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a b s t r a c t

Internal Model Control (IMC) has a great appeal for automotive powertrain control in reducing the
control design and calibration effort. Motivated by its success in several automotive applications, this
work investigates the design of nonlinear IMC for wastegate control of a turbocharged gasoline engine.
The IMC design for linear time-invariant (LTI) systems is extended to nonlinear systems. To leverage the
available tools for LTI IMC design, the quasi-linear parameter-varying (quasi-LPV) models are explored.
IMC design through transfer function inverse of the quasi-LPV model is ruled out due to parameter
variability. A new approach for nonlinear inversion, referred to as the structured quasi-LPV model in-
verse, is developed and validated. A fourth-order nonlinear model which sufficiently describes the dy-
namic behavior of the turbocharged engine is used as the design model in the IMC structure. The con-
troller based on structured quasi-LPV model inverse is designed to achieve boost-pressure tracking. Fi-
nally, simulations on a validated high-fidelity model are carried out to show the feasibility of the pro-
posed IMC. Its closed-loop performances are compared with a well-tuned PI controller with extensive
feedforward and anti-windup built in. Robustness of the nonlinear IMC design is analyzed using simu-
lations.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Internal Model Control (IMC), whose diagram is shown in Fig. 1,
is a well-established control design methodology with an intuitive
control structure (Morari & Zafiriou, 1989). It incorporates a sys-
tem model as an explicit element in the controller so that the
control actions are determined based on the difference between
the model output and the plant output. It has several desired
features and closed-loop properties as established in Morari and
Zafiriou (1989) and Garcia and Morari (1982), such as dual stability
criterion, zero offset, and perfect control. The design, analysis, and
implementation of IMC for linear systems have been well devel-
oped. Rivera, Morari, and Skogestad (1986) showed that process
industrial IMCs for many SISO models can lead to PID controllers,
occasionally augmented with a first-order lag. They also demon-
strated the superiority of using IMC for PID tuning in terms of
closed-loop performance and robustness.
ngsun@umich.edu (J. Sun),
(M. Santillo).
The efficacy of IMC for nonlinear systems, however, has been
investigated with limited comprehensive results. Economou,
Morari, and Palsson (1986) presented an important result of
nonlinear IMC, proving that the dual stability criterion, zero offset,
and perfect control properties of LTI IMC would carry over to
nonlinear cases. The IMC was implemented by finding a nonlinear
dynamic inverse, which remained to be the key challenge in ex-
tending the IMC design to nonlinear systems. While the invert-
ibility condition, inverse structure, and derivation for nonlinear
dynamic system inverse were studied (Hirschorn, 1979), the de-
rivation of the nonlinear inverse involved higher-order derivatives
and caused problems when noises and disturbances were present
in the system. In Economou et al. (1986), the nonlinear inverse was
derived by exploiting the Hirschorn nonlinear inverse structure
and solving it numerically using the contraction principle method
or Newton's method. Stability of the IMC structure was discussed
under the ideal circumstance that the model was the same as the
plant. Henson and Seborg (1991) also exploited the result of
Hirschorn nonlinear inverse for nonlinear IMC design. Several as-
sumptions were made to calculate the higher-order derivatives.
Feedforward/feedback linearization approach was adopted by
Calvet and Arkun (1988) to derive the model for the nonlinear
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Fig. 1. Internal model control structure.

Z. Qiu et al. / Control Engineering Practice 46 (2016) 105–114106
plant in IMC. Their approach accounted for the disturbances and
input constraints.

Nonlinear IMC was also investigated in the adaptive control
framework. Hunt and Sbarbaro (1991) used artificial neural net-
works for adaptive control of nonlinear IMC. Feasibility of identi-
fying the nonlinear model and its inverse by a neural network was
explored and demonstrated. Boukezzoula, Galichet, and Foulloy
(2000) and Xie and Rad (2000) used fuzzy logic to estimate the
model dynamics. The inverse was derived from this fuzzy model.
The black-box identifications of neural network and fuzzy logic
made it difficult to incorporate physical knowledge about the plant
in the IMC design. In adaptive IMC scheme, using linear models to
represent the dynamics of the nonlinear plant though adaptation
has also been exploited (Brown, Lightbody, & Irwin, 1997; Datta,
1998; Shafiq, 2005).

Another possible avenue to exploit the linear IMC design tools
for nonlinear systems would be through the linear parameter
varying (LPV) model. Mohammapour, Sun, Karnik, and Jankovic
(2013) applied IMC on a quasi-LPV model with two approaches. In
the first approach, the IMC controller parameters were scheduled
based on the LPV model parameters which were assumed to be
known in real time and not vary rapidly. In the second approach,
the design problem was formulated in the H∞ framework as a set
of linear matrix inequalities (LMI). Solving the associated LMI
problem, however, was computationally intensive. Toivonen,
Sandström, and Nyström (2003) derived the LPV model based on
velocity-based linearization, then developed the IMC controller
based on linear IMC theory. It was much less computationally
demanding, but it was only applicable when there were a small
number of scheduling parameters.

This paper explores nonlinear IMC for turbocharged gasoline
engines driven by the need for developing robust and easy-to-
calibrate powertrain control solutions and motivated by several
successful industrial applications. IMC was first applied to turbo-
charged diesel engines for automotive applications. Alfieri, Am-
stutz, and Guzzella (2009) applied IMC based on the classical
Smith predictor structure to air–fuel ratio control in turbocharged
diesel engines with exhaust gas recirculation. Schwarzmann,
Nitsche, and Lunze (2006) treated boost-pressure control of a
turbocharged diesel engine with a variable nozzle turbine with
IMC. Their IMC utilized a flatness-based approach to design the
inverse Q, in which flatness means that the system inputs can be
explicitly expressed in terms of internal system dynamics. In a
follow up work, the same group also dealt with a two-staged
turbocharged diesel engine using IMC (Schwarzmann, Nitsche,
Lunze, & Schanz, 2006). The inverse Q was designed based on
geometric nonlinear control design method. As turbocharged ga-
soline engines are becoming more popular, advanced control de-
signs including IMC have been applied to turbocharged gasoline
engines for improved performance. Thomasson, Eriksson, Leufven,
and Andersson (2009) utilized IMC for PID tuning of wastegate
control in turbocharged gasoline engines. Karnik and Jankovic
(2012) later applied IMC directly to wastegate control for a tur-
bocharged gasoline engine, motivated by the successful applica-
tions on turbocharged diesel engines. They used a first-order
model which was simplified from a fourth-order nonlinear model
using singular perturbation. While the simplicity of the first-order
model-based design was an advantage for implementation, its
performance was limited by the linear approximation, as it is de-
fined for a particular operating point.

This work investigates the feasibility, performance, advantages,
and limitations of a nonlinear IMC for automotive powertrain-
control design, using the fixed geometry turbocharged gasoline
engine as a case study. While the nonlinear dynamics of the sys-
tem can be sufficiently described by a fourth-order model, in-
verting the nonlinear model for the IMC design represents the
major challenge. To facilitate the IMC design, a quasi-LPV model
(Rugh & Shamma, 2000) for the nonlinear model is developed.
More importantly, the special quasi-LPV model structure is ex-
plored, and a structured quasi-LPV model is proposed, which leads
to a feasible nonlinear inverse, referred to as the structured quasi-
LPV inverse. The IMC based on the structured quasi-LPV inverse is
developed, and its performance is analyzed. Simulation results,
using a validated “virtual” plant model, are presented to demon-
strate the effectiveness of the proposed design. This work is ap-
plicable to IMC with SISO nonlinear models of higher-order and is
not limited by the number of scheduling parameters. The pro-
posed IMC was originally presented as a conference paper (Qiu,
Sun, Jankovic, & Santillo, 2014), whereas this paper represents an
expanded version. More specifically, the design procedure is dis-
cussed in more detail from the stability point of view and ro-
bustness analysis is included.

The paper is organized as follows: Section 2 states the problem,
presents two main tools used: IMC and LPV. Section 3 presents the
nonlinear model for the turbocharged gasoline engine and exploits
quasi-LPV approach to derive its inverse. Section 4 analyzes the
IMC implementation results. Section 5 summarizes the paper.
2. Control problem and preliminaries

Gasoline engines have been aggressively downsized in an effort
to reduce fuel consumption and CO2 emissions. However, the
torque provided by the engine is proportional to the air delivered
to the cylinders. To meet the consumer demands for performance
on the downsized engines, i.e., to maintain the engine output
torque, turbochargers are widely adopted. They compress the in-
take air to increase the density of the engine airflow, thereby in-
creasing the torque. The schematic of a turbocharged gasoline
engine is shown in Fig. 2. The wastegate is the main actuator to
control boost pressure. It affects the engine operation by changing
the rotational speed of the turbine/compressor. The air is com-
pressed by the compressor, and passes through an intercooler and
a throttle before entering the engine intake port. The engine ex-
haust port is connected to the turbine, which is mechanically
connected to the compressor. An electric wastegate actuator con-
trols the opening of the turbine bypass path in this application
(Karnik & Jankovic, 2012), affecting the compressor speed and
therefore the boost pressure.

The turbocharged gasoline engine is expected to produce the
desired engine torque, with higher fuel efficiency, power density,
and lower emission (Guzzella & Onder, 2010). To achieve such goal,
the desired engine torque is calculated from the driver pedal po-
sition. The desired engine torque is then mapped into desired in-
take manifold pressure and boost pressure considering the fuel
economy and emission. These two pressures are then tracked
through throttle and wastegate. This two input two output control
problem can often be tackled with a decentralized controller:



Fig. 2. System schematic of a turbocharged gasoline engine (Buckland, 2009).
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Fig. 3. Equivalent internal model control structure.
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using the throttle to track the intake manifold pressure and using
the wastegate to track the boost pressure (Karnik, Buckland, &
Freudenberg, 2005). In this paper, we will focus on using the
wastegate to track the desired boost pressure, and the throttle is
considered as an exogenous input. Boost pressure set-point
tracking is a critical enabling technology for achieving improved
fuel efficiency, power density, and emission reduction (Guzzella &
Onder, 2010). However, operating conditions vary widely in au-
tomotive applications. This variation could result in inadequate
boost at low speeds and loads, and over-boost situation at high
speeds and loads. The wide range in operating conditions adds
complexity to control design and calibration. IMC with a nonlinear
model is adopted for its advantages in reducing the design and
calibration effort.

A nonlinear IMC is developed in this paper for the control
problem of boost-pressure tracking with the electric wastegate as
the actuator. Measurements for boost pressure Pb, temperatures Tb,
Ti, Te, throttle opening uth, and engine speed Nen are assumed to be
available for feedback or feedforward control. The invertibility of
the nonlinear model is assumed. To proceed with the design
procedure of nonlinear IMC with structured quasi-LPV inverse, the
preliminaries of IMC and quasi-LPV model are presented as below.

2.1. Internal model control

The schematic of a system with IMC is shown in Fig. 1, where P,
M, and Q denote the plant, model, and inverse respectively. The
IMC controller contains two elements: the inverse Q and the
model M. Q takes the reference command and the difference be-
tween the outputs of the plant and the model as its inputs. If the
model is exact, i.e., M¼P, the IMC becomes a feedforward con-
troller. Q is generally designed such that the norm of the difference
e between the reference command r and the plant output y is
minimized. Thus Q is chosen by solving

e QM rmin min 1 ,
1Q Q

2 2∥ ∥ = ∥( − ) ∥
( )

subject to the constraint that Q is stable and casual. An absolute
minimum could be reached at Q M 1= − if M is invertible. However
this is not feasible for a non-minimum phase (NMP) model, which
is not stably invertible. An approximate inverse Q can be solved
algebraically depending on the input r. Therefore, once the linear
model is derived, the inverse of the model can be derived by
solving the minimization problem (1). For a nonlinear model,
however these tools are inapplicable, and effective approaches for
inverting nonlinear models are very limited. Therefore, deriving
the model inverse is the main challenge and focus in this work. For
both linear and nonlinear systems, once the model and its valid
inverse are derived, IMC control design follows immediately. IMC
have three main properties as established for LTI models (Garcia &
Morari, 1982) and later extended to nonlinear cases (Economou
et al., 1986):

(1) Dual stability property: When the model M is exact, stability
of both inverse Q and plant P is sufficient for overall system
stability.

(2) Perfect control property: By changing the position of the
signal addition block in the IMC in Fig. 1, one can get an equivalent
form of IMC as in Fig. 3, which has the same structure as the
classical control. With this structure, the IMC controller can be
presented by Q MQ1 1( − )− , therefore, the sensitivity function of the
IMC control system is MQ MQ PQ1 1 1( − )( − + )− . When MQ¼1, i.e.,
Q M 1= − , the sensitivity function is 0, which means “perfect con-
trol” is achieved.

(3) Zero offset property: A controller which satisfies
Q M0 0 1( ) = ( )− adds integral action to the controller, and yields zero
offset for a constant reference command r.

2.2. Quasi linear parameter varying model

Quasi-LPV models are LPV models for nonlinear systems where
nonlinearities are hidden through state-dependent parameters, so
that a nonlinear model can be represented by an LPV model and
treated by LPV design techniques (Rugh & Shamma, 2000).

In general, a nonlinear model in the form of

x f x u, 2̇ = ( ) ( )

can be expressed as an LPV model in the form of

x A p x B p u 3̇ = ( ) + ( ) ( )

if the model (2) is affine in u and the time varying parameter
vector p in (3) is allowed to be state-dependent to disguise the
nonlinearities (Rugh & Shamma, 2000). For example, the nonlinear
model

x x x x x x u, sin1 1
2

1 2 2 1̇ = + ̇ = +

can be expressed in quasi-LPV form as
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In the next section, a nonlinear model for the turbocharged
gasoline engine is presented. The quasi-LPV approach is exploited
for representing it in a linear structure to aid deriving an inverse
for the nonlinear model in IMC implementation.
3. Quasi-LPV model and its inversion

3.1. A nonlinear model for IMC design

Control-oriented models serve the IMC design and im-
plementation in two different ways: first, the IMC incorporates a
system model directly in its implementation as shown in Fig. 1;
second, the standard IMC design procedure takes an inverse of the
process model and augments it with a proper filter to avoid non-
causal implementation to form the inverse Q.

The nonlinear model for the boost-pressure dynamics of a
turbocharged engine presented in this paper is based on the work
of Buckland (2009). The nonlinear model has the following states
and one input:

x P P P N u u, , , , ,b i e t
T

w= [ ] =

where Pb is the boost pressure, Pi is the intake pressure, Pe is the
exhaust pressure, Nt is the turbocharger speed, and the input uw is
the wastegate, which is the fraction of the opening and takes va-
lues in the range of 0, 1[ ]. The dynamics of the pressures Pb, Pi, and
Pe are derived using mass conservation along with isothermal
manifold assumptions, while the dynamics of the turbocharger
speed Nt are derived by a power balance between the turbine and
the compressor as described in Karnik and Jankovic (2012) and
Buckland (2009). The equations are summarized as follows:
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where R is the ideal gas constant, A F/ is the air to fuel ratio, T, V,W,
I and H are temperature, volume, mass flow rate, inertia, and
power respectively. The subscript indicates the physical location of
the variable as in Fig. 2, and b, c, th, i, en, e, t, and w are boost,
Table 1
Nomenclature for modeling of turbocharged gasoline engine.

Variables Subscripts

A/F Air to fuel ratio a Ambient
cp,(·) Specific heat at constant pressure b Boost

f (·)· Compressor/turbine map c Compressor
I Moment of inertia e Exhaust
N Rotational speed en Engine
P Pressure i Intake
H Power t Turbine
R Ideal gas constant th Throttle
T Temperature w Wastegate
u Fraction/degree of opening x Turbine exit
V Volume
W Mass flow rate
ϕ(·) Function of pressure ratio

across the component
η Isentropic efficiency
ψ Mass flow parameter
γ Ratio of specific heats
compressor, throttle, intake, engine, exhaust, turbine, and waste-
gate respectively. Modeling of W (mass flow rate) and H (power)
are described in detail in Karnik and Jankovic (2012) and Buckland
(2009), and the resulting functional expressions are summarized
as follows:
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where Pa is the ambient pressure, Px is the turbine exit pressure,
ϕ(·) is a function of pressure ratio across the component, ψ is a
mass flow parameter, γ is the specific heat ratio for air, cp,(·) is the
specific heat at constant pressure, η is the isentropic efficiency, uth
is the throttle opening, Nen is the engine speed, and usat 0, , 1( )
limits u to be in the range 0, 1[ ]. The temperatures Tb, Ti, and Te are
assumed to be measured. Typically the temperature sensors have a
slow response time and delay, and the measurements are lead
filtered to improve the response time. Therefore, the measurement
inaccuracy is not considered in this work. A F/ is the stoichiometric
ratio of gasoline. uth and Nen are considered as exogenous inputs in
this work and they are measurable. All the variables and subscripts
for the nonlinear model of turbocharged gasoline engine are
summarized in Table 1.

The nonlinear model is evaluated by comparing its responses
with those of the virtual “plant”, which is a high fidelity Ford
proprietary model that has been validated extensively. It includes
the intercooler, throttle, engine, wastegate, turbine, and com-
pressor (Buckland, 2009). Responses to a step change in the was-
tegate setting from 0.25 to 0.75 at t 5 s= for the nonlinear model
and the virtual “plant” are shown in Fig. 4, confirming that the
control-oriented nonlinear model and the “plant” have very si-
milar dynamic responses.
3.2. Quasi-LPV turbocharged gasoline engine model

IMC control can be achieved by designing the inverse Q in Fig. 1
as the inverse of the model M. For linear models, their inverses can
be achieved by inverting their transfer functions and appending a
proper filter to assure causality. To extend this approach to non-
linear models, the quasi-linear parameter varying model approach
is explored to represent the nonlinear model in a linear structure.

Note that there are an infinite number of quasi-LPV models in
the form of (3) that can match (2), depending on the choice of the
varying parameter p. For the turbocharged gasoline engine system,
the physical couplings of state variables are considered and the
following structure that leads to the most sparse A, B matrices is
chosen:
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3.3. Structured quasi-LPV inverse

Given that the parameters defined by (7) are varying fast dur-
ing transients, treating the parameters as frozen and deriving the
transfer function of (6) will not be effective for deriving the in-
verse. Indeed, by numerical simulations it is confirmed that the
transfer function inverse does not represent the nonlinear model
inverse. In this section, the special form of the quasi-LPV structure
of (6) is explored to derive its inverse model in an effort to
minimize the approximation error.
(1) Quasi-LPV model inverse structure: Exploiting the sparsity of

the A, B matrices of model (6), the quasi-LPV model is expressed as
an integration of several first-order sub-models. With this very
special structure of the nonlinear model, the inverse can be pur-
sued by deriving the inverse of multiple first order nonlinear
models, which will involve limited approximation.

Given the sparse matrices A, B in the form of (6), the following
first-order sub-models , , ,1 2 3 4Σ Σ Σ Σ are defined as

x a x a x x x

x a x a x x x

x a x a x b u x x u

x a x a x x x

: ,

: ,

: , ,

: . 8

1 1 11 1 14 4 1 1 4

2 2 22 2 21 1 2 2 1

3 3 33 3 32 2 3 3 3 2

4 4 44 4 43 3 4 4 3

Σ Σ

Σ Σ

Σ Σ

Σ Σ

̇ = + ⟹ = ( )

̇ = + ⟹ = ( )

̇ = + + ⟹ = ( )

̇ = + ⟹ = ( ) ( )

Further expressing Σ3 to be

x u x u, ,3 2 31 2 32Σ Σ Σ( ) = ( ) + ( )

we can show that the input–output relation of the quasi-LPV
model can be expressed as a composition of these sub-models:

y x x u x u, , 91 1 4 3 2 1 1 4 31 2 1 32Σ Σ Σ Σ Σ Σ Σ Σ Σ= = ( ( ( ( ) ))) = ( ( ( ( )) + ( ))) ( )

whose block diagram representation is shown in Fig. 5.
Expressing the input u in terms of the output y based on (9),

u y y , 1032
1

4
1

1
1

31 2Σ Σ Σ Σ Σ= ( ( ( )) − ( ( ))) ( )− − −

which can be viewed as an inverse model of (9). Fig. 6 shows the
block diagram representation of the inverse of the quasi-LPV
model through the integration of several inverse models of first-

order blocks as expressed in (10), in which 1
1Σ − , 4

1Σ − , and 32
1Σ − are

approximate inverses of Σ1, Σ4, and Σ32. The derivations of the

1
1Σ − , 4

1Σ − , and 32
1Σ − are explained in the following section. x x1 4– in

Fig. 6 are approximations of x1–x4 in Fig. 5.
(2) First-order quasi-LPV inverse: We now derive the inverse of

the first-order quasi-LPV model and define its property in order to
derive the representation for the inverse model (10).

For a first-order quasi-LPV model:

x ax bu: , 11iΣ ̇ = + ( )

define



Fig. 5. Interconnection of the first-order quasi-LPV sub-models for the fourth-order
turbocharged gasoline engine LPV model.

Fig. 6. Interconnection of first-order quasi-LPV sub-models for inverse of the LPV
model shown in Fig. 5.

Fig. 7. Structure for validation of first-order inverse.
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denotes the first-order filter with a transfer function

s
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. Then, the following lemma gives the representation of ū.

Lemma 1. Let a, b be time varying parameters with a b, ∈ ∞, b 0≠ ,
and b 1∈ . Then, for any u, ū given by (12) can be expressed in terms
of the state x as
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where x is given by (11).
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Note that the time invariant operator s 1τ{ + } can now be
canceled with

s
1

1
{ }

τ +
since there is no time varying signal in be-

tween. Let
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then the dynamics from output x to ū can be represented by a first-
order LPV model
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Remark 1. Treat x as the input, ū as the output, and a, b, and τ as
the parameters, the BIBO stability of the first order system (13) can
be easily established given that the system has a single frozen-

time pole at 1−
τ
, and

b
1
τ
,

b
b

b

a
b

1 1
2( − + )

τ τ

̇
are bounded.

Remark 2. Note that since u u¯ ≈ for small τ, one can treat (13) as
an approximate inverse model of (11). Moreover, u u τ| ¯ − | ∝ ( ),
namely, the inverse model error can be made arbitrarily small with
a properly chosen τ.

Remark 3. Lemma 1 assumes a continuous-time implementation
of the inverse of (11). When (13) is discretized for real engine
implementation, its BIBO stability remains due to Remark 1. If the
delay caused by discretization is small, its performance will not be
substantially affected.

Now the approximate inverse model i
1Σ − is given by (13). For

simplicity, one can drop the b b/ 2̇ term if the parameter variation is
substantially slower than the system dynamics. However, this is
not the case in this application. b b/ 2̇ as in (7) includes the states.
Therefore, b b/ 2̇ is not slower than the system dynamics. The fol-
lowing simulation also verified that b b/ 2̇ should not be omitted: To
validate the first-order sub-model inverse, the two systems Σi and

i
1Σ − are connected in cascade as shown in Fig. 7. According to

Remark 2, the output v in Fig. 7 should be close to the input v̄. A
numerical analysis of the inverse performance is shown in Fig. 8. It
is obvious that the inverse incorporating the b b/ 2̇ term with
smaller time constant τ has better accuracy. Therefore, the inverse
incorporating b b/ 2̇ is adopted in the subsequent derivation. The
time constant τ is the tuning parameter for the IMC design. Fig. 8
indicates that smaller time constants lead to a better inverse, as
expected.

(3) Structured quasi-LPV inverse: Representing each first-order
model inverse in (10) with (13), an inverse model for the nonlinear
model is derived, which will be referred to as the structured quasi-
LPV inverse.

To incorporate the quasi-LPV inverse model in the IMC struc-
ture, two implementable configurations are possible as shown in
Figs. 9a and b. Firstly, one can use the states in the nonlinear
model Σ to schedule the parameters in the inverse model 1Σ− (as
in Fig. 9a). Since the states used for parameter scheduling are
external to 1Σ− , Fig. 9a is referred to as the externally scheduled
quasi-LPV inverse. Secondly, since all the states in the original
quasi-LPV model are explicit in its inverse structure, one can de-
rive parameters used in A and B (defined in (6)) for 1Σ− based on
the internal states in 1Σ− (as in Fig. 9b), which is referred to as the
internally scheduled quasi-LPV inverse.

While the externally scheduled quasi-LPV inverse looks ap-
pealing at first, its utility is ruled out after more in-depth analysis
and simulation. The dashed line in Fig. 9a which represents the
gain scheduling signal forms a feedback loop, which causes in-
stability. In this work, the proposed IMC controller uses the in-
ternally scheduled quasi-LPV inverse model for its implementa-
tion. It should be noted that the internally scheduled quasi-LPV
inverse is not possible for inverse LPV model derived by general



Fig. 8. Analysis of first-order inverse 1
1Σ− with and without b ̇ (b ̇ is derived from

numerically differentiating b).

Fig. 10. Parameter scheduling relationship in the internally scheduled quasi-LPV
inverse (blue solid lines indicate that the states are actually used for scheduling;
red dotted lines represent the use of the steady state value generated from steady
state mapping in scheduling). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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system inverting methodologies, unless the states are preserved in
the inverse model. With the structured quasi-LPV inverse model
shown in Fig. 6, it is true that all states are explicitly preserved in
the inverse model, thereby making the internally scheduled quasi-
LPV inverse implementation possible.

(4) Stability of the structured quasi-LPV inverse: Even though
each subsystem in the structured quasi-LPV model is BIBO stable,
the overall inverse 1Σ− , with internally scheduled parameters, still
has stability issues due to the feedback loop introduced by those
state-dependent parameters.

Since the state-dependent parameters are the root cause for the
instability phenomenon in the structured quasi-LPV inverse
model, an in-depth analysis of the parameter scheduling is carried
out in the inverse model. Fig. 10 shows the scheduling of the
varying parameters in each sub-model for the internally scheduled
quasi-LPV inverse. One can see that some of the interconnections,
shown by the blue solid lines in Fig. 10 from the states x1 and x2, do
not introduce additional feedback loops except those within their
own sub-models. Others, that are shown by red dotted line for the
parameters scheduled based on x3 and x4, form additional feed-
back loops within the structured quasi-LPV inverse. Meanwhile,
the errors from 1

1Σ − , 4
1Σ − , and 32

1Σ − propagate within the structure,
leading to complicated dynamic responses. To construct a stable
inverse, the scheduling signals x3 (approximate exhaust pressure)
and x4 (approximate turbo speed) are replaced by their steady-
state values. The steady-state maps are generated with respect to
different engine speed and throttle opening.

Remark 4. Note that, based on the dual stability property of IMC
(Garcia & Morari, 1982), the stability of the closed-loop system can
be assured if P and Q are stable and M¼P. The stability of the
quasi-LPV inverse Q can be established given that it is made up by
stable sub-models Σi's and i

1Σ − 's through feedforward connec-
tions. All feedback loops in Q are eliminated after replacing the
Fig. 9. Validation structures: (a) externally scheduled quasi-LPV inverse validation
gain-scheduling elements that form feedback loops using their
steady state values. Therefore, the stability of the closed-loop
system with IMC can be assured using Q 1Σ= − given in Fig. 10.

(5) Structured quasi-LPV inverse model validation: The inverse
model shown in Fig. 10, with some of the state-dependent para-
meters replaced by steady-state mapping values, is validated
through simulation. The validation is performed by connecting the
inverse to the original model as in Fig. 9b and the validated results
are shown in Fig. 11.

Note that the quality of the inverse model depends on the
tuning parameters, which are the time constants τ as in each first-
order LPV sub-model inverse 1

1Σ − , 4
1Σ − , and 32

1Σ − as shown in Fig. 6.
Theoretically if the time constants are small, the output has faster
responses but also potential oscillations during transients. If the
time constants are large, the transient response will be slow. Two
results with different tuning parameters are shown in Fig. 11,
which validates the inverse model. Inverse 1 has the time con-
stants 0.1 s, 0.04 s, and 0.02 s in 1

1Σ − , 4
1Σ − , and 32

1Σ − , respectively.

Inverse 2 has the time constants 0.05 s, 0.04 s, and 0.02 s in 1
1Σ − ,

4
1Σ − , and 32

1Σ − , respectively. Inverse 1, which has the larger time
constant, is more damped than inverse 2 and has little overshoot,
which matches the intuition. The time constant for 1

1Σ − is chosen
to be larger than the others, considering the error in its output x4
propagates to x3 and u, as shown in Fig. 10.
4. Performance evaluation of IMC on turbocharged gasoline
engine

With the fourth-order nonlinear model and the model inverse
developed, IMC can be designed by applying the nonlinear model
and its inverse into Fig. 1. The IMC is implemented in continuous-
time domain, and is applied to the virtual “plant”, which is a va-
lidated Ford proprietary model. The structure of the resulting
nonlinear IMC system is shown in Fig. 12. The tuning parameters
are the time constants in each first-order LPV sub-model inverse
structure and (b) internally scheduled quasi-LPV inverse validation structure.



Fig. 11. Validation of structured quasi-LPV inverse.

Fig. 12. IMC structure with structured quasi-LPV inverse.
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Fig. 13. Simulation results. (a) IMC performance: constant engine speed. (b) IMC
performance: varying engine speed.
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1
1Σ − , 4

1Σ − , and 32
1Σ − , as shown in Fig. 6. The time constants are

chosen at 0.1 s, 0.04 s, and 0.02 s, which are the same as in inverse
1. The pressure and temperature sensors are assumed to be ac-
curate. Performance of the resulting control system is evaluated in
this section together with the robustness analysis with respect to
different operating conditions and measurement noises.

4.1. Performance evaluation

To evaluate the performance of IMC, some features have to be
considered (Moulin & Chauvin, 2011):

� The overshoot of Pb has to be minimized to avoid throttle re-
closing.

� The pressure oscillation of Pb while tracking a step function is
undesirable because they could generate torque oscillations that
are noticeable to the driver.

IMC is compared with a well-tuned PI controller with extensive
feedforward and anti-windup built in, which is referred to as PI
control in the context. The system response and control input are
compared in two cases: constant engine speed of 3000 rpm (as in
Fig. 13a); varying engine speed (as in Fig. 13b). Here varying engine
speed rises from 1500 to 3000 rpm gradually. The throttle opening
is 45° in both simulations. In Fig. 13a, it can be observed that IMC
achieved a faster reference tracking than PI with less overshoot or
oscillation. In Fig. 13b, the IMC response does not overshoot, even
without incorporating an explicit anti-windup strategy.

Overall, the nonlinear IMC for the wastegate control of a
turbocharged gasoline engine shows promising performance. It
shows good reference tracking, no steady-state error, no need for a
separate anti-windup design, and intuitive tuning. Its performance
matches, and in cases exceeds, that of a well-tuned PI control with
extensive feedforward and anti-windup built in.

4.2. Performance in the presence of disturbances

In real applications of boost-pressure control of a turbocharged
gasoline engine, the reference and operating points vary. More
analysis is performed herein to evaluate the system performance
sensitivity with respect to the variation of operating conditions
(engine speed and throttle opening). Note that only one set of
tuning parameters is used for all the tests.

First, the impact of the engine speed Nen is considered. Two sets
of tests are performed: the same Pb reference step at different
engine speed Nen (as in Fig. 14a), constant Pb reference with a step
change in Nen (as in Fig. 14b), in which case the variation in Nen can
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be viewed as a disturbance. The step change in Nen is from 2500 to
3000 rpm. The throttle opening is 45° in all simulations. The re-
sults show that IMC performs well at all engine speeds, and it
rejects the disturbance in Nen.

Next, the impact of the throttle opening uth is considered. Two
sets of tests are performed: the same Pb reference step at different
throttle opening uth (as in Fig. 15a), constant Pb reference with a
step change in uth (as in Fig. 15b), in which case the variation in uth
can be viewed as a disturbance. The step change in uth is from 45
to 30°. The engine speed is 3000 rpm in all simulations. The results
show that IMC performs well at all throttle openings, and it rejects
the disturbance in uth.

4.3. Discussion of applying IMC on turbocharged gasoline engine
with CBV and EGR

A compressor bypass valve (CBV) is a valve that releases the
boost pressure when the boost pressure is too high. It is commonly
present in a turbocharged gasoline engine to prevent compressor
surge. The proposed nonlinear IMC that is applicable to an engine
with CBV. Generally, when the CBV dumps the boost pressure, by
default the wastegate is set to be open, and the nonlinear IMC is
disengaged. Therefore, the addition of CBV does not affect the
nonlinear IMC design.
Exhaust gas recirculation (EGR) is a technique that involves a

valve that recirculates a portion of exhaust gas back to the engine
cylinders, which dilutes the air and reduces in-cylinder tempera-
ture. It can help reduce the NOx emission. The engine discussed in
this work has no EGR system. For an engine with EGR, the state-
space equations (4) will be changed due to the coupling between
the boost pressure and exhaust pressure dynamics with the pre-
sence of EGR. Therefore, the nonlinear model has to be revisited,
and the parameters in the quasi-LPV model will change accord-
ingly. The structured quasi-LPV inverse has to be reanalyzed. Ap-
plication of nonlinear IMC to a turbocharged gasoline engine with
EGR will be considered in future work.
5. Conclusions

A nonlinear IMC design for the turbocharged gasoline engine is
presented. A nonlinear fourth-order dynamics model is adopted in
the controller. The challenges for inverting the nonlinear model
are addressed by: (1) representing the nonlinear dynamics with a
quasi-LPV model, (2) exploring the special quasi-LPV model
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structure, (3) using inverse of the simple first-order quasi-LPV
model, and (4) assuring the stability of the inverse model by
eliminating the internal loops. The simulation results, validated
using a proprietary model as the “plant”, demonstrate the validity
of the proposed approach and establish the performance and ro-
bustness of the closed-loop system. The proposed nonlinear IMC
presents a more implementable and less computationally ex-
pensive design than the other nonlinear IMC methodologies. It is
however presented in the context of the boost pressure control of
a turbocharged gasoline engine, and has not been generalized yet.
Future work in this direction includes applying the nonlinear IMC
to the boost pressure control of a plant with EGR and a real plant,
expanding this specific nonlinear IMC design into a more general
methodology, and developing a systematic approach for tuning
the time constants.
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