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Abstract
Autonomous underwater vehicles (AUVs) have become central to data collection for scientific and monitoring missions in 
the coastal and global oceans. To provide immediate navigational support for AUVs, computational data-driven flow models 
described as generic environmental models (GEMs) construct a map of the environment around AUVs. This paper proposes a data 
assimilation framework for the GEM to update the map using data collected by the AUVs. Unlike Eulerian data, Lagrangian data 
along the AUV trajectory carry time-integrated flow information. To facilitate assimilation of Lagrangian data into the GEM, the 
motion tomography method is employed to convert Lagrangian data of AUVs into an Eulerian spatial map of a flow field. This 
process allows assimilation of both Eulerian and Lagrangian data into the GEM to be incorporated in a unified framework, which 
introduces a nonlinear filtering problem. Considering potential complementarity of Eulerian and Lagrangian data in estimating 
spatial and temporal characteristics of flow, we develop a filtering method for estimation of the spatial and temporal parameters 
in the GEM. The observability is analyzed to verify the convergence of our filtering method. The proposed data assimilation 
framework for the GEM is demonstrated through simulations using two flow fields with different characteristics: (i) a double-gyre 
flow field and (ii) a flow field constructed by using real ocean surface flow observations from high-frequency radar.

Keywords  Motion tomography · Data assimilation · Generic environmental models

1  Introduction

Autonomous underwater vehicles (AUVs) are proven versa-
tile instruments for ocean sampling and monitoring (Curtin 
et al. 1993; Fratantoni and Haddock 2009; Leonard et al. 
2010). However, environmental changes such as ocean cur-
rents often hinder the survey performance of AUVs. To cope 
with environmental changes, an AUV can employ environ-
mental models (e.g., Smith et al. 2010; Chang et al. 2015 for 
path planning and Song and Mohseni 2017 for localization). 
For geophysical flow, typical regional ocean models (e.g., 
Luettich et al. 1992; Bleck 2002; Shchepetkin and McWil-
liams 2005; Haidvogel et al. 2008) numerically solve partial 
differential equations (PDEs) for a large spatial area with 
long-term prediction. However, their high complexity makes 
solving these PDEs computationally expensive. To reduce 
the computational burden, regional ocean models typically 
solve these PDEs with large spatial and temporal resolu-
tions that may not be suitable for AUV planning and control. 
Data-driven flow models (Petrich et al. 2009; Mokhasi et al. 
2009; Chang et al. 2014) can provide high spatial and tem-
poral resolutions computationally fast for a small spatial area 
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with short-term prediction. Hence, data-driven flow models 
are suitable for local guidance of AUVs.

Extending our previous work (Chang and Zhang 
2016b), this paper focuses on an estimation problem 
for data-driven computational flow models described as 
generic environmental models (GEMs) (Zhang 2016). 
After initialized by using prior information of the environ-
ment, possibly obtained from geophysical ocean models, 
the GEM constructs a map of the environment to provide 
immediate navigational support for AUVs. When a flow 
model is involved in AUV navigation, the performance of 
AUV navigation may, to a large extent, rely on the accu-
racy of the model. In Szwaykowska (2014), Szwaykowska 
and Zhang (2018), the authors analyze the influence of 
the geophysical ocean model on AUV navigation and 
demonstrate that the error growth rate of the vehicle posi-
tion depends on the accuracy and resolution of the model. 
This concept can also be extended to data-driven mod-
els. To improve the model accuracy, observation data can 
be incorporated into the estimation of the ocean state or 
parameters in the model, which is generally known as data 
assimilation (Robinson and Lermusiaux 2008).

Observation data incorporated in data assimilation can 
be categorized into Eulerian and Lagrangian. Eulerian data 
are framed with a fixed grid in space and time, and Lagran-
gian data are obtained while moving with the flow over 
time. Since most flow models are Eulerian, assimilation of 
Eulerian data into the model is relatively straightforward. 
However, Lagrangian observations such as data collected 
by AUVs carry time-integrated information along the tra-
jectory and have both direct and indirect connections with 
the state variables and observation noise (e.g., observation 
model error and sensor noise) of flow models (Kuznetsov 
et al. 2003). Therefore, assimilation of Lagrangian data 
raises difficulties and requires an additional framework in 
comparison to Eulerian data assimilation.

For geophysical ocean models, Lagrangian data assimi-
lation mostly employs passive drifters or floats. In Kuznet-
sov et al. (2003), a method for Lagrangian data assimilation 
is developed by using the augmented state that combines 
the Eulerian ocean state with the positions of Lagrangian 
observations traced by using advection equations. Another 
method introduced in Molcard (2003) computes Lagran-
gian velocity as the difference between the positions of a 
drifter over the position update interval. Then, this velocity 
is interpolated to be assimilated into a flow model. How-
ever, since AUVs are not passive but ‘controlled’, these 
methods using the positions of passive drifters may not 
be easily applicable to data-driven flow models combined 
with observations from AUVs. In addition, data assimila-
tion for geophysical ocean models with high complexity is 
computationally expensive. In Hackbarth et al. (2014), flow 
field estimation and data assimilation have been studied for 

AUV path planning using a computational fluid dynam-
ics model and flow measurements from AUVs on the fly. 
However, AUVs typically have a limited capability of flow 
measurement. In this paper, we present a framework of 
computationally efficient data assimilation for data-driven 
flow models using AUVs with no direct flow measurement 
and limited underwater localization capabilities.

To facilitate assimilation of Lagrangian data collected by 
AUVs into the GEM, we employ the motion tomography (MT) 
method (Wu et al. 2013; Chang et al. 2016, 2017). Along the 
trajectory of a vehicle, its motion is typically perturbed by 
ambient flow, deviating the actual trajectory of the vehicle 
from its predicted trajectory. By deriving an expression of this 
deviation using a vehicle motion model, MT constructs a sys-
tem of equations that describes the influence of flow on the 
vehicle trajectory. Through solving this system of equations, 
MT converts Lagrangian data into an Eulerian spatial map of a 
flow field, allowing Lagrangian data to be incorporated together 
with Eulerian data into a unified data assimilation framework. 
Note that instead of direct flow measurements, our method 
assimilates an underlying flow field estimated by MT from 
time-integrated flow information carried in the vehicle trajec-
tory. Extending our previous work (Chang and Zhang 2016a), 
MT in this paper is formulated in both space and time so that 
time-integrated flow information along the trajectory can be 
inferred in both space and time. This formulation enables the 
spatial map of a flow field constructed by MT to account for the 
temporal variability. To the best of our knowledge, this paper 
is the first work on a unified data assimilation framework for 
data-driven flow models that incorporates both Eulerian data 
and Lagrangian data collected by AUVs. This framework may 
also be a helpful analysis tool for geophysical ocean models 
dealing with Lagrangian data collected by AUVs.

In this paper, the GEM is constructed by using spatial 
and temporal basis functions along with their corresponding 
parameters. Assimilation of both Eulerian and Lagrangian 
data into the GEM through the unified framework involves 
a nonlinear filtering problem to estimate the spatial and tem-
poral parameters of the GEM. We design a filtering method 
in which the spatial and temporal parameters of the GEM are 
individually estimated through assimilation of Lagrangian and 
Eulerian data, respectively. We analyze the observability to 
check the convergence of the proposed filtering method. The 
GEM combined with the proposed data assimilation frame-
work can provide effective navigational support for AUVs 
in real time. To demonstrate its capability for AUV guid-
ance, we compare three GEMs assimilating (i) both Eulerian 
and Lagrangian data, (ii) only Eulerian data, and (iii) only 
Lagrangian data, respectively. The three GEMs are used to 
guide simulated station-keeping vehicles in the following two 
flow fields with different characteristics: (i) a double-gyre 
flow field and (ii) a flow field constructed by using real ocean 
surface flow observations from high-frequency (HF) radar. 
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The differences in the performance of the three GEMs show 
that the GEM combined with the proposed unified framework 
can favorably account for the spatial and temporal variations 
of flow by assimilating both Eulerian and Lagrangian data.

The rest of the paper is organized as follows. Section 2 pre-
sents data-driven flow modeling with emphasis on its applica-
tion to the GEM for the guidance of AUVs. Section 3 provides 
an overview of MT to describe how an Eulerian spatial map 
is constructed from Lagrangian data collected by AUVs. Sec-
tion 4 introduces a data assimilation method for the GEM in 
which assimilation of both Eulerian and Lagrangian data is 
achieved in a unified framework to estimate the spatial and 
temporal parameters of the GEM. Section 5 validates our 
method through simulations and analyzes the results. Lastly, 
Sect. 6 concludes the paper with future directions.

2 � Data‑driven flow modeling

Flow field modeling and estimation have been studied in 
oceanography, fluid dynamics, and marine robotics. Typical 
regional ocean models for geophysical flow have high com-
putational costs and coarse spatial and temporal resolutions 
(e.g., on the order of kilometers and output on the order of 
hours to days), which are not suitable for AUV planning and 
control. By compromising detailed physical insights, data-
driven flow models obtain flow estimates computationally 
faster and in higher resolution than PDE-based geophysical 
ocean models. This section presents a data-driven approach 
for flow modeling for the guidance of AUVs.

2.1 � Data collection of flow

In this section, we describe Eulerian and Lagrangian represen-
tations of flow and present typical Eulerian and Lagrangian 
data sources that can be used for data-driven flow models.

2.1.1 � Eulerian and Lagrangian representations of flow

The Eulerian representation describes flow as vectors at 
fixed coordinates in space and is used as a general method 
for ocean circulation modeling. This concept can be visual-
ized by a spatial map of a flow field, in which flow vectors 
are assigned to fixed spatial locations. In the Lagrangian rep-
resentation, the position of a particle is tracked as it moves 
along flow vectors in space and time, and the path traced 
out by this particle is called a pathline. While a pathline 
describes the trajectory of a single particle along the flow 
vectors in both space and time, the flow vectors represent 
instantaneous lines of motion of particles at each of the 
assigned spatial locations at a fixed time (see Fig. 1).

2.1.2 � Data sources of flow

This section reviews the following three typical data sources: 
moorings, HF radar systems, and AUVs. These data sources 
have different complexities and ranges, and their observation 
data can be complementary to understand the spatial and 
temporal characteristics of flow.

A mooring is a stationary oceanographic instrumentation 
anchored on the sea floor with a collection of sensors. A 
mooring with the current meter can measure ocean currents 
typically on an hourly basis at different depths from near 
the sea surface to near the sea bottom. Although a mooring 
provides Eulerian data on fast time scales that are useful for 
time series analysis and interpretation, since it is fixed at one 
location, its flow data provide insufficient spatial variability 
for AUVs unless a set of moorings are installed in a dense 
network or array.

HF radar systems (Paduan et al. 1995; Gurgel et al. 1999; 
Shay et al. 2007) are shore-based remote sensing systems 
that use over-the-horizon technology to measure surface 
ocean currents, and are widely used in coastal ocean observ-
ing to provide near real-time observations. Shore stations of 
HF radar emit radio signals that bounce off surface waves 
and return to the receiver. The received radio signals are 
used to compute ocean surface current movement relative 
to ocean surface wave movement and the surface current 
observation is typically processed by averaging 20 min to 1 
h time-series. The spatial and temporal resolutions of the HF 
radar systems depend on the signal frequency and configura-
tions of the system. Most HF radar systems provide Eule-
rian data hourly with a typical spatial resolution of 3 × 3 or 
6 × 6 km2 for a large spatial coverage. However, the spatial 
resolution is considered low for AUV guidance and the data 
from the HF radar national network data server (http://cordc​
.ucsd.edu/proje​cts/mappi​ng/) require a 3 h processing delay.

Eulerian
flow vector
Lagrangian
pathline

Fig. 1   Illustration of Eulerian and Lagrangian representations of flow. 
Vectors of Eulerian flow at a fixed grid in space and time are repre-
sented by blue arrows and a pathline generated by a particle following 
the flow vectors is represented by a red line

http://cordc.ucsd.edu/projects/mapping/
http://cordc.ucsd.edu/projects/mapping/
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AUVs are an important tool for adaptive ocean sampling 
and can be used to collect transect data in horizontal and verti-
cal spaces. AUVs typically have limited localization capabili-
ties while underwater (Zhang et al. 2015), so their positions 
are only available when they are at the surface of water. There-
fore, AUVs in general follow predicted trajectories generated 
prior to diving into the water. While traveling underwater, the 
motion of an AUV is perturbed by ambient flow, deviating 
its actual trajectory from its predicted trajectory. This devia-
tion accumulates along the vehicle trajectory and provides 
important Lagrangian information of flow. For example, the 
dead-reckoning method of underwater gliders employs flow 
estimates computed from this deviation.

2.2 � Generic environmental models

The GEM is a class of data-driven computational models that 
estimate a map of the environment using the data collected by 
AUVs to support their navigation (Zhang 2016). The GEM is 
named “generic” in the sense that it is independent of bound-
ary conditions that are required to compute the states of typical 
PDE-based models. This section introduces the structure of the 
GEM and the modeling of coastal ocean flow as an example 
of the GEM.

2.2.1 � Model structure

We consider 2-dimensional flow fields for simplicity of pres-
entation. Let subscripts x and y denote the x and y components 
in ℝ2 and define a flow vector as � = [fx, fy]

T ∈ ℝ
2 . We assume 

that spatial and temporal characteristics of flow can be approx-
imated by a series of spatial and temporal basis functions. Let 
us denote the time by t ∈ ℝ and the position by � ∈ ℝ

2 . For 
position � , we define a series of spatial basis functions indexed 
by m as �m(�) ∈ ℝ to approximate spatial variation of flow. 
For time t, a series of temporal basis functions indexed by n is 
given by �n(t) ∈ ℝ to approximate temporal variation of flow.

Assuming separation of variables (i.e., the flow field can be 
approximated by a space-dependent term multiplied by a time-
dependent term), we define parameters associated with the 
spatial basis functions as �x,m ∈ ℝ and �y,m ∈ ℝ and param-
eters associated with the temporal basis functions as �x,n ∈ ℝ 
and �y,n ∈ ℝ . Then, using M spatial basis functions and N tem-
poral basis functions, flow velocity � at position � and time t 
is represented by

(1)

fx(�, t) =

(
M∑

m=1

�x,m�m(�)

)(
N∑
n=1

�x,n�n(t)

)

fy(�, t) =

(
M∑

m=1

�y,m�m(�)

)(
N∑
n=1

�y,n�n(t)

)
.

Let �x ∈ ℝ
M+N  and �y ∈ ℝ

M+N  denote the vectors of 
all the parameters in the x and y components of flow, 
respectively (i.e., �x = [�T

x
,�T

x
]T  and �y = [�T

y
,�T

y
]T 

w h e r e  �x = [�x,1,… , �x,M]
T  ,  �y = [�y,1,… , �y,M]

T  , 
�x = [�x,1,… , �x,N]

T , and �y = [�y,1,… , �y,N]
T ). Then, we 

can express (1) as

in which h(�, t;⋅) is a nonlinear mapping from �x and �y to 
fx and fy , respectively.

The choice for temporal basis functions often relies on 
whether the basis functions approximate periodic or aperi-
odic flow. Possible choices include Fourier series, wavelets, 
piecewise polynomials, and splines. Spatial basis functions 
can also be chosen from a variety range of functions. Among 
them, our experience in flow modeling (Chang et al. 2014) 
suggests Gaussian radial basis functions (RBFs), which are 
expressed by

where m is the index, �m ∈ ℝ
2 is the center, and 𝜎m > 0 is 

the width. An overview of RBFs is given in Bishop (1995), 
Kumar (2004), Fornberg and Flyer (2015). RBFs have the 
properties of universal approximation (Park and Sandberg 
1991) and best approximation (Girosi and Poggio 1990). 
The former describes that a finite set of RBFs with a single 
hidden layer can approximate any continuous functions of a 
finite number of real variables. The latter characterizes that 
one of its approximations to a function has the minimum 
error between the approximation and the function.

The basis functions of the GEM can be constructed by 
using prior information of the environment obtained from 
existing ocean models or historic observation data and its 
parameters can be trained on nowcast or forecast data from 
the ocean models. Ocean models are typically updated on a 
daily basis. However, to support AUV navigation in dynamic 
environments, the model parameters should be updated 
more frequently. During the time between the ocean model 
updates, one may use other observations such as data from 
AUVs or moorings to update the parameters of the GEM. 
This process can be considered as simplified data assimila-
tion for data-driven flow models. Details of this data assimi-
lation process for (1) is discussed in Sect. 4.

(2)
fx(�, t) = h(�, t;�x)

fy(�, t) = h(�, t;�y),

(3)�m(�) = exp

�
−
‖� − �m‖2

2�2
m

�
,
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2.2.2 � An example of the GEM

This section presents an example of the GEM in the form of 
(1) that represents coastal ocean flow [see our previous work 
(Chang et al. 2014) for details]. Note that by expanding (1), 
the equations become

Let us define �x,(m,n) and �y,(m,n) as the product of the mth 
spatial and nth temporal parameters in the x and y compo-
nents, �x,m�x,n and �y,m�y,n , respectively. Then, by defining 
�(m,n) = [�x,(m,n), �y,(m,n)]

T , (1) can be expressed as

The spatial characteristics of flow is modeled using Gauss-
ian RBFs as discussed in the previous section. To model the 
temporal characteristics, we decompose coastal ocean flow 
into tidal and non-tidal components. Tidal flow is forced by 
a superposition of known tidal constituents, each of which 
has a specific frequency related to astronomical phenom-
ena. Therefore, to model temporal variation of tidal flow, 
we define the following temporal basis functions by using a 
series of sinusoidal functions:

in which n ∈ {0, 1, 2,…} is the index, � tide
0

 represents the 
tidal residual flow, and for i = ⌈ n

2
⌉ ≥ 1 , �i is the frequency 

corresponding to the ith tidal constituent. Then, for position 
� and time t, the tidal flow �tide ∈ ℝ

2 is expressed as

in which �tide
(m,n)

∈ ℝ
2 is the vector of parameters associ-

ated with the mth spatial and nth temporal basis functions, 
M is the number of RBFs, and N is the number of tidal 
constituents.

To approximate non-tidal flow, weighted Laguerre 
polynomials are chosen as temporal basis functions. The 
weighted Laguerre polynomials are orthogonal and force 
temporal components to decay exponentially as t → ∞ , 

(4)

fx(�, t) =

M∑
m=1

N∑
n=1

�x,m�x,n�m(�)�n(t)

fy(�, t) =

M∑
m=1

N∑
n=1

�y,m�y,n�m(�)�n(t).

(5)�(�, t) =

M∑
m=1

N∑
n=1

�(m,n)�m(�)�n(t).

(6)� tide
n

(t) =

⎧⎪⎨⎪⎩

1 if n = 0

cos(�⌈ n

2
⌉t) if n is odd

sin(�⌈ n

2
⌉t) if n is even,

(7)�tide(�, t) =

M∑
m=1

2N∑
n=0

�tide
(m,n)

�m(�)�
tide
n

(t),

maintaining the system stable. The temporal basis func-
tion using the pth order weighted Laguerre polynomials is 
defined as

where p ∈ {0, 1, 2,…} is the index representing the order 
of the Laguerre polynomials and 𝜁 > 0 is the time scaling 
factor which determines the rate of exponential decay. Many 
discussions have been raised to find an optimal value for the 
time scaling factor (see Israelsen and Smith 2014). Practi-
cally, an optimal value with the minimum error is obtained 
by solving a nonlinear optimization. In this paper, we choose 
� empirically. Using 0th to Pth order Laguerre polynomials, 
we model the non-tidal flow �nontide ∈ ℝ

2 as

in which �nontide
(m,p)

∈ ℝ
2 is the vector of parameters associ-

ated with the mth spatial and pth temporal basis functions, 
M is the number of RBFs, and P is the largest order of the 
Laguerre polynomial functions.

Then, coastal ocean flow is modeled as the summation of 
the tidal and non-tidal flow such as

(8)�nontide
p

(t) =
√
2�

e� t

p!

dp

dtp
(tpe−2� t),

(9)�nontide(�, t) =

M∑
m=1

P∑
p=0

�nontide
(m,p)

�m(�)�
nontide
p

(t),

700 720 740 760 780
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0
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w
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]
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predicted

(a) x component of flow.
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(b) y component of flow.

Fig. 2   Surface flow observation (green solid lines) from HF radar 
for coordinates (−80.0240◦, 31.3261◦) off the coast of Georgia along 
with modeled flow (blue dotted lines) and predicted flow (red dashed 
lines) using the flow model (10) initialized on 31-day data in January, 
2012
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Figure 2 shows time-series surface flow observation from 
HF radar for coordinates (−80.0240◦, 31.3261◦) off the coast 
of Georgia along with modeled and predicted flow using the 
flow model (10). The model is constructed by using 31-day 
historical data from January 1, 2012 00:23 to January 31, 
2012 23:53. To approximate the flow, the three major (M2, 
N2, and S2) tidal constituents and 0th to 14th Laguerre poly-
nomials with time scaling factor � =

1

20
 are chosen to con-

struct the temporal basis functions for the tidal and non-tidal 
flow, respectively. Only a single RBF is used as the spatial 
basis function for the fixed coordinates. In this example, 
each product of the spatial and temporal parameters is con-
sidered as one spatio-temporal parameter and the parameters 
are estimated using linear least squares. After the flow model 
is constructed, predictions are generated from the model for 
the next 48 h. Please note that for the rest of the paper, we 
discuss how spatial and temporal parameters in (1) can be 
estimated separately through MT and data assimilation.

3 � Motion tomography: Eulerian flow 
mapping from Lagrangian data

To facilitate assimilation of Lagrangian data collected by 
AUVs into the GEM, we convert the data into an Eulerian 
spatial map through MT so that Lagrangian data assimila-
tion can be achieved together with Eulerian data assimilation 
in a unified framework. In this section, we first study how 
the flow field affects the horizontal motion of AUVs. Then, 
by exploiting multiple AUVs traveling in a domain, MT is 
formulated with spatio-temporal discretization, allowing to 
account for both spatial and temporal variability of flow. 
Lastly, the flow field estimation problem through MT and 
its parameterization are introduced.

3.1 � Horizontal motion of AUVs under flow

To model the influence of flow on the vehicle trajectory, 
we consider the horizontal motion of AUVs in the presence 
of flow. The horizontal vehicle motion is modeled using a 
first-order particle model with constant speed sh and vehicle 
heading � . Let us denote the time by t ∈ ℝ and the position 
by � ∈ ℝ

2 . Let T = [t0, tf ] be a bounded time interval called 
the observation interval. Let us consider that a vehicle trav-
els using constant flow prediction �̂ during the observation 
interval. Suppose that the actual position � of a vehicle is 
available only at the beginning and ending times of its travel, 
t = t0 and t = tf  , respectively.

The predicted vehicle position �̃(t) during the observation 
interval can be obtained by integrating

(10)� (�, t) = �tide(�, t) + �nontide(�, t).

in which sh is the horizontal through-water speed of the vehi-
cle and �̂ is the predicted flow velocity. Let us assume that 
vehicle heading � is known. The actual vehicle position �(t) 
is affected by real flow defined by � (�, t) and can be obtained 
by integrating

Since real flow �  is unknown, �(t) is unknown during 
t ∈ (t0, tf ) . In contrast, predicted flow �̂ is known along the 
vehicle trajectory. Therefore, without loss of generality, we 
let �̂ = � for simplicity and instead of (11), throughout the 
paper, we consider

Because of unknown flow � , the actual trajectory differs 
from the predicted trajectory. This difference is referred to as 
the motion-integration error. Let � ∈ {�(t)}t∈T ∶ T → ℝ

2 be 
the trajectory of a vehicle. From (12) and (13), the motion-
integration error � ∈ ℝ

2 over one observation interval is 
given by

For trajectory � , we introduce arc-length parameter � , given 
by d� = str(� (�, t))dt , in which str is the speed of the vehicle 
along its actual trajectory, defined by str(� (�, t)) = ‖�̇(t)‖ . 
Then, (14) becomes

The motion-integration error has been used to estimate a 
flow field in the vicinity of an AUV that does not measure 
ambient flow directly. For example, the underwater glider, 
a buoyancy-driven AUV (Davis et al. 2002), computes a 
spatially and temporally averaged flow estimate from the 
motion-integration error along the vehicle trajectory traveled 
over one subsurface interval (Merckelbach et al. 2008). This 
method is very efficient in computation, and the glider incor-
porates this estimate into navigation to reduce the motion-
integration error for the next subsurface interval. The work 
Petrich et al. (2009) presents a similar way of estimating a 
flow velocity to identify model parameters for a time-invar-
iant flow field. However, the effectiveness of this method 

(11)̇̃�(t) = sh

[
cos 𝜃

sin 𝜃

]
+ �̂ ,

(12)�̇(t) = sh

[
cos 𝜃

sin 𝜃

]
+ � (�, t).

(13)̇̃�(t) = sh

[
cos 𝜃

sin 𝜃

]
.

(14)
�(𝛾 , T ) = ∫

tf

t0

(
�̇(t) − ̇̃�(t)

)
dt

= ∫
tf

t0
� (�, t)dt.

(15)�(� , T ) = ∫
�

1

str(� (�, t))
� (�, t)d�.



164	 D. Chang et al.

1 3

significantly degrades in the presence of flow with strong 
spatial and temporal variations (Chang et al. 2015).

3.2 � Formulation of MT

MT incorporates spatial and temporal variability of flow 
by discretizing (15) in both space and time (Chang and 
Zhang 2016a). Suppose we deploy K vehicles indexed 
by i ∈ {1,… ,K} to collect data in spatial domain D over 
observation interval T = [t0, tf ] as illustrated in Fig.  3. 
Let us discretize domain D into P = R × S grid cells with 
D(r,s) denoting the (r,  s)th cell where r ∈ {1,… ,R} and 
s ∈ {1,… , S} . We define index j = (r − 1)S + s such 
that Dj ≡ D(r,s) , j ∈ {1,… ,P} . Let us also discretize T  
into T intervals and define index � ∈ {1,… , T} such that 
T1 = [t0, t1],… , T� = [t�−1, t�],… , TT = [tT−1, tT = tf ] . Let 
(D, T) denote the entire spatio-temporal domain and (Dj, T�) 
the (j, �) th interval of the domain.

To construct the flow vector, let us denote the flow veloc-
ity in grid cell Dj for time interval T� by �(j,�) = � (�, t) , 
� ∈ Dj , t ∈ t� and assume �(j,�) is constant within (Dj, T�) .  
Let us stack flow velocities for all the spatio-temporal  
intervals and define vector � = [�

T

x
, �

T

y
]T  , where �

x
=

[… , f
x,(P,�−1), fx,(1,�),… , f

x,(P,�), fx,(1,�+1),…]T  a n d  �
y
=

[… , fy,(P,�−1), fy,(1,�),… , fy,(P,�), fy,(1,�+1),…]T are the x and y 
components of �  , respectively. Assuming that vehicle head-
ing �i

(j,�)
 of the ith vehicle within (Dj, T�) is constant, this 

flow setting constructs the linear trajectory in (Dj, T�) , lead-
ing to the piecewise linear trajectory over (D, T) . We assume 
that vehicle heading �i

(j,�)
 can be measured by a compass or 

estimated with small bounded error. The influence of the 
vehicle heading error on MT is analyzed in our previous 
work (Chang et al. 2017).

Note that the vehicle trajectory clearly depends on the 
flow field. Consider the ith vehicle passing through the jth 
cell during the � th time interval. Using the arc-length param-
eter � , the length of the vehicle trajectory Li

(j,�)
 can be 

obtained by

in which �i(Dj, T�) represents curve �i within (Dj, T�) . Sup-
pose the ith vehicle passes through (Dj−1, T�−1) before 
(Dj, T�) . Since the vehicle trajectory is formed by integrating 
the vehicle motion starting from the ending position in 
(Dj−1, T�−1) , vehicle trajectory �i(Dj, T�) depends on 
�i(T�−1,Dj−1) and flow within (T�−1,Dj−1) . To consider the 
dependency of the vehicle trajectory on the flow field, we 
express the length of the vehicle trajectory as Li

(j,�)
= Li

(j,�)
(� ).

Then, for the ith vehicle, (15) can be discretized into

Considering the flow velocity along the x and y directions 
separately, we have

By constructing vectors �x = [dx,1, dx,2,… , dx,K]
T  and 

�y = [dy,1, dy,2,… , dy,K]
T , we can rewrite (18) as

where

Matrix �(� ) contains information of the travel time of indi-
vidual vehicles for each of the spatio-temporal intervals. 
Note that because of the dependency of the vehicle trajec-
tory on flow, (19) is nonlinear and typically underdetermined 
( K < TP ). Constructing spatial flow field maps for the time 

(16)Li
(j,�)

= ∫
�i(Dj,T� )

d�i,

(17)�i =

T∑
�=1

P∑
j=1

Li
(j,�)

(� )

sitr(�(j,�))
�(j,�), i ∈ {1,… ,K}.

(18)

dx,i =

T∑
�=1

P∑
j=1

Li
(j,�)

(� )

sitr(�(j,�))
fx,(j,�)

dy,i =

T∑
�=1

P∑
j=1

Li
(j,�)

(� )

sitr(�(j,�))
fy,(j,�).

(19)
�x = �(� )� x

�y = �(� )� y,

�(� ) =

⎡⎢⎢⎢⎢⎣

…
L1
(1,�)

(� )

s1
tr
(�(1,�))

…
L1
(P,�)

(� )

s1
tr
(�(P,�))

…

⋮ ⋮ ⋱ ⋮ ⋮

…
LK
(1,�)

(� )

sK
tr
(�(1,�))

…
LK
(P,�)

(� )

sK
tr
(�(P,�))

…

⎤⎥⎥⎥⎥⎦
.

x

y

di

ri(t
f
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f
i )
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(j,τ)

Fig. 3   Illustration of MT mapping formulation for a time-varying 
flow field. Actual (the blue solid line) and predicted (the blue dashed 
line) vehicle trajectories are displayed in a discretized domain
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intervals from Lagrangian data boils down to solving (19) 
for � .

3.3 � Flow field mapping

To solve the equations in (19) for flow �  , we first need to deter-
mine �(� ) based on the knowledge of vehicle trajectories. 
However, because of limited localization capabilities of AUVs, 
their underwater trajectories are often unknown and thus must 
be estimated before solving (19). Therefore, flow field map-
ping through MT (see Algorithm 1) is achieved through an 
iterative process consisting of two key steps: trajectory tracing 
and flow field estimation. In this section, we introduce flow 
field estimation and refer to Chang et al. (2017) for details 
about trajectory tracing.

Algorithm 1: MT flow field mapping
Data: Initial heading θi and motion-integration

errors di of vehicles, i ∈ {1, · · · ,K}
1 Set k = 0.
2 Compute an initial guess of the vehicle trajectories

γ̃k
i .

3 Compute an initial guess of the flow field fk.
4 repeat
5 Let k = k + 1.
6 Construct matrix L(f) based on the trajectories

γ̃k−1
i .

7 Flow field estimation: Estimate the flow field
fk from fk−1.

8 Trajectory tracing: Simulate new trajectories
γ̃k
i from the initial position rγi

(t0) using fk.
9 Compute the rms error erms

γk between simulated
and real ending positions.

10 until a stopping condition is met (e.g.,
|∆erms

x,γk |, |∆erms
y,γk | ≤ εγ)

3.3.1 � Flow field estimation

To solve the underdetermined nonlinear system of equations 
in (19), our previous work (Wu et al. 2013; Chang et al. 
2016, 2017) developed a method by extending the Kaczmarz 
method (Kaczmarz 1937, 1993). The Kaczmarz method, also 
known as the algebraic reconstruction technique (Gordon 
et al. 1970), iteratively solves an underdetermined linear sys-
tem of equations for computerized tomography (Kak and 
Malcom 2001; Natterer 1986; Cierniak 2011) in medical 
imaging. As its extension, our method linearizes the system 
of equations associated with MT at each iteration and solves 
the linearized system of equations.

For simplicity of presentation, let us omit subscripts x and y 
in (19) and first suppose we have a linear system of equations 
�� = � where

To solve this linear system of equations, the Kaczmarz 
method iterates the following optimization process:

where �i is the ith row of matrix � , di is the ith element of 
vector � , k ∈ {0, 1, 2,…} is the index for the iteration, and 
i = mod(k,K) + 1 . Through the Lagrange multiplier method, 
the above formulation of the Kaczmarz method leads to the 
following:

The Kaczmarz method is geometrically represented 
as an iterative projection of �

k onto the hyperplane 
Hi ∈ {� ∈ ℝ

n|�i� = di}.
Extended from the Kaczmarz method, a nonlinear Kacz-

marz method has been developed in Wu et al. (2013), Chang 
et al. (2016, 2017) to solve (19) for MT. Suppose we have the 
following system of equations:

where

To solve (22), we first formulate the following iterative opti-
mization problem:

where �i(� ) is the ith row of matrix �(� ) , di is the ith ele-
ment of vector � , i = mod(k,K) + 1 , and k ∈ {0, 1, 2,…} 
is the iteration index. To deal with the nonlinearity in the 
constraint, we linearize it by using the latest estimate of �  
at each iteration. That is, the method solves the following 
iterative optimization problem:

� =

⎡
⎢⎢⎣

�1

⋮

�K

⎤
⎥⎥⎦
, � =

⎡
⎢⎢⎣

f1
⋮

fP

⎤
⎥⎥⎦
, � =

⎡
⎢⎢⎣

d1
⋮

dK

⎤
⎥⎥⎦
.

(20)
�
k+1

= argmin
�

1

2

‖‖‖‖� − �
k‖‖‖‖

2

subject to di = �i� ,

(21)�
k+1

= �
k
+

di − �i�
k

‖�i‖2
�T
i
.

(22)�(� )� = �,

�(� ) =

⎡⎢⎢⎣

�1(� )

⋮

�K(� )

⎤⎥⎥⎦
, � =

⎡⎢⎢⎣

f1
⋮

fP

⎤⎥⎥⎦
, � =

⎡⎢⎢⎣

d1
⋮

dK

⎤⎥⎥⎦
.

(23)
�
k+1

= argmin
�

1

2

‖‖‖‖� − �
k‖‖‖‖

2

subject to di = �i(� )� ,

(24)
�
k+1

= argmin
�

1

2

‖‖‖‖� − �
k‖‖‖‖

2

subject to di = �i(�
k
)� .
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By solving (24), we obtain the following update equation:

As with the Kaczmarz method, the nonlinear Kacz-
marz method based on (25) can be geometrically repre-
sented as an iterative projection of �

k onto hyperplane 
Hi ∈ {� ∈ ℝ

n|�i(�
k
)� = di}.

3.3.2 � Parameterization

Since we discretize (15) in both space and time, the dimension 
of the solution space for � x and � y in (19) may become very 
high. In addition, we may not have enough trajectory informa-
tion to estimate full solution, causing the solution variable to 
be sparse. To address these issues, instead of solving the sys-
tem of equations in (22) directly, we parameterize (22) using 
(1) and solve the parameterized system of equations. That is, 
we estimate the parameters of the model first and then recon-
struct a flow field. By using a sufficiently small number of 
basis functions associated with parameters to approximate the 
flow field, we can reduce the dimension of the solution space.

Following the discretization setting for MT and omitting 
subscripts x and y for simplicity, the flow model in (1) can be 
expressed as the following nonlinear function:

in which � j represents the position for grid cell Dj , 
j ∈ {1,… ,P} , t� represents the time for time interval T� , 
� ∈ {1,… , T} , and � = [�T , �T ]T  is the vector of spa-
tial and temporal parameters, which is the input to the 
nonlinear function in (26). By stacking f(j,�) , we con-
struct � = [… , f(P,�−1), f(1,�),… , f(P,�), f(1,�+1),…]T  , which 
is plugged into the system of equations in (22). Note that 
matrix � in (22) is also a nonlinear mapping for input � . 
Now that we have a system of equations with two nonlinear 
mappings � and �  , solving the system of equations is chal-
lenging. As a workaround, we alternatingly fix either spatial 
or temporal parameters using their latest estimates and solve 
the system of equations for the other parameters.

Let us define �(�) = [… ,�m(�),…]T , m ∈ {1,… ,M} 
and � (t) = [… ,�n(t),…]T  , n ∈ {1,… ,N} . Suppose 
at the kth iteration, we have estimates for parameters, �k 
and �k . By fixing spatial parameters � using �k , we have 
f(j,�) = (�k)T�(� j)(� (t�))T� . Then, we define ��k (�) such that 
��k (�)� = �(�)�  where spatial parameter � in �  is evaluated 
using �k . The temporal parameter estimation problem can be 
solved by the following iterative optimization problem:

(25)�
k+1

= �
k
+

di − �i(�
k
)�

k

‖�i(�
k
)‖2

�
�i(�

k
)
�T

.

(26)f(j,�) = h(� j, t� ;�),

in which ��k

i
(�) is the ith row of ��k (�) . Similarly, 

by fixing temporal parameters � using �k , we have 
f(j,�) = (�k)T� (t�)(�(� j))T� . Let us define ��k (�) such that 
��k (�)� = �(� )�  where temporal parameter � in �  is evalu-
ated using �k . Then, the spatial estimation problem can be 
solved by the following optimization problem:

in which ��k

i
(�) is the ith row of ��k (�).

Based on the above two alternating optimization prob-
lems, we obtain an iterative algorithm for flow model 
parameter estimation (Algorithm 2). In the algorithm, the 
updating equations include relaxation parameter �k which 
affects the convergence rate. To check the convergence, for 
k that satisfies mod(k,K) + 1 = K  , we first reconstruct �

k 
using the estimated parameters, �k and �k . Then, we stop 
the algorithm if ‖�(� k)� k

x
− �x‖ and ‖�(� k)� k

y
− �y‖ are suf-

ficiently small (i.e., below a threshold �
�
).

Algorithm 2: MT flow model parameter esti-
mation
Data: Motion-integration errors di, i ∈ {1, · · · ,K}

1 Set k = 0.
2 Make an initial guess of the solutions, η0

x, η0
y, ρ0

x,
and ρ0

y.
3 repeat
4 for i = 1 to K do
5 Update the solutions by

ρk+1
x =ρk

x+λk dx,i−Gηk
x (ρk)ρk

x

‖Gηk
x (ρk)‖2

(
Gηk

x (ρk)
)T

ρk+1
y =ρk

y+λk
dy,i−Gηk

y (ρk)ρk
y

‖Gηk
y (ρk)‖2

(
Gηk

y (ρk)
)T

ηk+1
x =ηk

x+λk dx,i−Gρk+1
x (ηk)ηk

x

‖Gρk+1
x (ηk)‖2

(
Gρk+1

x (ηk)
)T

ηk+1
y =ηk

y+λk
dy,i−Gρk+1

y (ηk)ηk
y

‖Gρk+1
y (ηk)‖2

(
Gρk+1

y (ηk)
)T

.
6

Let k = k + 1.
7 end
8 Construct fx and fy using updated estimates for

the parameters.
9 until a stopping condition is met (e.g.,

‖L(fk)fkx − dx‖, ‖L(fk)fky − dy‖ ≤ εf )

In the next section, we present assimilation of Lagrangian 
data, converted into a spatial map of a flow field by MT, into 

(27)

�k+1 = argmin
�

1

2
‖� − �k‖2

subject to di = �
�k

i
(�k)�,

(28)
�k+1 = argmin

�

1

2
‖� − �k‖2

subject to di = �
�k

i
(�k)�,
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the GEM. Note that flow field estimation (Algorithm 2) in 
MT is deterministic. Hence, by incorporating Lagrangian 
data into the data assimilation framework, we can reduce the 
uncertainties in Lagrangian observation data.

4 � Data assimilation

This section introduces a method for assimilating both 
Eulerian and Lagrangian data into data-driven flow models 
described as GEMs through a unified framework of data 
assimilation. We first construct a system model for data 
assimilation. Let us omit subscripts x and y for simplicity of 
presentation and define a state variable � as defined in (2). 
Suppose we have a mooring that provides Eulerian data at 
a fixed location with sampling period Ts . A team of AUVs 
travel around the mooring, collecting data, and their Lagran-
gian trajectory information is processed through MT in a 
batch every �Ts , � ∈ ℕ

+ ≥ 2 where ℕ+ denotes the positive 
integer. We denote �k = �(kTs) where k is the time step 
index and assuming that the state evolution is linear, we 
define

where �k is the system matrix and �k is the process noise 
at the kth time step. We assume that �k is zero mean Gauss-
ian with known covariance �k . System matrix �k can be 
determined by using prior information of the environment 
obtained from historic observation data or ocean models. 
For example, spatial and temporal characteristics of flow 
may depend on specific regions and/or seasons, and these 
characteristics can be analyzed from historic observation 
data or ocean models to determine �k . If prior information 
is not available, a simple choice may be �k = I.

For position � and time step k, let us define an observation 
variable zk(�) to be observation of either fx(�, kTs) or 
fy(�, kTs) . Provided that a mooring is deployed at �E , Eule-
rian flow observation at time step k is denoted by zk(�E) . For 
Lagrangian data, suppose that a map of a flow field con-
structed by MT contains P spatial grid cells (see Fig. 3). Let 
�L
j
 be a position that represents the jth grid cell. Then, we 

denote flow observation based on the Lagrangian data at 
time step k by zk(�Lj ) , j ∈ {1,… ,P} . Let us stack both Eule-
r ian and Lagrangian observat ions  such that 
�k = [zk(�

E), zk(�
L
1
),… , zk(�

L
P
)] and define matrix � using (2) 

such that

(29)�k+1 = �k�k + �k,

(30)�k(�k) =

⎡
⎢⎢⎢⎣

hk(�
E,�k)

hk(�
L
1
,�k)

⋮

hk(�
L
P
,�k)

⎤
⎥⎥⎥⎦
,

where hk(�,�) = h(�, kTs;�) . Then, the observation equa-
tion at time step k is given by

where observation noise �k is assumed zero mean Gaussian 
with known covariance matrix �k.

Remark 1  Assimilation of Eulerian and Lagrangian data into 
the GEM helps to reduce uncertainties in the noisy data. For 
such information fusion to be achieved in a unified frame-
work of data assimilation, we should have a clear under-
standing of the covariance of noise in both data. Since Eule-
rian data are collected at a fixed location, the covariance of 
noise in Eulerian data can be obtained from historic data or 
geophysical ocean models. However, since Lagrangian data 
are collected from mobile sensors, the covariance of noise 
in Lagrangian data is difficult to identify. We assume that the 
noise in the field is spatially uniform with respect to covari-
ance and the noise in Lagrangian data is ergodic with respect 
to covariance. Then, the covariance of noise in Lagrangian 
data can be obtained by computing the covariance of noise 
in Eulerian data averaged over time at a fixed location. We 
also consider local correlation of noise covariance in the 
field. We assume that each grid cell in the Eulerian spatial 
map converted from Lagrangian data is identically corre-
lated with its neighboring grid cells with respect to noise 
covariance. That is, noise covariance matrix �k is con-
s t r uc ted  such  tha t  �k,(p,p) = �[�k,p�

T
k,p
] = �  and 

�k,(p,q) = �[�k,p�
T
k,q
] = � if the pth and qth grid cells are 

neighboring where p = {1,… ,P} , q = {1,… ,P} , and � is 
constant.

Because of the nonlinear observation equation, parameter 
estimation for the system (29) and (31) becomes a nonlinear 
filtering problem. To deal with this problem, we decompose 
it into two linear sub-filtering problems for (i) spatial param-
eter estimation and (ii) temporal parameter estimation. For 
each sub-filtering problem, we fix either set of spatial or 
temporal parameters and estimate the other set of parame-
ters. Because of their different spatial and temporal sampling 
scales, Eulerian data better account for temporal variability 
of a flow field while Lagrangian data better for spatial vari-
ability. Therefore, we use Eulerian data to update temporal 
parameters and Lagrangian data to update spatial param-
eters. This decomposition of the nonlinear filtering problem 
is valid provided that the spatial and temporal characteristics 
of flow can be individually estimated from Lagrangian and 
Eulerian data, respectively. In the following sections, we 
present our filtering method and analyze the observability 
to verify the convergence of the derived filters.

(31)�k = �k(�k) + �k,
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4.1 � Temporal and spatial parameter estimation

As described in the previous section, Eulerian and Lagran-
gian data are provided on different time scales, leading to 
different time scales for Eulerian and Lagrangian data assim-
ilation (i.e., every time step for Eulerian data and every � th 
time step for Lagrangian data). Suppose Eulerian data are 
available at time step k and the latest estimates of the spatial 
parameters were computed at time step ⌊k∕�⌋� . We fix all 
the spatial parameters �k using their latest estimates �⌊k∕�⌋� 
and estimate the temporal parameters �k . Now, in state vec-
tor � , � is the only unknown, formulating the filtering prob-
lem that is linear in �.

The state and observation equations for temporal param-
eter estimation are given by

where ��

k
= �T⌊k∕�⌋��(�E)� T

k
 , and ��

k
 and ��

k
 are the vectors 

of the process and observation noise, which are zero mean 
Gaussian with known covariance ��

k
 and ��

k
 . For the system 

in (32) and (33), a Kalman filter can be derived as

where �̂k is the optimal estimate of �k.
Suppose Lagrangian data are available at the kth step. 

Since Lagrangian data are collected over relatively a long 
time period, the temporal scale of Lagrangian data does not 
match that of Eulerian data. To resolve this issue, we con-
struct an Eulerian spatial map for time step k by using the 
estimated parameters through MT using Algorithm 2 and 
assimilate the constructed map into the GEM. Suppose that 
the latest estimates for the temporal parameters were com-
puted at the (k − 1) th step. In contrast to temporal parameter 
estimation, we fix all the temporal parameters � using their 
latest estimates �k−1 . Then, the subsequent filtering problem 
is linear in �.

For spatial parameter estimation, the state and observa-
tion equations are given by

where

(32)�k+1 = �
�

k
�k + �

�

k

(33)�k = �
�

k
�k + �

�

k
,

�̂−
k
= �

𝜌

k
�̂+
k−1

�
𝜌−

k
= �

𝜌

k
�
𝜌+

k−1
(�

𝜌

k
)T +�

𝜌

k−1

�k = �
𝜌−

k
(�

𝜌

k
)T (�

𝜌

k
�
𝜌−

k
(�

𝜌

k
)T + �

𝜌

k
)−1

�̂+
k
= �̂−

k
+�k(�k −�

𝜌

k
�̂−
k
)

�
𝜌+

k
= (I −�k�

𝜌

k
)�

𝜌−

k
(I −�k�

𝜌

k
)T +�k�

𝜌

k
�T

k
,

(34)�k+1 = �
�

k
�k + �

�

k

(35)�k = �
�

k
�k + �

�

k
,

and ��

k
 and ��

k
 are the vectors of the process and observation 

noise, which are zero mean Gaussian with known covari-
ance ��

k
 and ��

k
 . For the system in (34) and (35), we derive 

a Kalman filter as follows.

where �̂k is the optimal estimate of �k.

4.2 � Observability analysis

Given a system with no control input, a Kalman filter con-
verges if the system is uniformly completely observable (see 
Jazwinski 1970). We redefine uniform complete observabil-
ity in Jazwinski (1970) as follows.

Definition 1  The linear system

is uniformly completely observable if there exist 𝜏, 𝛽1, 𝛽2 > 0 
such that the observability Gramian J(k, k − �) =∑k

j=k−�
�T

j
�−1

j
�j satisfies 𝛽1I ≼ J(k, k − 𝜏) ≼ 𝛽2I  for all 

k > 𝜏 where the dimension of I is defined accordingly. Here, 
�j is the covariance matrix for noise �j.

Lemma 1  Let nonzero vectors �i ∈ ℝ
n , i ∈ {1,… , n} be 

linearly independent. Then, M =
∑n

i=1
�i�

T
i
∈ ℝ

n×n has 
full rank.

Proof  Consider nonzero vector �1 ∈ span{�2,… ,�n}
⟂ . 

Then, M�1 = (�1�
T
1
)�1 = �1(�

T
1
�1) is a nonzero scalar mul-

tiple of �1 . Similarly, for �i ∈ span{�j}
⟂

j≠i , M�i is a nonzero 
scalar multiple of �i . In other words, nonzero scalar multi-
ples of each �i are in the range of M and the dimension of 
the range of M is n, which is equivalent to M having full 
rank (c.f., Horn and Johnson 1985, p. 13). 	�  ◻

�
�

k
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⎡
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𝜂
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(36)�k+1 = �k�k + �k

(37)�k = �k�k + �k
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In the following theorem, we prove uniform complete 
observability for spatial parameter estimation:

Theorem 1  The system in (34) and (35) is uniformly com-
pletely observable if the following conditions are satisfied: 

(Cd1)	� The matrix ��

j
 is uniformly bounded for all j (i.e., 

𝛽3I(P+1)×(P+1) ≼ �
𝜂

j
≼ 𝛽4I(P+1)×(P+1) for some con-

stants 𝛽3, 𝛽4 > 0.
(Cd2)	� Among �(⋅) ’s evaluated at the position of the 

mooring, �E , and the positions of the grid cells, �L
i
 , 

i ∈ {1,… ,P} , at least M number of �(⋅) ’s are lin-
early independent.

Proof  For the system in (34) and (35), we have observability 
Gramian J�(k, k − �) =

∑k

j=k−�
(�

�

j
)T (�

�

j
)−1�

�

j
 . From (Cd1), 

�
�

j
 is positive definite and bounded above and below. There-

fore, we obtain 𝛽−1
4

∑k

j=k−𝜏
(�

𝜂

j
)T�

𝜂

j
≼ J𝜂(k, k − 𝜏) ≼ 𝛽−1

3∑k

j=k−�
(�

�

j
)T�

�

j
 for all k > 𝜏  . Next, we prove that ∑k

j=k−�
(�

�

j
)T�

�

j
 is positive definite. We can compute

The quadratic scalar term 
(
�T
j−1

� j

)2

 is always positive 
unless the temporal component of flow is zero everywhere. 
Let us define M� = [�(�L

1
)�(�L

1
)T +⋯ +�(�L

P
)�(�L

P
)T ] . 

All the terms inside the bracket are rank-one positive-sem-
idefinite matrices. From (Cd2) and Lemma 1, M� has full 
r a n k  a n d  i s  p o s i t i ve  d e f i n i t e .  T h e re fo r e , 
𝛽5IM×M ≼ M

𝜂 ≼ 𝛽6IM×M for some constants 𝛽5, 𝛽6 > 0.	
� ◻

Remark 2  Condition (Cd1) represents that the covariance of 
noise is uniformly bounded. Note that observation � is 
obtained from a stationary sensor and the MT method. By 
assuming that the stationary sensor is reliable and the param-
eter estimation algorithm in MT is convergent, (Cd1) can be 
satisfied. Condition (Cd2) can be satisfied by choosing spa-
tial basis functions appropriately. Consider Gaussian RBFs 
indexed by m, �m(�) = exp

�
−

‖�−�m‖
2�2

�
 , where �m is the center 

(�
�

j
)T�

�

j
=

⎡⎢⎢⎣

�T
j−1

� j�(�L
1
)T

⋮

�T
j−1

� j�(�L
P
)T

⎤⎥⎥⎦

T⎡⎢⎢⎣

�T
j−1

� j�(�L
1
)T

⋮

�T
j−1

� j�(�L
P
)T

⎤⎥⎥⎦
=
�
�T
j−1

� j�(�L
1
)T
�T

�T
j−1

� j�(�L
1
)T +⋯

+
�
�T
j−1

� j�(�L
P
)T
�T

�T
j−1

� j�(�L
P
)T

=
�
�T
j−1

� j

�2�
�(�L

1
)�(�L

1
)T+⋯+�(�L

P
)�(�L

P
)T
�
.

and � is the width. If we use Gaussian RBFs as spatial basis 
functions for �(�) = [… ,�m(�),…]T  , m ∈ {1,… ,M} , 
(Cd2) can be satisfied by choosing M number of different 
centers.

In the following theorem, we prove uniform complete 
observability for temporal parameter estimation:

Theorem 2  The system in (32) and (33) is uniformly com-
pletely observable if (Cd1) and the following condition are 
satisfied: 

(Cd3)	� The sampling period Ts is chosen such that at least 
N number of � j’s, j ∈ [k − 𝜏, k] ⊂ ℕ

+ are linearly 
independent.

Proof  For the system in (32) and (33), we have observability 
Gramian J�(k, k − �) =

∑k

j=k−�
(�

�

j
)T (�

�

j
)−1�

�

j
 . From (Cd1), 

�
�

j
 is positive definite and bounded above and below. There-

fore, we obtain 𝛽−1
4

∑k

j=k−𝜏
(�

𝜌

j
)T�

𝜌

j
≼ J𝜌(k, k − 𝜏) ≼ 𝛽−1

3∑k

j=k−�
(�

�

j
)T�

�

j
 for all k > 𝜏  . Next, we prove that ∑k

j=k−�
(�

�

j
)T�

�

j
 is positive definite. We can compute

The quadratic term in the parenthesis is always posi-
tive unless the spatial component of flow is zero every-
where. Let M� =

∑k

j=k−�
� T

j
� j . From (Cd3) and Lemma 

1, M� has full rank and is positive definite. Therefore, 
𝛽7IN×N ≼ M

𝜌 ≼ 𝛽8IN×N for some constants 𝛽7, 𝛽8 > 0.	
� ◻

Remark 3  Even though the system in (32) and (33) and the 
system in (34) and (35) are uniformly completely observ-
able, the convergence rate and accuracy of the derived filters 
may depend on how observable the systems are. For this 
problem, we can incorporate observability metrics such as 
the local unobservability index and the local estimation con-
dition, introduced in Krener and Ide (2009), that evaluate the 
degree of observability or unobservability.

5 � Simulation results

This section validates the proposed method by simulat-
ing one stationary and multiple mobile sensors that collect 
data in (i) a double-gyre flow field and (ii) a flow field con-
structed by real ocean surface flow observations from HF 
radar. Compared to a double-gyre flow field which is rela-
tively smooth and has a periodic spatio-temporal pattern, 

(�
�

j
)T�

�

j
=
�
�T⌊j∕�⌋��(�E)� T

j

�T�
�T⌊j∕�⌋��(�E)� T

j

�

=
�
�(�E)T�⌊j∕�⌋��T⌊j∕�⌋��(�E)

�
� j�

T
j
.
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an ocean surface flow field observed by HF radar is non-
smooth and erratic. For the construction of the GEM and 
the parameterization of MT, we use the flow model in (1). 
The collected Eulerian and Lagrangian data are assimilated 
into the GEM through the proposed unified data assimila-
tion framework. To show that the performance of the pro-
posed method combined with the GEM, we compare three 
implementations of the GEM through AUV guidance: (i) 
GEM-EL, assimilating both Eulerian and Lagrangian data, 
(ii) GEM-E, assimilating Eulerian data only, and (iii) GEM-
L, assimilating Lagrangian data only.

5.1 � GEM in simulated double‑gyre flow

As a test case, we first validate the proposed data assimi-
lation method for the GEM in a flow field with a double-
gyre pattern that occurs often in geophysical flow (Shadden 
et al. 2005). For position � = [x, y]T  and time t, a time-
varying double-gyre flow field can be described by the 
stream-function

where

over the domain [0, 2] × [0, 1] . The parameter A determines 
the magnitude of the flow velocity in the field, � is the fre-
quency of oscillation, and � determines approximately how 
far the separation line at x = 1 between the two gyres moves 
to the left or right. The velocity field is given by

For � = 0 , the flow is time-invariant and for � ≠ 0 , the 
gyres periodically expand and contract side to side in the 
x-direction within the domain. We choose � = 0.3 , A =

0.1

�
 , 

� =
2�

T
 , and T is 24 h, and then rescale the domain to 

[0, 20,000] × [0, 10,000] m2 (see Fig. 4). The parameters are 
chosen such that the gyres move side to side by approxi-
mately 3 km in both directions every 24 h.

We first define the spatial domain for the GEM. We 
choose the region centered at (x, y) = (5000, 5000) where 
a mooring is deployed. Figure 5 shows a time-series of 
flow velocity at the location of the mooring in the simula-
tion. Around the mooring, 2 AUVs collect data underwater 
while traveling at 0.35 m/s and come to the surface every 
one observation interval of 4 h. Considering the distance 

(38)�(�, t) = A sin(��(x, t)) sin(�y),

(39)�(x, t) = �(t)x2 + �(t)x

(40)�(t) = � sin(�t)

(41)�(t) = 1 − 2� sin(�t)

(42)fx = −
��

�y
= −�A sin(��(x)) cos(�y)

(43)fy =
��

�x
= �A cos(��(x)) sin(�y)

d�

dx
.

that the vehicle can travel over one observation interval in 
the absence of flow, i.e., 5040 m for 4 h, we construct the 
spatial domain whose size is [−2520, 2520] × [−2520, 2520] 
m 2 around the mooring.

For the flow model in the GEM, the domain is discretized 
into 6 × 6 grid cells. Among the grid points, the centers of 
4 Gaussian RBFs are determined by a K-means clustering 
algorithm to construct the spatial basis functions of the 
GEM. To determine the width for the RBFs, we first com-
pute the distances between each individual center and other 
centers, and choose the minimum distance for each center. 
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Fig. 4   A time-varying double-gyre flow field. The surface color rep-
resents the magnitude of the flow speed and the colorbar displays 
the scale of the flow speed corresponding to the surface color. The 
maximum flow speed is 0.1 m/s at t = 0 , but it increases up to slightly 
above 0.15 m/s while the gyres are moving side to side
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Fig. 5   Time-series flow data collected from a mooring during the 
simulation using double-gyre flow
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Then, compute an average of all the minimum distances 
associated with the 4 centers and divide the average by 2 
(i.e., � =

∑M

m=1
mini∈m{‖�i−�m‖}

2M
 , m ∈ {1,… ,M} where M = 4 in 

the simulation). The temporal basis functions of the GEM 
are initialized such that the tidal flow consists of only the 
tidal residual flow which is constant and the non-tidal flow 
is approximated by using 0th to 4th Laguerre polynomials 
with time scaling factor � =

1

10
.

In data assimilation, one time step corresponds to 1 h 
and the spatial and temporal parameters of the GEM are 
initialized as [0.01,… , 0.01]T for both x and y components 
at the beginning. To apply the proposed filters for data 
assimilation, we let �k = I  , ��

k
= 10−4I(L+2N+2)×(L+2N+2) , 

and ��

k
= 10−4IM×M for the system (29) and (31). The noise 

covariance is constructed such that for the pth grid cell, 
�k,(p,p) = 10−2 and �k,(p,q) = 10−2 if the pth and qth grid cells 
are neighboring. By assimilating Eulerian data, the temporal 
parameters of the GEM are updated at each time step.

For Lagrangian data, the two vehicles always attempt 
to criss-cross around the mooring by heading towards the 
mooring, but to make a wide spatial coverage to capture 
the spatial variability of flow, the actual heading is adjusted 
by adding 18◦ to the heading straight towards the mooring. 
The Lagrangian data collected over 24 h are converted by 
MT in a batch into an Eulerian spatial map. For the spatial 
map, we select the rectangle domain that can enclose the 
vehicle positions observed at the surface over 24 h. Since 
each vehicle generates 6 trajectories over 24 h, we discretize 
the spatial domain into 6 × 6 spatial grid cells. The spatial 
basis functions of MT are constructed using the centers and 
width of RBFs chosen for the spatial basis functions of the 
GEM. We also discretize the 24 h temporal domain into 3 
temporal grid cells, but to estimate the most up-to-date tem-
poral parameters, we construct the temporal basis functions 
of MT for the latest time step.

For MT, we need the initial guesses of the spatial and 
temporal parameters. We first compute an estimate of con-
stant flow velocity over an individual vehicle trajectory dur-
ing one observation interval of 4 h in a similar way that a 
glider computes its depth-averaged flow velocity (see Chang 
et al. 2017 for details). Then, for the grid cells that the trajec-
tory of each vehicle passes through, we assign the flow esti-
mate corresponding to the trajectory and construct an initial 
guess of the underlying flow field. Then, based on this initial 
guess of the flow field, we compute the initial guesses of 
parameters using a nonlinear least squares method using (1). 
Since a small number of AUVs is collecting Lagrangian data 
for MT, we lack information to solve the system of equations 
associated with MT. Therefore, we run Algorithm 2 up to 
500 iterations with a convergence threshold of �

�
= 300 m 

and a relaxation parameter of � = 0.01 , and choose the esti-
mates with the lowest error. Along with Algorithm 2, we run 
trajectory tracing with a convergence threshold of �� = 10 

m up to 5 times. By combining estimated parameters of MT 
with the basis functions of MT, an Eulerian spatial map is 
constructed. Then, this spatial map is assimilated into the 
GEM to update the spatial parameters of the GEM.

Remark 4  Instead of multiple vehicles, we can also use a 
single vehicle for MT. In this case, we may not have suffi-
cient information of vehicle trajectories for MT. Therefore, 
estimation of the spatial and temporal parameters of the non-
linear flow model (1) through MT can be challenging. As 
a workaround, we can fix the temporal parameters of MT 
using the temporal parameters of the GEM and use MT to 
estimate the spatial parameters of MT only. Then, an Eule-
rian spatial map can be constructed by using the temporal 
parameters of the GEM and the spatial parameters of MT.

To demonstrate the proposed data assimilation framework 
combined with the GEM, we simulate 3 station-keeping 
vehicles guided by GEM-EL, GEM-E, and GEM-L, respec-
tively. We assume that the vehicles are capable of cance-
ling out the flow, i.e., the vehicle can always move in the 
opposite direction of flow at the same speed of flow. From 
each time step until the next, the simulated flow field for the 
station-keeping vehicles is assumed constant with the flow 
velocity evaluated at the time between the current and next 
time steps. Then, starting from (x, y) = (5000, 5000) in the 
domain, the vehicles predict flow using their own GEMs and 
attempt to maintain their current positions.

Figure 6 shows the trajectories of the vehicles guided 
by the GEMs over 24 h after 3 days of their initial data 
assimilation. Eulerian data continue to be assimilated 
during this 24 h validation period. Note that the flow 
prediction from the GEM outside the domain (i.e., 
[−2520, 2520] × [−2520, 2520] m 2 around the mooring) 
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Fig. 6   Trajectories of station-keeping vehicles guided by GEMs for 
24 h under double-gyre flow
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is generated for the nearest grid point in the domain. To 
quantify the performance of the station-keeping vehicles, 
we compute the distance between the positions at two 
neighboring time steps as an error. The root-mean-square 
(RMS) errors for the station-keeping vehicles are provided in 
Table 1. Since GEM-EL captures the spatio-temporal vari-
ability the most, it guides a vehicle with the lowest error. 
Even though GEM-L does not assimilate temporal vari-
ability, since the temporal variations of flow in the region 
observed by the mooring are weak (see Fig. 5), the vehicle 
guided by GEM-E, which does not account for the spatial 
variability, deviates the most. 

For further investigation of the predicted flow by the 
GEMs, we compute the error between predicted flow by the 
GEMs and real flow during the validation period. First, we 
compute the spatial RMS errors of predicted flow by the 
GEMs. Figure 7 shows the time-series plots of the magni-
tude of the spatial RMS errors. As can be observed from the 
results of the station-keeping vehicles (see Fig. 6), GEM-
EL has the smallest prediction error. In addition, we also 
compute the temporal RMS errors of predicted flow by the 
GEMs and show the spatial distribution of the RMS errors 
in Fig. 8, where the color represents the magnitude of the 
RMS errors. We can see that GEM-EL has the smallest 
prediction error compared to other GEMs throughout the 
spatial domain. With the low prediction error of GEM-EL, 
GEM-EL guides a station-keeping vehicle to stay within the 
domain. On the other hand, GEM-E and GEM-L have diffi-
culties in guiding station-keeping vehicles so the vehicles get 
pushed by flow out of the domain and tend to drift along the 
flow (see Fig. 6). All these results demonstrate that GEM-EL 
sufficiently accounts for the spatio-temporal variations of a 
flow field and shows its potential for the guidance of AUVs.

5.2 � GEM in real flow observed by HF radar

In this section, we demonstrate the proposed data assimila-
tion framework using real ocean surface flow data observed 
by HF radar off the coast of Georgia (see Fig. 9). Com-
pared to the double-gyre flow in the previous section, the 
real flow observed by HF radar has non-smooth and erratic 
behaviors with stronger flow, and the features in real oceanic 
conditions could vary much more in the spatial scale (e.g., 
10–500 km for mesoscale eddies and 100–200 km for the 
Gulf Stream current).

To simulate the flow field, we use historic HF radar data 
that are post-processed for our convenience with 3 × 15 
km2 spatial resolution and 30 min temporal resolution. 
For the region of the AUV and mooring deployment, we 
choose the region centered at (−80.0240◦, 31.3261◦) being 
(x, y) = (0, 0) where we deploy a mooring. As is done in the 
previous section, we construct the spatial domain whose size 
is [−2520, 2520] × [−2520, 2520] m 2 around the mooring. 
We discretize the domain into 6 × 6 spatial grid cells whose 
grid points are used to compute the centers of 4 Gauss-
ian RBFs using a K-means clustering algorithm. Then, we 
determine the width of the RBFs in the same way as in the 
previous section and construct the spatial basis functions of 
the GEM. This region is close to the Gulf Stream current 
which causes strong spatial and temporal variability in the 
region (see Fig. 9). Since the flow in this region is strong 
compared to the horizontal through-water speed 0.35 m/s 
of the AUV, we construct a simulated flow field by using 

Table 1   RMS errors for station-keeping vehicles guided by GEMs 
under double-gyre flow

GEM for guidance EL E L

RMSE (m) 145.3524 244.3035 217.2148
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Fig. 7   The magnitude of time-series RMS errors during the 24-h vali-
dation under double-gyre flow
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a half magnitude of the actual flow velocity. See Fig. 2 for 
the actual flow velocity observed by HF radar and Fig. 10 
for the reduced flow velocity at the location of the mooring.

To approximate the temporal variation of the flow, we 
first decompose ocean flow into tidal and non-tidal com-
ponents using the T_Tide MATLAB® toolbox (Pawlowicz 
et al. 2002). Since the tidal component of ocean flow can 
be described by a superposition of multiple tidal constitu-
ents characterized by magnitude and phase, we use a series 
of sinusoidal basis functions. Using 31-day historical data 
from January 1, 2012 00:23 to January 31, 2012 23:53 as 
the initialization data set, we identify the three major (M2, 
N2, and S2) tidal constituents for tidal flow. In contrast to 
the double-gyre flow in the previous section, real flow off 
the coast of Georgia contains very complex non-tidal and 

non-periodic components of flow (see Fig. 10). Therefore, 
non-tidal flow is approximated by using 0th to 14th weighted 
Laguerre polynomials as temporal basis functions with time 
scaling factor � =

1

20
 . Based on the above tidal and non-tidal 

approximations, we construct the temporal basis functions 
of the GEM.

As is the case in the previous section, a time step for data 
assimilation corresponds to 1 h and the spatial and temporal 
parameters of the GEM are initialized as [0.01,… , 0.01]T for 
both x and y components before data assimilation begins. 
To apply the proposed filters for data assimilation, we let 
�k = I  , ��

k
= 10−4I(L+2N+2)×(L+2N+2) , and ��

k
= 10−4IM×M 

for the system (29) and (31). The noise covariance is 
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Fig. 8   The spatial RMS errors during the 24-h validation under double-gyre flow. The surface color represents the magnitude of the flow speed 
and the colorbar displays the scale of the flow speed corresponding to the surface color
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simulation using real surface flow observed by HF radar
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constructed such that for the pth grid cell, �k,(p,p) = 10−2 
and �k,(p,q) = 10−2 if the pth and qth grid cells are neighbor-
ing. By assimilating Eulerian data, the temporal parameters 
of the GEM are updated at each time step.

Since the flow in this region is very dynamic and com-
plex, we have 3 AUVs criss-crossing around the mooring to 
collect data. The heading of the vehicles is always towards 
the mooring with 18◦ adjustment. The flow field simulated 
for the GEM and MT is the segment of HF radar data next 
to the period of the initialization data set. However, please 
note that the initialization data set is used only to identify the 
major tidal constituents for the domain. Based on Lagran-
gian data collected over 24 h, we first construct the spatial 
and temporal basis functions of MT. The spatio-temporal 
domain is discretized into 6 × 6 spatial grid cells and 3 tem-
poral grid cells. Then, MT estimates the spatial and temporal 
parameters of MT using the initial guesses computed as in 
the previous section and construct an Eulerian spatial map 
for the latest time step. By assimilating this spatial map into 
the GEM, we update the spatial parameters of the GEM.

To demonstrate the proposed data assimilation frame-
work combined with the GEM, we again simulate 3 station-
keeping vehicles guided by GEM-EL, GEM-E, and GEM-
L, respectively, starting from (x, y) = (0, 0) in the domain. 
Figure 11 shows the trajectories of the vehicles over 24 h 
of guidance by the GEMs after 3 days of their initial data 

assimilation. Eulerian data continue to be assimilated dur-
ing this 24 h validation period. The RMS errors for the 
station-keeping vehicles are provided in Table 2. Note that 
the flow prediction from the GEM outside the domain (i.e., 
[−2520, 2520] × [−2520, 2520] m 2 around the mooring) is 
generated for the nearest grid point in the domain. Since 
GEM-EL captures the spatio-temporal variations the most, 
the vehicle guided by GEM-EL has the lowest error. Because 
of insufficient spatial or temporal variability in GEM-E 
and GEM-L, we can see that the vehicles guided by them 
are swept away by strong flow that may represent the Gulf 
Stream current. Since flow in this region has strong tempo-
ral variation which is not captured by GEM-L, the vehicle 
guided by GEM-L deviates the most.

To investigate the RMS errors of predicted flow by the 
GEMs during the validation period, we show the time-
series of the magnitude of the spatial RMS errors and the 
spatial distribution of the RMS errors in Figs. 12 and 13, 
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Fig. 11   Trajectories of station-keeping vehicles guided by GEMs for 
24 h under real surface flow observed by HF radar

Table 2   RMS errors for station-keeping vehicles guided by GEMs 
under real surface flow observed by HF radar
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Fig. 12   The magnitude of time-series RMS errors during the 24 h 
validation under real surface flow observed by HF radar
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respectively. For GEM-EL and GEM-E, the mean RMS 
errors shown in the figures are very close. However, when a 
flow model is used to guide a vehicle, this small difference 
may cause a significant drift of a vehicle as shown in Fig. 11. 
As a result, with lower prediction error, GEM-EL can guide 
a station-keeping vehicle to stay within the domain. Even 
though the real flow observed by HF radar is complex, the 
results still show the promising performance of the proposed 
method and demonstrate the improved guidance of AUVs.

The operational conditions of AUVs used in the simula-
tion are motivated by underwater gliders which are robust 
sensor platforms widely used in the oceanographic commu-
nity. Typical horizontal through-water speed of underwater 
gliders is 0.25–0.35 m/s. As observed in this section, real 
flow is very complex and dynamic, and can significantly 
affect the navigation of AUVs, especially slowly-moving 
AUVs such as gliders. Therefore, data collected by glid-
ers are not necessarily synoptic and can thus convolve spa-
tial and temporal representations of ocean features as they 
are sampled. Outside of its capability for the guidance of 
AUVs, the data assimilation framework presented in this 
paper could serve as a useful tool for analysis and interpreta-
tion of data from AUVs through rapidly evolving features in 
oceanographic studies.

6 � Conclusions and future work

This paper has presented a unified framework for assimilat-
ing both Lagrangian and Eulerian data into data-driven com-
putational flow models described as generic environmental 
models (GEMs). In the framework, Lagrangian data collected 
by autonomous underwater vehicles (AUVs) are converted 
into an Eulerian spatial map through the motion tomography 
(MT) method. This conversion has allowed for Lagrangian 
data assimilation to be achieved together with Eulerian data 
assimilation in the unified framework. Leveraging different 

spatial and temporal scales of Eulerian and Lagrangian data, 
Eulerian data are assimilated to update the temporal param-
eters of the GEM and Lagrangian data to update the spatial 
parameters. Assimilation of both Eulerian and Lagrangian data 
in the unified framework leads estimation of the spatial and 
temporal parameters in the GEM to a nonlinear filtering prob-
lem. To solve this nonlinear problem, two linear sub-filters are 
derived for spatial and temporal parameter estimation, respec-
tively and to verify the convergence of the filters, the observ-
ability is analyzed. Lastly, the paper has demonstrated that 
the proposed data assimilation framework combined with the 
GEM can improve AUV navigation through simulations using 
a double-gyre flow field and a flow field constructed from real 
ocean surface flow observed by HF radar. Since geophysical 
ocean models incorporate Lagrangian data collected by AUVs, 
the proposed framework may be a helpful analysis tool for geo-
physical ocean models. Future work will study the design of 
vehicle trajectories so that we can minimize the uncertainty in 
the flow field constructed from Lagrangian data and maximize 
the accuracy of the flow model.
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