11)

where
P

rk�1
is the covariance matrix of process noise.

Parameter update:

8>>>><
>>>>:

Kq
k ¼

X�
qk�1

�
Cq
k�1

�Th�
Cqk�1

�X�
qk�1

�
Cqk�1

�T þX
vk�1

i�1

bqk ¼ bq�
k þ Kq

k

�
Yk � G

�
Xk�1;

bq�
k ; uk

�	
X
qk

¼ �
I� Kq

kC
q
k�1

�X�
qk�1

; (12)

where Cq
k�1 ¼ vGðXk�1; q; ukÞ

vq



q ¼ bq�
k .

dq
3.2. The sequential algorithm

Incorporating the algorithms described in Section 3.1, the
sequential parameter and SoC/SoH estimation approach is formu-
lated in 3 steps.

Step #1: The first step of the sequential algorithm is estimating
the ohmic resistance by using a high-pass filter and injecting
high-frequency current. Based on Eq. (6), the battery terminal
voltage can be simplified as
vbf ðsÞ¼ � Rsibf ðsÞ (18)

Therefore, the discrete time state-space equation (9) for
estimating the ohmic resistance Rs using the EKF can be given as

�

RsðkÞ ¼ Rsðk� 1Þ þ rk
vbf ðkÞ ¼ �Rsibf ðkÞ þ vk

(19)
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Step #2: When the medium-frequency current is injected, the
battery terminal voltage is governed by ohmic resistance dy-
namics and RC pair dynamics, so Eq. (6) can be simplified as
vbf ðsÞ¼ �Rsibf ðsÞ �
Rt

1þ ts
ibf ðsÞ (20)

The estimated ohmic resistance obtained in Step #1 is then
used in Step #2, and the bilinear transformation is used to dis-
cretize Eq. (20). Consequently, the discrete time state-space
equation (11) for estimating Rt and t is given as�
q2ðkÞ ¼ q2ðk� 1Þ þ rk
vbf ðkÞ ¼ �bRsðkÞibf ðkÞ � Rti2ðkÞ þ vk

(21)

where8
T
><

>:
q2ðkÞ ¼ ½RtðkÞ tðkÞ�

i2ðkÞ ¼
Ts

Ts þ 2t

h
ibf ðkÞ þ ibf ðk� 1Þ

i
� Ts � 2t
Ts þ 2t

i2ðk� 1Þ
;

and Ts is the sampling period (i.e., 1s).
Step #3: Given that Rs, Rt, and t are estimated in Steps #1 and
#2, the SoC and SoH can be simultaneously estimated in Step #3.
Based on Eqs. (1)e(3), the discrete time state-space equation for
estimating the SoC and SoH estimation is shown to be
8>>>>>>>>>><
>>>>>>>>>>:

QbðkÞ ¼ Qbðk� 1Þ þ rk

X3ðkÞ ¼

2
664 e

�Tsbt 0

0 1

3
775X3ðk� 1Þ þ

2
66664
bRt

0
@1� e

�Tsbt
1
A

�hTs
Qb

3
77775ibðkÞ

vbðkÞ ¼ OCVðzðkÞÞ � vCðkÞ � bRsðkÞibðkÞ

;

(22)

where

T
X3ðkÞ¼ ½vCðkÞ zðkÞ�

As shown in Eq. (22), the voltage of the RC pair vC is also esti-
mated for better performance [2], and the DEKF presented in Sec-
tion 3.1 is adopted. Since SoC and SoH are estimated together, an
inaccurate estimation of either SoC or SoH will influence the other.
However, the estimation accuracy can still be significantly
improved for the proposed algorithm, since less uncertainty is
involved when compared to the case where all battery parameters/
states are estimated simultaneously.

For different battery cells, which are manufactured by different
companies or have different chemistries, the battery parameters
may vary significantly. As a result, the frequency of the injected
current and the cut-off frequency of the high-pass filter should be
adapted to specific battery cells. At any rate, the proposed
sequential algorithm is a general method for battery parameter/
state estimation.
4. Experimental results

Experimental testing is focused on an 18650 Lithium-ion battery
(see Table 1 for detailed information). In the experiments, error
caused by ECM inaccuracy is introduced. An Arbin battery test
system (BT2000) was used in the following experiments [48]. The
initial SoC is 80% for all four experiments, and they are illustrated as
follows.

Experiment #1: Validation of the sequential algorithm at 20 �C.
In Experiment #1, the initial guesses of the estimated parameters
are ½bRsð0Þ bRtð0Þ btð0Þ bQbð0Þ� ¼ [0.02 0.0315 2], and the initial values
of estimated SoC and vC are 50% and 0 V, respectively. As shown in
Fig. 4(a), in Step #1 a 0.5 Hz sinusoidal current with amplitude of
0.5C is injected and the first-order butterworth high-pass filter has
a 3 dB bandwidth of 0.05 Hz. As shown in Fig. 2 (a), the adopted
current frequency (i.e., 0.5 Hz) can extract the battery voltage
component governed by the ohmic resistance and the other com-
ponents (RC pair and SoC components) are negligible. Therefore,
the ohmic resistance can be accurately estimated given that the
uncertainty in the estimation process is reduced. The estimation
result of Rs is shown in Fig. 4(b), which indicates that the estimated
value can accurately track the actual value, which is obtained from
the HPPC test.

In Step #2 a 0.02 Hz sinusoidal current with amplitude of 0.5C is
added onto a base current (0.004 Hz sinusoidal current with
amplitude of 0.5C) and the first-order butterworth high-pass filter
has 3 dB bandwidth of 0.002 Hz. As shown in Fig. 2 (b), the current
frequencies in Step #2 (i.e., 0.02 Hz and 0.004 Hz) can separate the
components corresponding to the ohmic resistance and the RC pair
from the one related to the SoC variation. Therefore, the RC pair
parameters can be accurately estimated based on the estimation
result in Step #1 (i.e., estimated ohmic resistance). As shown in
Fig. 4(c), the estimated parameters can track the actual values for Rt
and t, but there is a slight static error in the Rt estimation result.
Therefore, the first-order ECM has limitations representing the
studied 18650 Lithium-ion battery, as the RC pair parameters are
hard to estimate. Since the sampling frequency in Step #1 is high,
we need to manually control the Arbin test system and switch to
Step #2 in the experiment. As a result, there is a transient period
from 200s to 287s, which is shown in Fig. 4(a). The estimation
process of Step #2 is from 288s to 1187s, which includes a hold-up
time of 400s to avoid initial SoC dynamics. Step #3 starts from
1200s.

The estimated Rs, Rt, and t are used in Step #3 to estimate SoC
and SoH simultaneously. A scaled bus driving cycle is used in Step
#3 to represent a practical profile for batteries. As shown in
Fig. 4(d), the SoC estimation performance is satisfactory and the
estimation error is below 1% under a significant initial error (30%).
As shown in Fig. 4(e), the estimated battery capacity accurately
tracks the actual value obtained from the static capacity test after
1800s, and there is no significant error after convergence. The
estimated voltage shown in Fig. 4(f) tracks the actual terminal value
well. As a result, the effectiveness of the proposed sequential al-
gorithm is verified experimentally.

Experiment #2: Validation of the sequential algorithm at 40 �C.
In Experiment #2, the temperature is increased to 40 �C, and the
battery parameters slightly change when compared to those of
20 �C according to the battery static capacity test [49]. Especially,
the battery capacity increases from 2.47Ah to 2.62Ah. The initial
guesses of the estimated parameters and states are similar to those
in Experiment #1, as the parameters do not significantly change
when the temperature increases from 20 �C to 40 �C.

The same current profile, as shown in Fig. 4(a), as well as the
same high-pass filters are used. As shown in Fig. 5(a) and (b), the
parameter estimation performance is satisfactory and similar to the
results of Experiment #1. The consistent results verify the effec-
tiveness of the proposed sequential algorithm on battery parameter
estimation. The SoC estimation error is less than 1%when the initial
guess error is 30%, as shown in Fig. 5(c). For the battery capacity



Fig. 4. Experimental results at 20 �C.
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Fig. 5. Experimental results at 40 �C.
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Fig. 6. Experimental results at 0 �C.

Z. Song et al. / Energy 193 (2020) 116732 9



Z. Song et al. / Energy 193 (2020) 11673210
(i.e., SoH), the convergence time is about 600s, and no significant
static error exists after convergence, as shown in Fig. 5(d). There-
fore, the sequential algorithm can accurately co-estimate the bat-
tery states (i.e., SoC and SoH) at high-temperature conditions.

Experiment #3: Validation of the sequential algorithm at 0 �C.
In Experiment #3, the temperature is decreased to 0 �C, since the
battery state estimation is challenging at low temperatures. The
initial guesses of the estimated parameters are
½bRsð0Þ bRtð0Þ btð0Þ bQbð0Þ� ¼ [0.02 0.03 5 2]. Note that all battery
parameters significantly vary due to the temperature change,
especially, the ohmic resistance increases by up to 60% when the
temperature decreases from 20 �C to 0 �C. In addition, a static error,
which does not exist in Experiment #1 and #2, can be found in the
estimation result of Rs at 0 �C, as shown in Fig. 6 (a). We point out
that in this paper the “real value” of Rs denotes the parameter
calibrated in the HPPC test. Given that Rs is calculated based on the
voltage drop corresponding to the pulse current, the “real value” of
Rs indicates the high-frequency response of battery (i.e., 1s resis-
tance), while in Step #1 the estimated Rs corresponds to the battery
Fig. 7. Experimental results of estimating
response at 0.5 Hz. Therefore, the estimated and the actual values of
Rs reflect the battery characteristics under different frequencies.
The electrochemical impedance spectroscopy (EIS) measurement
provided in Ref. [50] shows that the variation of battery EIS (from
0.5 Hz to 1 Hz) becomes significant with decreasing temperature,
especially for the high SoC range (e.g., 80% SoC in this study). This is
the reason for which the static estimation error of Rs can be found
at 0 �C. We point out that the “real values” for all parameters are
relatively accurate since they only represent the battery response
under the HPPC test.

As shown in Fig. 6(b), the RC pair parameters are estimated
accurately and no significant estimation errors are found. Similarly,
the SoC estimation error is small and less than 1% given the initial
guess error of 30%, as shown in Fig. 6(c). The battery capacity de-
creases to 2.10Ahwhen the temperature decreases to 0 �C and it can
be accurately estimated along the entire process of Step #3, as
shown in Fig. 6(d). As a result, the terminal voltage can be accu-
rately simulated using the estimated parameters, as shown in
Fig. 6(e).
all parameters/states simultaneously.
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The proposed algorithm not only decreases the computational
cost when compared to the case where all parameter/states are
estimated simultaneously, but also improves estimation perfor-
mance. This conclusion can be theoretically proven using Cramer-
Rao (CR) bound analysis [51]. It has been shown that the estima-
tion error is increased whenmore parameters are considered in the
estimation [52]. Therefore, a single-parameter estimation is the
most accurate as the least amount of uncertainty is involved in the
estimation process. The proposed sequential algorithm can signif-
icantly improve the estimation accuracy when compared to multi-
parameter estimation, given that the ECM voltage components can
be separated [5]. Experiment #4 is conducted to verify the pro-
posed sequential algorithm.

Experiment #4: Performance of the concurrent parameter/state
estimation at 20 �C. The multi-scale EKF is used to estimate all
parameters/states simultaneously [2,46]. When compared to the
DEKF, the multi-scale EKF estimates parameters much slower than
it estimates states because the parameters generally vary slowly
[46]. An optimal current profile consisting of three sine waves (i.e.,
0.01 Hz, 0.05 Hz, and 0.1 Hz) is used in Experiment #4, as shown in
Fig. 7(a). Detailed information on determining these optimal cur-
rent frequencies is provided in Ref. [52]. The parameter estimation
results are shown in Fig. 7(b), revealing that the estimation per-
formance of Rs and Qb (i.e., SoH) are satisfactory. The estimated Rt
and t cannot track the actual values even using the optimal data,
which can theoretically achieve the best estimation performance.
As shown in Fig. 7(c), the estimated SoC needs a longer time to
converge to the real value as compared to the sequential algorithm.
Moreover, the static error of the estimated SoC is around 2%. The
estimation error of the battery terminal voltage is correspondingly
enlarged when more parameters are estimated, as shown in
Figs. 4(f), 5(e), 6(e), and 7(d). Based on the above experimental
results, it is shown that the sequential algorithm, which separates
the estimation process, can achieve a better estimation perfor-
mance when compared to the case where all parameters/states are
estimated simultaneously. Since only a few parameters or states are
estimated in each step, the estimation accuracy can be significantly
improved.

We would like to point out that the implications of injecting a
current signal for active parameter estimation could be compli-
cated for general application (e.g., electric vehicles). However, an
over-actuated system like the battery/supercapacitor (SC) hybrid
energy storage system [53] or hybrid electric vehicle [54] provides
an opportunity to inject desired signals for identification and ach-
ieve control objectives simultaneously [55]. Therefore, the pro-
posed sequential algorithm can be directly used, and the potential
negative influence of injecting the current on the system perfor-
mance (i.e., system efficiency and power supply quality) can be
minimized given the over-actuated nature. Specifically, for any
power demand Pd, we have Pd ¼ Ps1 þ Ps2, where Ps1 and Ps2 denote
the power from source #1 (i.e., battery) and source #2 (i.e., SC). The
required current for battery parameter/state estimation can be
injected directly, while the SC can compensate to ensure the entire
system supplies the demanded power. In addition, when the bat-
tery is used as the sole energy source, the proposed algorithm also
can be used if the battery charging current can be changed and
therefore the required excitation can be added. The influence of
temperature is investigated in the experiment, and remarks are
given to address the influence of battery degradation.

Remark 1. As a battery ages, its parameters will change, and the
change will be reflected in the estimation results. One of the main
goals for online parameter estimation is to detect aging for condi-
tion monitoring. It has been proven that the proposed sequential
algorithm can accurately estimate battery parameters when they
change due to temperature and SoC variations. Therefore, the
proposed algorithm can effectively detect the battery degradation
in practical applications.

Another remark is given below to highlight the novelty of the
proposed sequential algorithm when compared to existing
methods.

Remark 2. As mentioned above, battery parameters vary with
working conditions (e.g., temperature) and battery degradation
levels. The results provided in Ref. [56] show promising experi-
mental results for battery SoC and SoH estimation when the pa-
rameters can be calibrated offline and used online. However, it is
challenging to calibrate battery parameters for all conditions (e.g.,
different temperatures and degradation levels). So an online
method is still required for practical applications. When the battery
is adopted in over-actuated systems, the proposed sequential al-
gorithm can solve the aforementioned problem well by actively
injecting persistently exciting signals, as shown in Figs. 4e6. It
means that massive calibration is avoided by adopting the pro-
posed algorithm, while the SoC/SoH estimation performance can
still be ensured.
5. Conclusion

When battery states/parameters are estimated simultaneously,
substantial uncertainties are introduced in the estimation process,
and inaccurate parameters can therefore impair the state estima-
tion performance. To this end, the sequential algorithm, which uses
frequency-scale separation and estimates the parameters/states
sequentially by injecting the current with different frequencies, is
proposed in this paper. Specifically, by using a high-pass filter, the
ohmic resistance Rs can be estimated independently via injecting a
high-frequency current. Then, using the estimated Rs, the RC pair
can be estimated by injecting a medium-frequency current. Finally,
based on the above estimated parameters, the battery SoC and SoH
can be estimated simultaneously. Experimental results show that
the estimation accuracy of the proposed sequential algorithm is
satisfactory and better than the case where all parameters/states
are estimated simultaneously. The proposed algorithm can be
implemented online when the battery is used in over-actuated
systems. In future work, experiments under low SoH conditions
will be conducted to further validate the effectiveness and
robustness of the sequential algorithm, since it is generally chal-
lenging to guarantee state estimation accuracy under aged
conditions.
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