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A B S T R A C T

Hybrid energy storage systems have been widely used in transportation, microgrid and renewable energy ap-
plications to improve system efficiency and enhance reliability. However, parameter uncertainty can sig-
nificantly affect system performance. In order to address this issue, an adaptive model predictive control is
developed in this paper. Online parameter identification is used to mitigate parameter uncertainty, and model
predictive control is used to optimally split power, deal with constraints, and achieve desired dynamic responses.
A sensitivity analysis is conducted to identify major impact factors. In order to validate the proposed method,
both simulation and experiments are performed to show the effectiveness of the proposed adaptive model
predictive control. Compared to the model predictive control without online parameter identification, the power
loss reduction can be as high as 15% in the experiments. This study focuses on all-electric ship energy man-
agement to mitigate load fluctuations and improve system efficiency and reliability. The proposed method could
also be used in other applications.

1. Introduction

Hybrid energy storage systems (HESSs) combine different energy
storage devices (ESDs) to leverage their complementary characteristics
for efficient and effective system solutions [1]. In [2], an HESS that
consists of a battery and a fuel cell for application in electric buses has
been studied. In [3], an HESS consisting of a battery, an ultracapacitor,
and a fuel cell was used to improve fuel economy and system perfor-
mance. Battery with ultra-capacitor (UC) is one of the most widely used
HESSs. An HESS with battery and UC has been explored in renewable
energy applications [4], microgrid applications [5], hybrid electric
vehicles [6], fuel cell electric vehicles [7], and all-electric ships [8]. As
an electrochemical device, batteries have high energy density but low
power density, while UCs store energy in an electric field, leading to
higher power density, but lower energy density. Furthermore, com-
pared to UCs, the main limitations of batteries are their relatively short
cycle life and limited recharge rate [9]. As a battery’s capacity de-
grades, its internal resistance increases significantly, resulting in in-
creased losses [10]. Moreover, batteries are more sensitive to tem-
perature. Only a narrow temperature range of operation (15 °C–35 °C) is
recommended, outside of which battery capacity drops significantly at
low temperatures (especially lower than 0 °C), and can have irreversible
degradation at high temperatures [11]. Safety issues have also been

identified at high operating temperatures, particularly for Li-ion bat-
teries. UC has a relatively long cycle life, typically over 1 million cycles
[12]. Furthermore, UC has fast dynamic response to support pulse or
high-frequency power loads [13]. UC is less sensitive to temperature
and has a smaller internal resistance to provide more efficient operation
[14]. In general, battery is preferred for a long-duration load thanks to
its high energy density, whereas UC is more suitable for a short-dura-
tion high-power load. The combination of battery and UC can therefore
provide complementary characteristics in terms of improved efficiency,
enhanced cycle life, and reduced size, weight and cost. However, the
effectiveness of HESS relies on energy management strategies.

Energy management strategies aim to coordinate multiple power
sources and loads in order to achieve efficient and reliable operation
and to meet various dynamic requirements. Model predictive control
(MPC) technology has been found to be an effective energy manage-
ment strategy in a wide variety of application areas, such as smart
buildings, automotive, and microgrids. In [15], a real-time building
energy simulation method is developed for MPC to improve the system
performance. Literature [16] has developed a two-level MPC to reduce
the costs in home appliances with good thermal regulation perfor-
mance. A nonlinear model predictive control strategy is developed in
[17] to improve the fuel economy of hybrid electric buses. In [18], a
model predictive control strategy is developed for a plug-in hybrid

https://doi.org/10.1016/j.enconman.2019.111929
Received 6 May 2019; Received in revised form 7 August 2019; Accepted 9 August 2019

⁎ Corresponding author.
E-mail addresses: junhou@umich.edu (J. Hou), ziyou@umich.edu (Z. Song), hofmann@umich.edu (H. Hofmann), jingsun@umich.edu (J. Sun).

Energy Conversion and Management 198 (2019) 111929

Available online 18 August 2019
0196-8904/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01968904
https://www.elsevier.com/locate/enconman
https://doi.org/10.1016/j.enconman.2019.111929
https://doi.org/10.1016/j.enconman.2019.111929
mailto:junhou@umich.edu
mailto:ziyou@umich.edu
mailto:hofmann@umich.edu
mailto:jingsun@umich.edu
https://doi.org/10.1016/j.enconman.2019.111929
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enconman.2019.111929&domain=pdf


electric vehicle with a battery/UC HESS. A hybrid photovoltaic-wind-
diesel-battery system using MPC has been studied in [19]. The ad-
vantage of MPC is that it can provide an optimal solution within a
predictive horizon, deal with constraints, and take system dynamics
into consideration [20].

In this paper, the energy management of all-electric ships is studied.
All-electric ships have become a dominant trend for both commercial
and military ship development to improve efficiency, support high-
power mission systems, reduce emissions, and provide a more com-
fortable environment [21]. Propulsion-load fluctuations have multi-
frequency characteristics, which are caused by wave effects (resulting
in low-frequency fluctuations) and propeller rotation (resulting in high-
frequency fluctuations) [8]. HESS has been explored to address pro-
pulsion-load fluctuations on the shipboard microgrid, since using only
one single type of ESD can result in increased size, weight, and cost
[22]. Energy management strategies using MPC on shipboard micro-
grids have been investigated in the literature [23]. In [24], a nonlinear
MPC is developed to compensate pulse power loads and track refer-
ences, including the desired bus voltage, desired reference power for
generator sets, and desired reference speed for the motor. In [25], a
stochastic MPC is developed to smooth out power fluctuations. A sce-
nario-based economic model predictive control is developed for marine
electric power plants in [26]. The authors in [27] have developed an
energy management scheme based on MPC to optimize the power
balance between distributed resources and load devices. In [28], MPC is
used to optimize the active power filter operation in a shipboard net-
work. An MPC-based predictive energy management is developed in
[29] to improve the fuel efficiency of all-electric autonomous ships. In
[30], MPC is used for the dynamic optimization of ship energy effi-
ciency. However, the literatures aforementioned do not consider para-
meter uncertainty, especially HESS parameters. To the best of the au-
thors’ knowledge, the impact of HESS parameter uncertainty has not
been well explored, and there is no existing literature that quantita-
tively discusses the sensitivity of HESS parameter uncertainties to the
performance. For example, the internal resistance of a battery can be
significantly increased as the temperature drops or the battery de-
grades. Even at constant temperature, the internal resistance can vary
with SOC, and the variation can be over 100% [31]. This parameter
variation could significantly affect the performance of MPC, leading to
increased losses and power tracking errors.

In order to deal with the issue of HESS parameter uncertainty, an
adaptive MPC energy management strategy, which combines online
parameter identification and MPC, is developed in this paper. The
equivalent circuit model (ECM) is used as the optimization-oriented
HESS model. A detailed HESS dynamic model can capture system dy-
namics more accurately at the cost of increased computational com-
plexity, leading to major challenges in real-time applications; while, a
simplified model is preferred for real-time application, but an over-
simplified model cannot capture key dynamics. It is therefore essential
to develop a suitable model for a specified application. According to the
propulsion-load characteristics, an analysis is performed to determine
how to choose the appropriate HESS model. A sensitivity analysis is
performed to study the impact of HESS parameter uncertainty on MPC.
In this study, major impact factors are identified. These factors de-
termine how sensitive of HESS to its parameter uncertainties when
constraints are inactive. Detailed simulation case studies are performed
to validate the analysis and provide additional insights into the impact
of HESS parameter uncertainties when constraints are active. In order
to evaluate the proposed adaptive MPC and sensitivity analysis, ex-
perimental studies are performed on a physical testbed. The adaptive
MPC and MPC without online parameter identification are compared to
demonstrate the effectiveness of the proposed energy management
strategy. Moreover, the sensitivity analysis is also validated by experi-
mental results.

In the authors’ previous work, the modeling of propulsion-load
fluctuations has been developed in [32]. The work in [8] mainly

provides insights into the comparison between batteries/flywheels
HESS and batteries/UCs HESS. In [33], the major effort focuses on the
implementation and evaluation of a proposed real-time MPC for both
pulse-power load and propulsion-load fluctuations. None of them deals
with the issue of HESS parameter uncertainties. The major contribu-
tions of this paper are summarized in the following:

• An adaptive MPC energy management strategy is developed to op-
timize system performance and address the issue of HESS parameter
uncertainty.

• A sensitivity analysis is studied to provide an analytical estimation
of the impact on HESS parameter uncertainties.

• An experiment is performed to evaluate the proposed energy man-
agement strategy as well as the sensitivity analysis.

This paper is organized as follows. The modeling of propulsion-load
fluctuations on a shipboard network is presented in Section 2. In Sec-
tion 3, an optimization-oriented model is discussed and developed. The
adaptive MPC is developed in Section 4. Section 5 presents a sensitivity
analysis that determines the impact of HESS parameter uncertainty on
the MPC. Experimental results are presented in Section 6. Section 7
concludes the paper.

2. Propulsion-load power fluctuations on a shipboard network

The propulsion-load model developed in [32] is used for this study,
where the key elements of the model are presented for easy reference.

The total propulsion-load power can be expressed as:

=P πnT2 ,Load Load (1)

where n is the propeller rotational speed (in revolutions-per second)
and TLoad is the load torque generated by the propeller. In this study, no
gear box is used between the motor and propeller, so that n is also the
motor rotational speed. The load torque can be expressed as [33]:

=T n βK ρn Dsgn( ) ,Load Q P0
2 5 (2)

where β presents the loss factor to capture the propeller in-and-out-of-
water impact, ρ is the water density, and KQ0 and DP are the torque
coefficient and the diameter of the propeller, respectively. The torque
coefficient KQ0 is a function of the ship advance speed Va, which can be
represented by wake field = −w U V

U
a and ship speed U. The mathema-

tical equation is presented as follows [33]:

⎜ ⎟= ⎛
⎝

⎞
⎠

K f J Pitch D A A Z R, / , / , , ,Q K A P e o n0 Q (3)

where =JA
V

nD
a
P
is the advance coefficient, Pitch D/ P and A A/e 0 are the

pitch ratio and the expanded blade-area ratio, respectively, and Z and
Rn are the blade number and the Reynolds number, respectively.

High-frequency fluctuations are caused by the wake field w, and the
wave effect results in low-frequency fluctuations through the ship speed
U and the in-and-out-of-water behavior (which is captured by β). The
ship speed is given by:

⎜ ⎟ ⎜ ⎟
⎛
⎝

+ ⎞
⎠

= ⎛
⎝

− ⎞
⎠

+ +m m dU
dt

T t R F1 ,x thrust d
(4)

where m and mx are the mass and added-mass of the ship, respectively,
Tthrust is the thrust generated by the propeller, td represents the thrust
deduction coefficient, F represents wave disturbances, and R is the total
resistance force, which includes frictional, wave-making and wind re-
sistances.

The propulsion-load power fluctuation PFL is obtained by:

= −P k P k P k( ) ( ) ( ),FL Load Avg (5)

where PAvg is the average value of PLoad. The average power PAvg is
calculated by:
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where Twave is the wave period. For this study, an electric cargo ship is
used as an example, whose key parameters are shown in Table 1[33].
Three different sea states (SS), corresponding to smooth (SS2), mod-
erate (SS4), and severe (SS6) operating conditions, respectively, are
used in the simulation and analysis. Parameters associated with wave
behavior and operating conditions are shown in Table 2. The load
power fluctuations at both SS4 and SS6 are shown in Fig. 1, where the
time trace of power fluctuations, as well as their frequency spectrums,
are clearly presented.

3. Optimization-oriented hybrid energy storage system model

The equivalent circuit model (ECM) is one of the effective models to
achieve reliable battery state estimation [34]. The first-order RC ECM
has been widely used in many applications, especially for system-level
energy management strategy development. The first-order RC ECM is
shown in Fig. 2, where an ohmic resistor with resistance Rs, a parallel
RC network (R C//t t), and a DC source with voltage VOC are connected in
series [35].

The battery terminal voltage and current are defined as VB and IB
respectively (positive IB for discharge and negative IB for charge). Four
parameters, including R R τ, ,s t (i.e., R Ct t), and VOC, should be identified
simultaneously to guarantee the model accuracy [36]. The parametric
model of the first-order RC ECM can be expressed as:

=V θ Ẋ ,B B
T

B (7)

where

= ⎡
⎣

+ ⎤
⎦

= − − −θ R R R
τ τ

V
τ

X I I V1 , [ 1] ,B s
t s OC

T

B B B B
T

where vC is the voltage across the RC network, VOC and Rs are functions
of battery SOC and their variations with respect to time are much
smaller than that of vC[37], θB is the parameter vector to be identified,
and Xb is the information vector which can be obtained through mea-
surement and calculation. In the parameter identification, Xb should be
persistently exciting (PE) to ensure parameter convergence regardless

of the algorithm used [38]. To guarantee parameter convergence, at
least two frequency components should be included in Xb.

The Recursive Least Squares (RLS) with a constant forgetting factor
of 0.992 is used to identify the parameters of the battery pack [39]. As
shown in Fig. 3, the ohmic resistance Rs is about 60mΩ, and Rt is about
187mΩ. The battery pack time constant τ is about 60s.

Based on the identified parameters, the terminal voltage can be
estimated accordingly. As shown in Fig. 4, the estimated terminal vol-
tage can accurately track the measured voltage, and the estimation
error is below 0.5%.

The experimental results show that the first-order RC ECM can

Table 1
Ship parameters.

Description Parameter Value

Ship length Lship 190m
Ship breadth Bship 28.4 m
Draft H 15.8 m
Mass m 20000 ton
Added-mass mx 28755 ton
Thrust deduction coefficient td 0.2
Propeller diameter DP 5.6 m
Wetted area S 12297m2

Advance facing area in the air AT 675.2m2

Water resistance coefficients +C CF R 0.0043
Air resistance coefficient Cair 0.8

Table 2
Parameters for simulation study.

Description Parameter Value

Wave period Twave 12 s
Wave height hwave 0.5m(SS2)/ 2m(SS4)/ 4m(SS6)
Wave length Lwave L40.29% ship

Ship speed command Ud 12.4 knot
Motor speed command ωd 125 rpm

Fig. 1. Load power fluctuations (top plots), zoom-in fluctuations (middle plots),
and their frequency spectrums (bottom plots) [33].

Fig. 2. The first-order RC equivalent circuit model for the battery.

Fig. 3. Parameter identification results of the battery pack in an experiment.
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accurately represent the battery dynamics. However, the first-order RC
ECM for battery will increase the states in the proposed MPC, and
therefore significantly increase the computational cost, which may
hinder the online application of MPC. The control and prediction hor-
izons of the proposed MPC are 0.02 s and 0.4 s respectively, and the
time constant τ is about 60 s. Therefore, in the MPC control process,
which has a much shorter period than the battery time constant, the RC
network can be considered as a short circuit. The instantaneous power
loss for the prediction horizon of MPC is mainly determined by VOC and
Rs but not the RC pair, because the time constant of the RC pair is much
higher. Since the battery pack has slow dynamics, the battery ECM can
be simplified without the RC pair to estimate the battery power loss
over the prediction horizon. Moreover, only VOC and an equivalent
series resistance RB need to be identified. For the UC, the equivalent
series resistance RUC is used for its ECM.

Therefore, the HESS model is presented as follows:

= − = −SOC I
Q

SOC I
V C

̇
3600

, ̇ ,B
B

B
UC

UC

max UC (8)

where SOCB and SOCUC are the SOCs of battery and UC, respectively, IB
and IUC are the battery current and UC current, respectively, QB re-
presents the battery capacity (in Ah), Vmax and CUC are the maximum
voltage and the capacitance of the ultra-capacitor, respectively. The
terminal powers of the HESS are obtained as follows:

= − = −P N V I R I P N V SOC I R I( ), ( ),B B OC B B B UC UC max UC UC UC UC
2 2 (9)

where NB and NUC are the module numbers of battery and UC in the
HESS, respectively.

4. Adaptive model predictive control

In order to mitigate power fluctuations with high efficiency, an
adaptive MPC is developed in this section. In the cost function of MPC,
three terms are considered. The first one is to minimize the power
compensation error. The output power of battery and UC are used to
compensate the fluctuation power PFL. The second term is to reduce
HESS losses and optimize the HESS efficiency. In order to address the
limitation of a short predictive horizon [32], an additional SOC re-
ference term ( −SOC k SOC( ( ) )UC UC

2
ref ) is included as the third term in

the cost function. Knowledge of HESS parameters is essential for opti-
mizing system operation. HESS parameter uncertainties could lead to
significant energy losses. In order to address this issue, an indirect
adaptive control is combined with the receding horizon MPC, leading to
the proposed adaptive MPC. The control diagram is shown in Fig. 5, and
the adaptive MPC is expressed as follows:
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⩽ ⩽SOC SOC SOC ,minB B maxB (12)

⩽ ⩽SOC SOC SOC ,minUC UC maxUC (13)

⩽ ⩽I I I ,minB B maxB (14)

⩽ ⩽I I I ,minUC UC maxUC (15)

where N is the predictive horizon, Ts is the sampling time, λ and γ are
the weighting factors to put different emphasis on each attribute, RB
and RUC are the internal resistances of the battery and UC from online
parameter identification, respectively, CUC is the estimated UC capaci-
tance, SOCminB (SOCmaxB) and SOCminUC (SOCmaxUC) are the lower
(upper) boundaries of the SOC of the battery and UC, respectively, and
IminB (ImaxB) and IminUC (ImaxUC) are the lower (upper) boundaries of the
output currents of the battery and UC, respectively. In (10), the ob-
jective of this cost function is to minimize the power tracking error
(power fluctuation mitigation), HESS energy losses (efficiency im-
provement), and the variation of UC from its reference state (SOC
planning). The system dynamic is captured by (11), and Eqs. (12)–(15)
represent the physical constraints of the battery and UC. Note that P t( )B
and P t( )UC are the instantaneous output power from the measurement,
while P k( )B and P k( )UC are the predictive output power from the online
estimation for = + … +k t t N1, , . In the parameter identification, the
variations of VOC and CUC are much smaller than RB and RUC. The in-
ternal resistance of HESS, especially RB, can significantly change with
SOC, temperature and cycle life, and the variation can be more than
100%. Furthermore, they can directly affect the MPC for splitting power
between batteries and UCs. It is very important to understand the im-
pact of HESS internal resistances. Therefore, a sensitivity analysis is
performed in the section.

5. Sensitivity analysis

In order to provide insights into the impact of HESS parameter
uncertainties, a sensitivity analysis is performed. The main objective of
this analysis is to determine major impact factors, which might be load
power, battery and UC voltages, and numbers of battery and UC mod-
ules. The major factors determine how sensitive of a given HESS to its
parameter uncertainties and how significant to the MPC performance.

Fig. 4. Terminal voltage estimation results in an experiment.

Fig. 5. Control Diagram of the adaptive MPC energy management strategy.
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After that, a more realistic case study is performed to validate the
analysis and provide insights into additional impacts, which cannot be
provided by the analysis.

5.1. Major factor analysis

An analysis is conducted to determine the impact of HESS para-
meters. Several assumptions are made for this analysis:

• the HESS constraints in (12)–(15) are inactive;

• the power fluctuations are fully compensated ( = +P P PFL B UC);

• a one-step predictive horizon is considered ( =N 1);
• the terminal voltages of battery (VB) and UC (VUC) are slow-time
varying, leading to ≈ −V k V k( ) ( 1)B B and ≈ −V k V k( ) ( 1)UC UC .

Note that the impacts when the assumption is not valid, such as the
constraints are active, will be discussed in the next section. According
to the assumption, the cost function can be simplified as:

⎜ ⎟
⎛
⎝

⎞
⎠

= + −J I k I k αI k P k N V k I k
N V k

( ), ( ) ( ) ( ( ) ( ) ( ))
( )

.B UC B
FL B B B

UC UC

2
2

2 2
(16)

Since the HESS does not reach its constraints, the optimal solutions of
(16) can be presented as:

=
+

=
+

I k P k N V k
α N V k N V k

I k

αP k N V k
α N V k N V k

( ) ( ) ( )
( ( )) ( ( ))

, ( )

( ) ( )
( ( )) ( ( ))

.

B
FL B B

UC UC B B
UC

FL UC UC

UC UC B B

2 2

2 2 (17)

The total HESS loss is given by:

=
+

Loss k
αN R P k

α N V k N V k
( )

( )
( ( )) ( ( ))

.HESS
UC UC FL

UC UC B B

2

2 2 (18)

If the HESS parameters are not correct, the internal resistance ratio α
becomes ′α . The total HESS loss calculated by incorrect parameters:

′ =
+ ′

′ +
Loss k

N R P k αN V k α N V k
α N V k N V k

( )
( )( ( ) ( ( ( )) )

( ( ( )) ( ( )) )
.HESS

UC UC FL B B UC UC

UC UC B B

2 2 2 2

2 2 2 (19)

In order to evaluate the benefits of using correct parameters, the per-
formance matric is defined as:

=
′ −

×Loss
Loss Loss

Loss
% 100%;diff

HESS HESS

HESS (20)

Take (18) and (19) into (20), then the improvement of HESS losses can
be presented as:

= − ′
′ +

× = −
+

×Loss α α ν
α α ν

α n ν
nα ν

% ( )
( )

100% (1 )
( )

100%,diff

2 2

2 2

2 2

2 2 (21)

where ν is defined as the voltage ratio N V
N V

B B
UC UC

and = ′n α
α .

Remark5.1 (Major impact factors): Even though this is a simplified
case study, it provides very important insights into the impact of
parameter uncertainties. According to this analysis, the major impact
factors are the voltage ratio ν and the internal resistance ratio α. The
load power has little impact on the control performance. However,
when the load power is large enough to force the HESS to operate at its
physical constraints over a long time, then the impact of load power is
significant. Therefore, the analysis in Eq. (21) is valid when the HESS is
not operating at its constraints.

5.2. Simulation case study

Two cases, which have two different voltage ratios ν and the in-
ternal resistance ratios α, are considered in this study. The HESS in-
formation of each case is shown in Table 3. In this section, the results at
SS2 are presented and analyzed first. Due to relatively small load

fluctuations at SS2, the constraints in (12)–(15) are inactive. As follows,
the load fluctuations at SS4 are studied. At SS4, the UC reaches its
current constraints. The inequality constraint of UC current, however, is
only active over a short duration, and the HESS is still able to fully
compensate the load fluctuations. The results at SS6 are discussed in the
sequel. At SS6, the constraints are active over a long duration, and the
battery and UC cannot compensate all of the fluctuations.

5.2.1. Sea state 2: inequality constraints are inactive
Due to the smooth encountered wave, the propulsion-load fluctua-

tions at SS2 are relatively small. The HESS can fully compensate the
fluctuations without reaching its physical constraints. In order to
evaluate the analysis in Section 5.1, the performance of HESS losses is
studied in a 12 s duration first, which is one wave period. The voltage
drop of the UC is ignorable in this 12 s and therefore =γ 0UCSOC . In order
to achieve no tracking error, the weighting factor λTracking must be much
larger than λLoss because of the competition between “power tracking”
and “HESS losses”, in the sense that reducing the tracking error would
lead to increased HESS losses, and vice versa. However, a numerical
problem could happen when ≫λ λTracking Loss. For example, when

≈λ 1Tracking and λLoss is close to 0, such as −10 9, then the HESS losses
cannot be taken into consideration, resulting in the non-optimal power
split between the battery and UC. Therefore, the cost function in Eq.
(10) is modified as follows:

∑= ⎛

⎝
⎜ + ⎞

⎠
⎟

=

+

J N R I k N R I k( ) ( ) ,
k t

t N

B B B UC UC UC
2 2

(22)

subject to

= +P k P k P k( ) ( ) ( ),FL B UC (23)

and the constraints in Eqs. (11)–(15).
In order to evaluate the impact of the HESS parameter uncertainties,

six simulations of each case are performed. The battery and UC internal
resistances without online parameter identification are defined as ′RB
and ′RUC, respectively. The HESS internal resistance could change over
100% at different temperatures, SOCs, and health conditions. For ex-
ample, literature [40] shows the charge and discharge resistances of the
LiFePO4 battery cell can change from 1mΩ to almost 3mΩ at different
SOC and temperature. In [41], the ohmic and polarisation resistances of
nickel manganese cobalt oxide (NMC) cells are given by the experiment
using electrochemical impedance spectroscopy. The ohmic resistance
can vary from 0.6mΩ to 3.5mΩ at different SOC, temperature and
health conditions. Therefore, it is reasonable to assume that without
online estimation ′RB and ′RUC can be 50%, 150% and 200% of the true
internal resistances (RB and RUC), respectively, in worst case scenarios.
According this assumption, the cost function becomes

= ∑ ′ +=
+J N R I k N R I k( ( ) ( ))k t

t N
B B B UC UC UC

2 2 or = ∑ =
+J N R(k t

t N
B B

+ ′I k N R I k( ) ( ))B UC UC UC
2 2 , respectively. The simulation results are pre-
sented in Table 4. The difference in HESS losses is used as the perfor-
mance matric, which is evaluated by Eq. (20). As shown in Table 4, the
results obtained using the analytical estimation presented in Section 5.1
show a relative difference of less than 7.61% and an absolute difference
of less than 0.38% as compared to the simulation results. The absolute

Table 3
HESS configuration and size selection.

Case1 Case2

Battery (NB) 8 modules 6 modules
Ultra-capacitor (NUC) 8 modules 9 modules
Internal resistance of one battery module (RB) 64 mΩ 64 mΩ
Internal resistance of one UC module (RUC) 18 mΩ 8.6 mΩ
Open-circuit voltage of one battery module (VOC) 128 V 128 V
Capacitance of one UC module (CUC) 63 F 63 F
Maximum voltage of one UC module (Vmax) 125 V 125 V
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difference between two results is defined as = −Diff A Babs , and the
relative difference is defined as = ×−Diff 100%rlt

A B
A , where A and B

represent two results. Because “A” and “B” are expressed by percentage
in this study, the absolute difference is also shown by percentage.

Several important observations are summarized in the following:
Remark5.2 (No tracking error formulation in Eq.(22)): In this for-

mulation, the assumptions in Section 5.1 are almost achieved. The
impact of the SOC reference term is also ignored. As shown in Table 4,
the results from the detailed simulation (columns 3 and 5) are very
close to the results from Eq. (21) (columns 4 and 6). The voltage ratio ν
and the internal resistance ratio α determine the difference in HESS
loss. Note that if the internal resistance used in the MPC is higher than
its actual value, the HESS-losses difference will be slightly higher than
the estimated value of Eq. (21), and vice versa. For example (high-
lighted in blue), the internal resistance ratios of ′ =R R200%B B and

′ =R R50%UC UC are the same, but the HESS-losses difference of
′ =R R200%B B is slightly larger than the value from Eq. (21), while the

difference of ′ =R R50%UC UC is slightly smaller. The same phenomenon
can be found between ′ =R R50%B B and ′ =R R200%UC UC (highlighted in
red). The reason is that the tracking error still exists when the HESS
parameters are not correct. Larger current is caused by the larger in-
correct internal resistance, and vice versa. Furthermore, another case
study is performed to evaluate the impact of the load power. The load
power is reduced to −P50% FL SS2, which guarantees no constraint is ac-
tive. As shown in Table 5, even though the load power becomes 50%,
the analytical estimation only has a relative difference of less than
2.67% and a absolute difference of less than 0.13% as compared to the
simulation results.

Remark5.3 (Nominal formulation in Eq.(10)within 12 s): In this case
study, the trade-off between the tracking error and HESS losses is
considered in the nominal formulation in Eq. (10)). The investigation
time is chosen as 12 s, which minimizes the impact of the SOC reference
term. As shown in Fig. 6, the Pareto fronts show the tradeoff between
the tracking error and HESS losses for both Case1 and 2 at sea state 2,
and the result is consistent with that in Table 4. In order to compare the
HESS losses difference using Eq. (20), the Pareto fronts are fitted by a
first-order polynomial function, and the performance comparison re-
sults are shown in Fig. 7. These results demonstrate that the analysis in
Section 5.1 is also suitable when the load fluctuations are not fully
compensated by HESS.

Remark5.4 (Nominal formulation in Eq.(10)within 600 s): In this case
study, the investigation time is extended to 600 s, which includes the

impact of the SOC reference term. To compare with the performance of
a 12-s investigation time, the Pareto fronts of 600-s investigation time
are shown in Figs. 8 and 9. The SOC reference term requires the battery
to keep the UC working in its high-efficiency range, which makes the
overcompensated error worse. Compared to the voltage ratio ν and the
internal resistance ratio α, the impact of the SOC reference term is not
significant, and therefore the analysis in Section 5.1 can still provide
insights into how sensitive the HESS to the parameter uncertainty.

5.2.2. Sea states 4 and 6: inequality constraints are active
Sea state 4 is the nominal sea state, which represents a moderate sea

condition. At sea state 4, only the UC will operate at its constraints over
a short period of time. On the other hand, sea state 6 represents a severe
sea condition, in which the propeller will be in-and-out of the water. At
sea state 6, both UC and battery will operate at their constraints over a
long period of time. This case study provides insights into that how the
constraints affect the performance when HESS parameter uncertainties
existing. The key observations are summarized in the following
Remarks.

Remark5.5 (Inequality constraints are active over a short period of
time): As shown in Fig. 10, the analysis in Section 5.1 is still valid, and
the voltage ratio ν and the internal resistance ratio α are still the major
factors to determine how sensitive the HESS to its parameter un-
certainties. The HESS losses difference using Eq. (20) is shown in
Fig. 11, where a first-order polynomial function is used to fit the results
in Fig. 10. As one can see, the result in Fig. 11 is similar to that in Fig. 9.
The case study demonstrates that the impact of constraints is related to
its active time.

Remark5.6 (Inequality constraints are active over a long period of time):
As discussed in Remark5.5, the active time of constraints is a key factor.
At sea state 6, the constraints are active over a long period of time. As
shown in Fig. 12, the performance is insensitive to HESS parameter
uncertainties. The parameter uncertainties mainly affect the tradeoff
between the tracking error and HESS losses, which is equivalent to
changing the weighting factors. The desired operation cannot be
achieved as parameter uncertainties exist. Note that the uncertainties at
SS2 and SS4 also affect the tradeoff, but not as significant as at SS6.

To summarize the key findings, the analysis in Section 5.1 can
provide how sensitive the MPC performance is to HESS parameter un-
certainties when the constraints are inactive or active over a short
period of time. The voltage ratio ν and the internal resistance ratio α are
the main factors to determine the sensitivity. As the constraints are

Table 4
HESS Loss Difference of a 12 s investigation duration under load fluctuations at SS2.

Load Uncertainty Case1 Eq. (21) Diffabs Diffrlt Case2 Eq. (21) Diffabs Diffrlt

PFLSS2 R50% B 11.73% 12.10% 0.37% 3.06% 7.34% 7.43% 0.09% 1.21%
PFLSS2 R150% B 2.76% 2.55% 0.21% 7.61% 1.14% 1.07% 0.07% 6.14%
PFLSS2 R200% B 6.70% 6.32% 0.38% 5.67% 2.61% 2.49% 0.12% 4.60%
PFLSS2 R50% UC 6.27% 6.32% 0.05% 0.79% 2.46% 2.49% 0.03% 1.20%
PFLSS2 R150% UC 3.91% 3.76% 0.15% 3.84% 2.14% 2.04% 0.10% 4.67%
PFLSS2 R200% UC 12.41% 12.10% 0.31% 2.50% 7.66% 7.43% 0.23% 3.00%

Table 5
HESS Loss Difference of a 12 s investigation duration under 50% load fluctuations at SS2.

Load Uncertainty Case1 Eq. (21) Diffabs Diffrlt Case2 Eq. (21) Diffabs Diffrlt

P50% FLSS2 R50% B 11.96% 12.10% 0.14% 1.16% 7.38% 7.43% 0.05% 0.67%
P50% FLSS2 R150% B 2.62% 2.55% 0.07% 2.67% 1.08% 1.07% 0.01% 0.93%
P50% FLSS2 R200% B 6.45% 6.32% 0.13% 2.02% 2.54% 2.49% 0.05% 1.97%
P50% FLSS2 R50% UC 6.35% 6.32% 0.03% 0.47% 2.50% 2.49% 0.01% 0.40%
P50% FLSS2 R150% UC 3.77% 3.76% 0.01% 0.27% 2.04% 2.04% 0.00% 0.00%
P50% FLSS2 R200% UC 12.13% 12.10% 0.03% 0.25% 7.46% 7.43% 0.03% 0.40%

J. Hou, et al. Energy Conversion and Management 198 (2019) 111929

6



active over a long time, the system is insensitive to the parameter un-
certainties. However, the MPC performance can be affected in terms of
the tradeoff between load fluctuations mitigation and HESS losses
minimization. This sensitivity analysis not only demonstrates the im-
portance of the proposed adaptive MPC, but also provide an analytical
estimation to quantitatively understand the impact of HESS parameter
uncertainties. As shown in Table 4, the impacts of ′ =R R200%B B at
Case1 and Case2 are significantly different. The impact is only 2.46%
at Case2, but becomes 6.70% at Case1. Furthermore, the same 50%
uncertainties (e.g., ′ =R R150%B B and ′ =R R50%B B) could result in sig-
nificantly different performance (one impact is 2.76% vs. the other is
11.73%). Therefore, this sensitivity analysis could be important in the
design phase.

6. Experimental validation and discussion

In order to validate the proposed adaptive MPC and the sensitivity
analysis, an experiment has been performed in a scaled test-bed. This
test-bed consists of power electronic converters, a load resistance bank,
battery and UC modules, and a central micro-controller (Speedgoat).
The Speedgoat has an “Intel Core i5-680 3.6 GHz” processor with a
320 GB SATA hard disk main drive and a 4096MB DDR3 memory. The
power electronic converters, which are controlled by the central micro-
controller, serve as actuators in controlling the power flow from and to
different components in the testbed. The load resistance bank is used to
emulate the load fluctuations.

Four Lithium-Iron-Phosphate battery modules are developed for this
experimental validation, and each module consists of 12 cells in series.
The nominal voltage and capacity are 38.4 V and 100 Ahr, respectively.
The entire battery pack provides a nominal voltage up to 154 V. Two
ultra-capacitor modules, made by Maxwell Technologies® with 63
farad, are used in this experiment. In this experiment, two UC modules
are connected in series, and the reference voltage of the UC pack is
defined as 145 V.

6.1. Overview of energy storage controller and optimization solver

In this study, sliding mode control [42] is used for HESS control.

The control law is presented as follows:
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(24)

where VBus is the DC bus voltage, LB, and LUC are the inductors of the
DC/DC converter for the battery and UC, respectively; RL1 and RL2 are
the resistances corresponding to L1, and L2, respectively; DB and DUC
are the duty cycle commands to the DC/DC converters for the battery
and UC, respectively, and KB UC, and εB UC, are the control gains.

The integrated perturbation analysis and sequential quadratic pro-
gramming (IPA-SQP) algorithm is used to solve the optimization pro-
blem in this study. IPA-SQP approximates the optimal solution nu-
merically using a prediction and correction combination. Neighboring
extremal (NE) updates the optimal solution in the prediction step, and
SQP corrects the solution if the solution from NE is larger than the
tolerance [24].

6.2. Overview of experimental setup

The diagram of the experimental setup is shown in Fig. 13, where
the desired DC bus voltage is defined as 200 V and the desired reference
voltage of UC is 146 V [33]. The physical constraints, namely maximum
and minimum currents of both battery and UC, are 30A and −30A,
respectively. The AC power from the gird is converted to DC power by a
three-phase diode rectifier, and a DC/DC converter (PCM1) is used to
“buck” the DC voltage down to the nominal voltage. Load fluctuations
are generated by the resistive load bank, which is controlled by a DC/

Fig. 6. MPC Results (12 s): Tracking error vs Loss% for both Case1 and 2 at sea state 2.

Fig. 7. Data Fitting Results (12 s): Difference (%) vs Tracking error for both Case1 and 2 at sea state 2.
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DC converter (PCM5). However, the resistive load bank can only absorb
power so that a DC/DC converter (PCM2) is controlled to provide the
average power to the DC bus. In this way, the load fluctuations can be
emulated in this experiment, and they are scaled to a peak value of
2 kW for both sea states 4 and 6. The schematic of the adaptive MPC is
shown in Fig. 14, where the predictive horizon N is chosen to be 20 and
the sampling time of the adaptive MPC is 0.01 s.

6.3. Experimental results and discussion

In the adaptive MPC, the recursive least square with forgetting

factor is used for the parameter identification. The parameter identifi-
cation results of the battery and UC are shown in Fig. 15 and 16, and all
parameters can converge to relatively stable values. The equivalent
series internal resistance RB is about 64mΩ, and the OCV changes via
time. The terminal voltage is estimated based on the identified VOC and
RB, and it shows that the estimated battery terminal voltage can track
the measured voltage. The capacity of UC is 31.5 F (the nominal ca-
pacity of the UC pack is also 31.5 F) and its equivalent series internal
resistance RUC is about 18mΩ. The estimation errors of battery and UC
are both below 0.5%, which means a satisfactory identification per-
formance.

Fig. 8. MPC Results (600 s): Tracking error vs Loss% for both Case1 and 2 at sea state 2.

Fig. 9. Data Fitting Results (600 s): Difference (%) vs Tracking error for both Case1 and 2 at sea state 2.

Fig. 10. MPC Results: Tracking error vs Loss% for both Case1 and 2 at sea state 4.

Fig. 11. Data Fitting Results: Difference (%) vs Tracking error for both Case1 and 2 at sea state 4.
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In order to evaluate the performance of the adaptive MPC, a com-
parison study is performed at both SS4 and SS6. The adaptive MPC is
implemented in the first case, and in the other two cases the MPC
without online parameter identification is considered. The battery in-
ternal resistance used in these two cases are assumed to be ′ =R R50%B B
and ′ =R R200%B B, and the incorrect values could be caused by the
temperature variation and the battery life degradation.

The experimental results are shown in Figs. 17 and 18. The ex-
perimental results and analysis results from Eq. (21) are summarized in
Table 6, where the performance matric in Eq. (20) is used to evaluate
the results. The experimental results demonstrate the effectiveness of
the proposed adaptive MPC as well as the sensitivity analysis. Without

the online parameter identification, the HESS losses could increase by
almost 15%. Furthermore, the sensitivity analysis results are close to
the experimental results at both SS4 and SS6. Although the load fluc-
tuations are different for SS4 and SS6 in this experiment, the results are
almost the same because the constraints are inactive. As the voltage
ratio ν and the internal resistance ratio α are design parameters, this
sensitivity analysis can play an important role in the design phase.

7. Conclusion

The parameter uncertainty of HESS can significantly affect system
performance. In order to address this issue, an adaptive model pre-
dictive control, which combines online parameter identification with
MPC, is developed in this paper. The online parameter identification
can effectively capture the parameter variations, and the model pre-
dictive control optimally splits the power between the battery and UC,
and deals with the constraints. In order to provide insights into how
sensitive the performance to the parameter uncertainties, a sensitivity
analysis is studied to identify the major impact factors. Both simulation
and experiment are performed to show the effectiveness of the proposed
method in all-electric ship energy management to mitigate load fluc-
tuations and improve system efficiency and reliability. Compared to
model predictive control without the online parameter identification,

Fig. 12. MPC Results: Tracking error vs Loss% for both Case1 and 2 at sea state 6.

Fig. 13. Diagram of real-time MPC experiment.

Fig. 14. Schematic of the real-time adaptive MPC.
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the improvement on HESS losses can be as high as 15% in the experi-
ment. The proposed adaptive MPC could also be used in other appli-
cations, such as hybrid electric vehicles and renewable energy, to deal
with the parameter uncertainties and optimize the system performance.
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