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Abstract—This paper presents the analysis, design, and 

experimental validation of parameter identification of 
battery/supercapacitor hybrid energy storage system 
(HESS) for the purpose of condition monitoring and 
maximum power estimation. The analytic bounds on the 
error of battery and supercapacitor parameter 
identification, considering voltage measurement noise, are 
obtained based on the Fisher information matrix and 
Cramer-Rao bound analysis. The identification of different 
parameters requires different signal patterns to ensure high 
accuracy, rendering tradeoffs in the multi-parameter 
identification process. With an appropriately designed 
current profile, HESS parameters are identified using 
recursive least squares with a forgetting factor. The 
identified parameters are then used to estimate the 
maximum power capability of the HESS. The maximum 
power capabilities of the battery and supercapacitor are 
estimated for both 1s and 30s time horizons. The parameter 
identification algorithm can be applied to systems including 
either batteries or supercapacitors when the optimal 
excitation current can be injected. Experimental validation 
is conducted on an HESS test-bed, which shows that the 
proposed algorithm is effective in estimating the HESS 
maximum power based on appropriate current excitation. 
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1. Introduction 

Hybrid electric vehicles (HEVs), plug-in hybrid electric 

vehicles (PHEVs), and all-electric vehicles (EVs) are receiving 

considerable attention as effective solutions to energy and 

environmental challenges [1]. Lithium ion batteries are widely 

used in vehicle applications due to their high energy density. 

However, frequent charge and discharge operations have an 

adverse effect on battery life [2]. Therefore a hybrid energy 

storage system (HESS), which combines supercapacitors (SCs) 

and batteries, can be solution for achieving both high energy 

density and longevity [3].  

To effectively use HESS, the topology, component size, 

and energy management strategy (EMS) should be optimized 

[4]. Depending on how the energy storage devices and their 

supported loads are connected, there are three major types of 

HESS topology: passive, semi-active, and fully active [4]. The 

passive HESS has the battery and SC connected in parallel, as 

shown in Fig. 1 (a). It has the advantage of low cost, but the 

performance is compromised [5]. A semi-active HESS, which 

only employs one DC/DC converter, is a tradeoff between 

performance and system cost, as shown in Fig. 1 (b) [6]. The 

fully active HESS employs two DC/DC converters, thus it 

achieves the best performance [7]. The DC bus voltage can be 

regulated only in the fully active topology because both the 

battery and the SC currents can be controlled simultaneously 

[8]. For this reason, the fully active topology shown in Fig. 1 

(c) is adopted in this paper. 

The HESS states and parameters should be monitored 

continuously to ensure safe, reliable, and optimal operation [9]. 

For example, the battery State of Charge (SoC) and State of 

Health (SoH) are commonly inferred from model-based 

estimation algorithms [10]. The equivalent circuit model (ECM) 

has been extensively investigated for monitoring the battery 

[11], the SC [12], and DC/DC converter [13]. In this paper, a 

first-order resistor-capacitor (RC) model is used for the battery 

pack because it is sufficiently accurate yet simple [14]. The RC 

model is also used for the SC because the inductance of the 

adopted SC module is very small and negligible [15]. In order 

to characterize the dynamic behavior of the HESS, a multi-
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parameter identification problem, including six parameters of 

both battery and SC needs to be solved. Most studies only focus 

on methodologies which can be used to identify the parameters 

of individual components. Commonly used algorithms include 

Kalman filters [16], least-squares-based methods [16], moving-

horizon observers [18], and gradient-based algorithms [13]. 
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(b) Semi-active HESS topology 
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(c) Fully active HESS topology 

Fig. 1. Three typical HESS topologies 

Although the identification algorithm is important, the 

signals used in the identification process also significantly 

influence the identification accuracy [19]. For example, no 

parameter can be identified when both battery and SC currents 

are constant. In general, assuming an appropriate identification 

algorithm is used, the persistently exciting condition should be 

satisfied to guarantee identification convergence [20]. In 

addition, most algorithms consider the data indiscriminately 

regardless of the information richness in terms of the 

parameters to be identified. It has been established that the 

identification accuracy can be impaired when insufficiently 

rich data is adopted [21], thus providing a guideline on data 

selection based on the fundamental relationship between 

estimation accuracy and measurement data. In addition, Lin et 

al. analyzed the influence of data on the combined estimation 

of battery SoC, capacity, and ohmic resistance [19]. Similarly, 

Rothenberger et al. optimized battery test data to maximize the 

Fisher information matrix (an identifiability metric) for a 

second-order dynamic ECM of a lithium ion battery [22]. 

Klintberg et al. used Cramer-Rao (CR) lower bounds to 

quantify the accuracy of Bayesian estimators, which were 

applied to a second-order nonlinear ECM of a lithium battery 

[23]. SoC estimation error considering sensor bias [24], models, 

and algorithms are also investigated [25]. More and more 

studies focus on the analysis and optimization of the battery 

parameter identification accuracy, but the optimal current 

cannot be directly adopted in the battery-only configuration. 

The persistently exciting requirement can be in conflict with 

the desired operational goals of the system. The HESS, which 

is inherently an over-actuated system, offers an additional 

degree of freedom to generate excitation currents for 

battery/SC currents in order to achieve a better parameter 

identification performance. Without perturbing the power 

supply function, the rich information for learning the system 

can be provided rather than passively collecting signals. 

This paper presents an analytic evaluation of data-

dependent estimation accuracy based on the Fisher information 

matrix and CR bound analysis using the framework formulated 

in [22]. It shows that there is an inherent trade-off associated 

with identifying all parameters of an HESS simultaneously 

when signals are corrupted by noise. In addition, a guideline on 

designing current profiles for battery and SC to properly 

identify different parameters simultaneously is provided. Based 

on the analysis, a current profile is designed to excite the battery 

pack, and the excitation for SC can be automatically generated 

by the bus voltage controller. Experimental results show that 

the identification performance is satisfactory when the data is 

appropriately designed. Based on the identification results, the 

maximum discharge/charge power capability of the HESS, 

which is one of the most important boundary conditions in 

energy management strategies (EMS), is estimated [26]. The 

maximum power capability of the battery is constrained by its 

voltage, current, and SoC [27], while the maximum power of 

the SC is constrained by current and voltage limits [28]. Since 

the maximum power is calculated based on the ECMs of battery 

and SC, so the maximum power also depends upon accurate 

ECM parameters. In addition, the maximum power of the 

DC/DC converter is limited by the voltage and current ratings 

of its electronic components [29], [30]. The maximum power 

of HESS can therefore be determined by considering all these 

limitations simultaneously, if relevant parameters can be 

accurately estimated. It has been proven that the HESS can 

significantly boost peak power capacity and reduce power loss 
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when compared to the battery-only system, while the system 

volume and weight are minimally impacted [5]. 

This paper is organized as follows: In Section 2, ECMs of 

battery and SC are introduced. The CR bounds of the target 

parameters are derived. Section 3 presents the maximum power 

estimation process for the HESS. In Section 4, experimental 

results are provided which validate the effectiveness of the 

approach. The results of maximum power estimation are also 

presented. Conclusions are drawn in Section 5. 

2. The Cramer-Rao bounds of the target parameters 

2.1 Battery model 

An accurate battery model is needed to achieve a reliable 

battery state estimation [31]. The equivalent circuit model 

(ECM) adopted in this paper is shown in Fig. 2, where an ohmic 

resistor with resistance Rs, a parallel RC network (Rt//Ct), and a 

DC source with voltage Voc are connected in series [32]. It has 

been shown that the first-order RC model is adequate and 

convenient for many applications [14], especially for system-

level energy management strategy development. 
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+
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Fig. 2. Equivalent circuit model of a battery 

The battery terminal voltage and current are defined as vb 

and ib, respectively (positive ib for discharge and negative ib for 

charge). According to Kirchhoff’s laws, the ECM dynamics can 

be presented as 

C C b
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,

,

v v i
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v V R i v


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  (1) 

where vC is the voltage across the RC network, as shown in Fig. 

2, and cannot be measured in experiments. VOC and Rs are 

functions of battery state-of-charge (SoC) and their variations 

with respect to time are much smaller than that of vC [33]. Thus 

VOC and Rs in Eq. (1) can be assumed to be constant, and the 

time derivative of vb can be obtained as follows: 

t s

b b s b b OC

+1 1
+

R R
v v R i i V   
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,  (2) 

where τ=RtCt. bi   can be carefully computed by the filtered 

differentiating ib, which can be measured in practical 

applications. To estimate the battery maximum power, the 

battery ECM parameters, including Rs, Rt, τ, and VOC, should be 

constantly identified since they vary with operating conditions 

(e.g., battery SoC and temperature) and battery health 

degradation [34]. Based on Eq. (2), the parametric model of the 

battery can be expressed as 
T

b =v
b b
θ x ,  (3) 
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  (4) 

θb is the parameter vector to be identified, and xb is the 

information vector which can be obtained through 

measurement and calculation. To provide sufficient theoretical 

background, xb should be persistently exciting to ensure 

parameter convergence regardless of the algorithm used (e.g., 

extended Kalman filter, recursive least-squares method, 

gradient-based method). This critical condition is important to 

parameter identification, and is assumed to be inherently 

satisfied by most existing literatures. To guarantee parameter 

convergence, at least two frequency components should be 

included in xb because, for every two unknown parameters, one 

additional frequency component is required [20].  

While persistent excitation is the basic requirement for 

convergence of estimation results, the accuracy of estimation 

further depends on the quality of the data. To further investigate 

the influence of the dataset on identification accuracy, the 

Cramer-Rao (CR) bound, which is the lower bound of the 

estimation error covariance of an unbiased estimation, is used 

in this paper to quantify the estimation accuracy [35]. The 

process for computing the time-averaged CR bound is 

introduced in the following. Assuming that the initial value of 

vC is 0 and the initial value of vb equals VOC, the Laplace 

transform of vb can be derived based on Eq. (2): 

     t

b OC s b b

1

1

R
v s V R i s i s

s s
  


,  (5) 

where s is the Laplace operator. 

In order to evaluate the Fisher information matrix, the 

sensitivity of the measurement vb to the target parameters are 

needed in the s-domain and they can then be expressed as 
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   (6) 

Based on Eq. (6), the sensitivity of the measurement vb to 

the target parameters in the time domain can be obtained 
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through inverse Laplace transform 1L . 
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Considering Gaussian noise in the vb measurement, the 

symmetric time-average Fisher matrix 
bF   can therefore be 

calculated if ib(t) is a periodic waveform with period T. 
2
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where 2

V  is the variance of the voltage measurement noise. 

The CR bounds, which represent the best achievable variance 

of the identification error for θi, can be obtained by inverting 

the Fisher matrix 

     2 1

bcov i i i
diag     F ,   (9) 

where cov(θi) is the variance of the identification error for 

parameter θi,  2

i    is the CR lower bound of θi which 

represents the minimum achievable variance of the 

identification error for θi, and diag( 1

b


F  )i is the ith diagonal 

element of 1

b


F  . The CR bound quantifies the estimation 

accuracy dictated by data, and a small CR bound indicates 

better identification accuracy. The general expression of the 

time-average Fisher matrix shown in Eq. (10) is complex in 

general. A current waveform which includes two frequency 

components is used to investigate its influence on the CR 

bounds of identified parameters. To simplify the analysis, we 

assume two sinusoidal waveforms have the same amplitude. 

Let ib(t) be  

     b cos cosi t M t M k t   ,   (10) 

where M is the current magnitude, ω is the current frequency, 

and k is a positive number (k≠1). The excitation current can be 

expressed in the s-domain as  
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In Eq. (7), the expressions of  b
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include the exponential decay term 

t

e
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 , which converges to 0 

as t→∞ based on the current in Eq. (10). The converged values 

of  b

t

v
t
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
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  and  bv

t

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  as t→∞ are provided in Eq. (10). 

Then the CR bounds for k=2, as an example, can be derived as 

(the integral interval T= 2  ) 
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   (12) 

As shown in Eq. (12), the identification of VOC is 

independent of the other parameters and current excitation can 

be increased to reduce the effects of measurement noise. 

Numerical analysis is presented to investigate the influence of 

ω on the CR bounds of Rs, Rt, and τ, as plotted in Fig. 2 for 

illustration. In the numerical analysis the values of Rs, Rt, τ, M, 

and σV are set to be 60mΩ, 200mΩ, 60s, 10A, and 0.2V, 

respectively. We point out that the parameter values in the 

numerical analysis are set based on a priori knowledge about 

the adopted battery pack. The rough values of the estimated 

parameters were obtained from the previous test. In addition, 

since the battery capacity is 100Ah, we believe that a 10A (i.e., 

0.1 C-rate) current signal is acceptable. 

As shown in Fig. 3, the CR bound of Rs monotonically 

decreases with frequency, which should be set as high as 

possible to improve the identification accuracy of Rs. As shown 

in Fig. 3 (b), CR bounds of Rt and τ achieve their minimum 

values when the frequency is around 0.002Hz (the frequencies 

for Rt and τ to achieve their minimum CR bounds are slightly 

different), and so the optimal frequency for Rt and τ 

identification is extremely low. It is seen that there is a trade-

off regarding the identification of Rs, Rt, and τ. In addition, the 

optimal frequency for Rt and τ identification will cause a long 

identification process, thus there is another trade-off between 

identification accuracy and speed. A frequency around 0.004Hz 

can be chosen as the theoretical optimal frequency to achieve a 

satisfactory identification performance. An analysis for k=5 is 

also conducted and it has slight difference with the result for 

k=2. Both results show that a slow frequency component is 

needed to identify Rt and τ. 
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(a) Cramer-Rao bounds 

 

(b) Zoom-in results 

Fig. 3. Cramer-Rao bounds of Rs, Rt, and τ over 

frequency when k=2 

The RLS with a forgetting factor will be used to iteratively 

identify the battery parameters based on Eq. (3). Detailed 

procedures of the Recursive Least-Squares (RLS) method are 

provided in [36]. Due to space limitations, the RLS is not 

further illustrated in this paper.  

2.2 Supercapacitor model 

The ECM shown in Fig. 4 has been verified to be effective 

to represent the real-time behavior of SCs at both high and low 

frequencies [15].  

iSC

vt

RSC

+

-

LSC

vSC

+

-

 

Fig. 4. Equivalent circuit model of a supercapacitor 

To obtain the ECM parameters of the SC module, its 

impedance spectra and crossover frequency fc are measured 

when it is empty (i.e., the SC voltage is 0V). fc is about 80Hz, 

thus the inductance LSC can be calculated as follows 

 
SC 2

SC c

1

2
L

C f



,  (13) 

where CSC is the capacitance of the SC module. For the 

adopted SC module, LSC equals to 62.8nH, which is very small 

and is therefore neglected. The goal of this paper is to estimate 

the HESS maximum power, thus the ECM for SC is simplified 

to an RC circuit, as shown in Fig. 5. 
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Fig. 5. Simplified supercapacitor ECM 

The dynamics of the SC ECM shown in Fig. 5 can be 

presented as 

t SC SC SC

SC SC SC
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,

v v R i

C v i
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  (14) 

where vSC is the SC OCV, vt is the SC terminal voltage, and iSC 

is the SC current (positive for discharge and negative for 

charge). The derivative of vt is given by 

SC

t SC SC

SC

i
v R i

C
   .  (15) 

Based on Eq. (15), the parametric model can be obtained 

as follows: 
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To obtain the CR bounds of the target parameters, the 

sinusoidal current shown in Eq. (18) is adopted.  

   SC cosi t M t  .   (18) 

Following the same procedures illustrated in Section 2.1, 

the time-averaged Fisher matrix over a full cycle of sinusoidal 

current can be derived as 
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By inverting 
SCF , the CR bounds of CSC and RSC can be 

obtained. 
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   (20) 

It can be seen that the CR bounds of CSC and RSC do not 



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2859317, IEEE
Transactions on Power Electronics

have opposite requirements on the current frequency because 

 SCR  is not influenced by ω. A distinct rule for improving 

the identification accuracy of both parameters is increasing the 

current amplitude M and reducing the noise in the measurement 

of vt. The CR bound of CSC monotonically increases with 

current frequency. Thus a current excitation with large 

amplitude and low frequency is preferred. 

3. Maximum power estimation 

The maximum power of an HESS can be calculated based 

on its ECMs. Thus the identified parameters illustrated in 

Section 2 are the basis to accurately estimate the HESS 

maximum power, which is one of most important decision 

factors in the EMS. Unlike the battery-only and SC-only 

systems, the HESS is an over-actuated system. The optimal 

current components can therefore be integrated to 

simultaneously achieve accurate parameter identification and 

the desired output power. The HESS continuous maximum 

power over different prediction horizons is required for 

different applications. To be specific, the typical control period 

of EMS in vehicle applications is 1s [2], thus the maximum 

power over 1s should be estimated. Model predictive controller 

(MPC) can be a good choice for an HESS EMS [37], so the 

maximum power over the MPC prediction horizon, which 

generally consists of several control periods (e.g., 30s), needs 

to be estimated. In grid applications, the EMS optimizes the 

energy storage system hourly [38], therefore the maximum 

power over hours is essential for EMS to make decision. 

Specifically, the maximum power information of HESS with 

different prediction horizons provides energy storage owners 

with valuable guidelines to better schedule and procure future 

services. Therefore, the HESS can be better utilized, which can 

potentially increase the benefit in grid applications.  

In this paper, the maximum continuous power of battery 

and SC, which represent their capabilities of continuously 

supplying power to loads over the prediction horizon, are 

estimated simultaneously, and then the maximum total power 

of the HESS can be obtained by combining the above estimates. 

The maximum continuous currents of battery and SC over the 

prediction horizon are required in the estimation process of the 

maximum continuous power. The maximum continuous power 

of the HESS over 1s and 30s is investigated in this section.  

3.1 Maximum power of battery pack 

Based on Eq. (1), the battery model in discrete form can 

be given as 

     

       

C C b t
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   (21) 

where k is the time step, and ∆t is the time interval between two 

consecutive steps. The battery SoC is denoted as z, which is the 

ratio of the remaining capacity to the available capacity [39]: 

 b

1

bat

1
k k

i k t
z z

Q


 
  ,   (22) 

where Qbat is the battery capacity. As shown in Eq. (22), the 

battery OCV is a function of SoC. Thus the maximum current 

under voltage limitation cannot be solved directly from Eq. (21). 

The battery OCV is typically a nonlinear function of SoC, as 

shown in Fig. 6.  

 

Fig. 6. The OCV-SoC curve of the adopted battery cell 

In order to simplify the solution, a local linearization of 

the OCV-SoC relationship is employed [27]: 

   
   b OC

OC 1 OC

bat

1 d
=

d
k

k k

z z

i k t V z
V z V z

Q z




 
 .   (23) 

As shown in Fig. 6, although the OCV-SoC can be 

linearized during the whole SoC usage window (20% to 90% 

with linearization error less than 5mV) for the used battery, the 

general approach for simplifying the OCV-SoC relationship is 

local linearization. Thus the SoC variation should be small 

when Eq. (23) is adopted. In addition, the battery parameters 

including Rs, Rt, and τ, which are used in Eq. (21), are also 

influenced by the battery SoC. This means that the prediction 

horizon cannot be very long in order to ensure the estimation 

accuracy. In this paper, the prediction horizon is less than 30s, 

over which there will not be significant SoC variations. 

For safe operation, the SoC, voltage, and current of the 

battery must be restricted within a range [40], and the battery 

power will be limited by these restrictions. The maximum 

continuous current of the battery is 300A. The maximum 

discharge/charge currents (i.e., the continuous maximum 

current over period ∆t) under voltage limitations 

bat, bat,

dis,max ch,max/V VI I  can be calculated by substituting vb(k+1) with 



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2859317, IEEE
Transactions on Power Electronics

the minimum/maximum battery voltages Vbat,min/Vbat,max in Eq. 

(21) and Eq. (23), which is given as 

   

 

   

 

OC C bat,minbat,

dis,max

OC

t s

bat

OC C bat,maxbat,

ch,max

OC

t s

bat

= ,
d

1
d

= .
d

1
d

k

k

t

kV

t

z z

t

kV

t

z z

V z e V k V
i

V zt
R e R

Q z

V z e V k V
i

V zt
R e R

Q z


















 

  
    
  

  

  

    
 









   (24) 

When the battery SoC is close to its upper limit zmax, the 

maximum charging current may also be limited by the SoC. 

Similarly, the maximum discharging current may be limited by 

SoC when the battery SoC is close to its lower limit zmin. The 

maximum current estimation under SoC limitation can be given 

as 

 
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.   (25) 

The battery is connected with the DC bus via a DC/DC 

converter, so the maximum current of the DC/DC converter 

inductor iL,max should be considered. Based on the above 

analysis, the maximum current for prediction horizon ∆t can be 

derived as 

 
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Finally, the discharge/charge maximum power of the 

battery 
bat bat

dis,max ch,max/P P  can be obtained based on Eqs. (26) 

and (27). 
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(27) 

 The maximum power of the battery pack for 1s (i.e., ∆t) 

can be estimated according to the above procedures. This is 

enough for most existing EMS, as a typical control update 

period of EMS is also 1s [41]. However, for some specific EMS 

(e.g., the model predictive control strategy), the prediction 

horizon should be multiple control update periods [42]. 

Assuming the prediction horizon T is N∙∆t (N is a positive 

integer, no more than 30 in this paper), the maximum power of 

the battery pack can be obtained by replacing ∆t with N∙∆t in 

Eqs. (24), (25), and (27), as the maximum power estimation is 

based on a linearized model. 

3.2 Maximum power of SC pack 

The SC SoC is proportional to its voltage, thus only the 

voltage and current constraints need to be considered to 

estimate its maximum power. Based on Eq. (14), the discrete 

time SC model can be derived as 

   
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  (28) 

The maximum SC voltage VSC,max is the voltage when the 

SC is fully charged. Generally, the SC terminal voltage is 

strictly controlled between 0.5VSC,max and VSC,max as the 

efficiency of power conversion becomes poor when vSC is low. 

Unlike the battery, the SC voltage changes relatively quickly 

when the current is large. If the SC power is constant over a 

prediction horizon, the SC discharge current will increase and 

the SC charge current decreases due to the change in voltage, 

especially when the prediction horizon is long. Thus the 

maximum power of SC cannot be calculated in the same way 

as the battery. The SC maximum power is definitely limited by 

its voltage. In addition, the maximum power is also limited by 

the continuous maximum currents allowed by the inductor and 

manufacturer. The maximum continuous current of the SC 

module is 240A at 40°C, therefore the maximum 

discharge/charge current 
SC SC

dis,con ch,con/i i  is set to 240A/-240A. 

The maximum power under both the voltage and current 

limitations can be given as 
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(30) 

Finally, the discharge/charge maximum power of SC, 

SC SC

dis,max ch,max/P P , can be obtained considering the resistance. 
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 Similarly, the maximum power of the SC pack for N time 

intervals can be obtained by replacing ∆t with N∙∆t in Eqs. (29) 

to (31). Based on above analysis, the maximum power of HESS 

can be obtained as follows: 
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(32) 

where HESS

dis,maxP  and HESS

ch,maxP  are the maximum discharging and 

charging power of the HESS, and RD,bat and RD,SC are the 

DC/DC converter resistances associated with the battery and 

SC, respectively. In the test-bed, the inductors for both battery 

and SC packs are designed to have a maximum current of 300A, 

which satisfies the maximum currents requirement of both 

battery and SC. 

 As shown in Eqs. (27) and (32), the maximum continuous 

power calculation processes of battery and SC require accurate 

parameters of the corresponding ECMs. So the parameters 

should be accurately identified by adopting the optimal 

excitation currents, which can be designed based on the 

analysis results in Section 2. 

4. Experimental results and discussions 

An experimental test-bed has been constructed, as shown 

in Fig. 7. This test-bed provides a flexible platform for the 

experimental validation of HESS. The DC/DC converters, 

which are controlled by a central microprocessor, distribute the 

power request between the battery and SC as well as generate 

exciting signals for parameter identification. To simulate the 

fully-active HESS adopted in this paper, both the battery and 

SC packs of the test-bed are connected to the DC bus via 

DC/DC converters. The resistive load consists of 19 100Ω-

resistors connected in parallel. The load profile can be realized 

by controlling the duty cycle of another DC/DC converter 

which is used to connect the resistive load and DC bus. Detailed 

information about the test-bed construction is provided in [43]. 

When the power demand is constant, the excitation current can 

be directly applied to the battery and the excitation current for 

SC can be inherently generated because the DC bus voltage is 

regulated to be constant by a Lyapunov-function based 

controller, proposed in [8]. 

 

Fig. 7. The HESS test-bed 

Table 1  Specifications for the battery pack 

LiFePO4 Battery 

Manufacturer 
Flux Power® (BMS) 

& Winston® (cells) 

Cell voltage limits (V) 2.5/3.9 

Max. continuous current (A) 300 

Capacity (Ah) 100 

DC voltage (V) 36-144 

Battery pack resistance (Ω) 0.08 

Communication Interface CAN bus 

The battery pack in the test-bed consists of 48 LiFePO4 

cells which are connected in series. A Battery Management 

System (BMS) from Flux Power® utilizes a distributed 

architecture where every BMS module manages four cells via 

passive (i.e., resistive shunting) cell balancing. The battery 

current is measured by the BMS to estimate the SoC of the pack. 

The specifications of the battery pack are listed in Table 1. 

In the test-bed, two SC modules are connected in series 

within the SC pack. Manufacturer specifications for the SC 

module are provided in Table 2. 

Table 2  Specifications for the SC module 

SC Module 

Manufacturer 
Maxwell 

Technologies® 

Rated Capacitance (F) 63 

Rated Voltage (V) 125 

Max. continuous current at 

40°C (A) 
240 

Max. equivalent series 

resistance (mΩ) 
18 
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The analysis in Section 2 shows that appropriate 

excitation should be applied to both battery and SC to achieve 

high identification accuracy. For the battery-only configuration, 

the current profile of the battery is directly determined by the 

power demand, therefore it is practically impossible to design 

the current profile. However, HESS including both battery and 

SC is an over-actuated system, which provides an opportunity 

to achieve sufficiently rich input signals and output regulation 

objectives simultaneously. Although the power demand is 

constant in this paper, we point out that HESS has the capability 

of providing rich input signals for parameter identification 

processes when the power demand varies with time. In addition, 

we point out that the sinusoidal current need not be injected all 

the time, as the battery and SC parameters don’t change quickly. 

The specific remark can be given as 

Remark #1: The implications of injecting a current signal 

for active parameter estimation could be problematic for 

general applications. In this paper, however, we focus on the 

battery/supercapacitor HESS, which is an over-actuated system 

and provides an opportunity to achieve sufficiently rich input 

signals and output regulation objectives simultaneously. 

Therefore, the optimal current signal can be directly injected, 

and the negative influence of injecting the 10A current in the 

experiment on the HESS performance (i.e., system efficiency 

and power supply quality) can be minimized given the HESS 

over-actuated nature. Specifically, for any power demand Pd, 

we have Pd = Ps1 + Ps2, where Ps1 and Ps2 are the power from 

source 1 (i.e., battery) and source 2 (i.e., SC). The optimal 

current for identification can be designed for one source, while 

the other source can be used to deliver the power demand and 

eliminate the negative consequences of the excitation. In 

addition, the 10A excitation current adopted in this paper is 

only an initial verification of the proposed method. In our future 

work, the amplitude of the excitation current will be optimized 

to ensure both the signal richness and the HESS efficiency, and 

it is very likely that the amplitude will be time-varying and 

dependent on power demand. 

The analysis in Section 2 shows that both battery and SC 

demand a low-frequency current component in the parameter 

identification process. As shown in Fig. 3, when k=2, sinusoids 

with frequencies of 0.004Hz and 0.008Hz are optimal to 

achieve satisfactory performance in the combined 

identification process of the battery packs. This low optimal 

frequency, however, imposes several problems, as it requires a 

long identification period. Thus, in our experiment, sinusoids 

with frequencies of 0.02Hz and 0.04Hz (the amplitudes of both 

waveforms are M=5A), which also have slow component, are 

used for the battery pack. Based on the voltage controller, the 

SC current profile is generated as shown in Fig. 8. 

 

Fig. 8. Excitation current profiles for battery and SC 

A RLS with a constant forgetting factor of 0.992 is used 

to identify the parameters of the battery pack, and the battery 

SoC is maintained at around 55% during the experiment. The 

derivative of the battery and SC voltages are adopted in this 

paper to avoid more states in the identification process. 

However, the derivative of voltage can be pretty noisy in real 

applications, which will therefore impair the estimation 

performance. An averaging filter can be used to solve this 

problem. For the parameter identification with optimal current 

profiles (i.e., the frequencies of the battery current are 0.004Hz 

and 0.008Hz), the window length of the average filters for both 

battery and SC contains 10 samples. Since the sampling 

frequency is 2Hz, the averaging filter, which has a low-pass 

function, has a -10dB bandwidth of 0.105Hz. We point out that 

the averaging filter should be designed considering the 

sampling frequency. When the sampling frequency increases, 

the window length of the average filter should also increase to 

achieve the same bandwidth. Based on Eq. (2), the filtered 

system in continuous-time can be given as 
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c c c c
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(33) 

where Tc is the time coefficient of the low-pass filter. Since VOC 

is considered as a constant in the identification process, the 

filtered system is provided as 
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bf OC s bf bf

1

1

R
v s V R i s i s

s s
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
,  (34) 

where vbf and ibf are the filtered voltage and current, 

respectively. The parameters can then be identified based on the 

filtered dynamics. 

As shown in Fig. 9, the ohmic resistance Rs is about 60mΩ, 

and Rt is about 187 mΩ. The battery pack time constant τ is 

about 60s. Based on the identification result, the terminal 

voltage can be estimated accordingly. As shown in Fig. 10, the 

estimated terminal voltage can accurately track the real one as 

estimation error is below 0.5%, which means that the first-order 

ECM can accurately represent the battery dynamic. All 
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parameters shown in Fig. 9 are vital to the maximum power 

estimation of the battery. The optimal current profile is 

necessary for parameter identification, and accurate parameters 

can achieve accurate maximum power estimation. The 

sampling period of the identification process is 0.5s, and the 

computer (with Intel(R) Core(TM) i7 Cpu/16G RAM) takes 

0.023291s for the 200s identification process, which is 

satisfactory. But we point out that the sampling time can be 

slightly increased to 2s, while the identification performance 

can also be guaranteed with a computation time of 0.010948s. 

When the identification problem becomes more complex, it is 

worth increasing the sampling time in practical applications. 

 

(a) VOC 

 

(b) Rs 

 

(c) Rt 

 

(d) τ 

Fig. 9. Parameter identification results of battery pack 

To further verify the accuracy of the provided analysis, the 

frequencies of the sine waves were increased to 0.4Hz and 

0.8Hz, which are twenty times higher than the ones in the 

original experiment. The sampling period of the identification 

process is 0.01s. As shown in Fig. 11 (b), the estimation error 

of the terminal voltage increases significantly and is more than 

0.5%. Based on the comparison results, the conclusion can be 

therefore drawn that the non-optimal frequencies of the sine 

waves shown in Fig. 11 (a) lead to larger error variance. 

 

Fig. 10. Terminal voltage estimation result of the battery pack 

 

(a) Current profile 

 

(b) Terminal voltage estimation result 

Fig. 11. Parameter identification results under the non-

optimal current profile 

The RLS with a constant forgetting factor of 0.996 was 

then used to identify the parameters of the SC pack. We point 

out that it is difficult to automatically determine the optimal 



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2859317, IEEE
Transactions on Power Electronics

forgetting factor. The selected forgetting factors (i.e., 0.992 for 

battery and 0.996 for SC) are based on tuning results, which 

found that the selected ones achieved the best estimation 

performance. Generally, a small forgetting factor is used in the 

case that the estimated parameters change quickly via time, 

therefore the previous data, which contains the parameter 

information in the past, is no longer relevant. For the battery 

and the supercapacitor studied in this paper, the parameters 

don’t quickly change, so a larger forgetting factor is preferred. 

The sampling period of the SC parameter identification 

was set to 0.5s. As shown in Fig. 12 (a), the SC capacity CSC is 

about 31.5F (the nominal capacity of the SC pack is also 31.5F) 

and its ohmic resistance Rs is about 20mΩ. As shown in Fig. 12 

(b), the estimated terminal voltage of the SC pack can 

accurately track the actual value with an error below 0.5%. 

Thus the simplified ECM can accurately represent the SC 

dynamic, and it can be used to estimate the SC maximum power. 

  

(a) Parameter identification results 

 

(b) The terminal voltage estimation result 

Fig. 12. Parameter identification results of the SC pack 

The above experimental results show that the ECMs used 

in this paper can simulate the system dynamics accurately using 

the optimal excitation current profiles. Based on the appropriate 

ECMs and the accurate identified parameters, the maximum 

power of HESS can be then estimated. The maximum 

discharge/charge currents of the battery are shown in Fig. 13 

(a). The maximum currents under SoC limitation are much 

larger and not given because the battery SoC is not near its 

upper and lower bounds (i.e., 55% in the experiment). It can be 

seen that, when the prediction horizon is longer (i.e., 30s), the 

maximum currents decrease for the battery due to the voltage 

limitation [40], and thus may become the main factor 

influencing the maximum power of the battery. For a short 

prediction horizon (i.e., 1s), the maximum currents under 

voltage limitation are larger than the ones under manufacturer 

limitation. This result may change when the battery SoC is very 

close to its limitations. In the experiment, both the battery 

discharge and charge currents for 1s are restricted by the 

saturation current of the DC/DC converter inductor.  

 

(a) Current limitations 

 

(b) Maximum power under discharge/charge processes 

Fig. 13. Maximum power estimation results of the 

battery pack 

The HESS maximum power for the next sampling interval, 

which is generally 1s, is particularly important to restrict the 

HESS power in practical applications [2]. In some specific 

cases, for example, the model predictive controller requires a 

long estimation horizon, and an accurate HESS maximum 

power is really critical in the algorithm [42]. Therefore, in this 

paper, the results for different prediction horizons are 



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2859317, IEEE
Transactions on Power Electronics

investigated. The battery maximum power can be calculated 

according to Eqs. (26) and (27), and the battery maximum 

power for 30s is smaller than the one for 1s, as shown in Fig. 

13 (b). 

 The estimation result for the SC pack is shown in Fig. 14. 

The maximum discharge power for 1s is much larger than the 

one for 30s. The maximum continuous discharge/charge 

powers for 30s are strictly limited by SC voltage. In terms of 

the large prediction horizon, the SC voltage is likely to restrict 

the maximum power. When the prediction horizon decreases, 

the SC maximum current tends to limit its maximum power. As 

shown in Fig. 14, the maximum charge power for 1s, which is 

strictly restricted by the maximum current requirement, is large 

and does not contain any ripple because the SC voltage is 

relatively low in the experiment. It is difficult to reach the upper 

bound when the SC voltage is low since its current is also 

limited. For the maximum discharge power for 1s, it is initially 

restricted by the current limitation, but at the last stage the SC 

voltage begins to limit its maximum power as the SC voltage is 

approaching its lower bound. Besides the maximum current and 

voltage limitations, the maximum power also depends on the 

time period for draining the available energy. As a result, the 

maximum power decreases as the prediction horizon increases. 

Based on Eq. (32), power loss caused by the inductor 

resistance can be estimated and the HESS maximum power can 

be obtained, as shown in Fig. 15. Generally, the maximum 

power for short duration is significantly larger than for longer 

duration. The maximum power estimation can be adopted in the 

HESS EMS for online uses (e.g., vehicle [4] and grid 

[44]applications). 

 

Fig. 14. Maximum power estimation results of the SC 

pack 

 

Fig. 15. Maximum power estimation result of HESS 

5. Conclusions 

This paper presents the analysis, design, and experimental 

validation of parameter identification of a 

battery/supercapacitor HESS for system monitoring and 

maximum power estimation. Based on the Fisher information 

matrix and Cramer-Rao bound analysis, the parameter 

identification accuracy is analyzed considering noise in 

measurements. It is shown that appropriate current profiles 

should be adopted to properly excite both battery and SC. 

Therefore identification accuracy can be guaranteed.  

An HESS including both battery and SC is an over-

actuated system, which provides an opportunity to achieve 

sufficiently rich input signals and output regulation objectives 

simultaneously. The power demand is assumed to be constant 

in this paper to simplify the problem. However, we point out 

that the optimal current signal can be directly injected when the 

power demand is varying, and the negative influence of 

injecting the excitation current on the HESS performance (i.e., 

system efficiency and power supply quality) can be minimized 

given the HESS over-actuated nature. Both the battery and SC 

need low frequency current components to achieve a 

satisfactory identification performance. Based on these 

excitation current profiles, the parameters of battery and SC are 

identified using recursive least squares with a forgetting factor. 

The experiment results show that the accuracy of the simplified 

ECM is satisfactory when the current profile is well designed. 

Based on the identified parameters, the maximum power of the 

battery and supercapacitor are estimated for different time 

horizons (i.e., 1s and 30s). The maximum power for short 

durations is significantly larger than the one for long durations. 

We point out that the analysis and parameter identification 

algorithm can be generalized to the systems including either 

battery or SC. 

In future work, the parameter identification and system 

optimization will be considered together in the EMS to 
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optimize the comprehensive performance. 
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