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Abstract— This paper presents an experimentally verified,
Lyapunov-based adaptive control design for permanent magnet
synchronous ac machines, which exploits overactuation to achieve
parameter identification and torque regulation objectives simul-
taneously. This is achieved by regulating the states of the system
(i.e., the stator currents) to the output error-zeroing manifold,
along which they are varied to provide excitation for parameter
identification. The proposed control law utilizes a combination of
adaptively tuned feedforward and feedback decoupling terms, in
addition to proportional feedback, to achieve reference current
tracking in the presence of parameter uncertainty. A switching-
sigma modification to the adaptive update law is used to ensure
robust stability of the closed-loop adaptive system, and excitation
for parameter estimation is introduced via the direct-axis current
reference input. The resulting controller achieves the simultane-
ous identification and control objective while providing consistent
transient response characteristics with zero steady-state error
over a wide range of operating points.

Index Terms— Adaptive control, overactuated systems,
simultaneous identification and control (SIC), synchronous
motor drives.

I. INTRODUCTION

PARAMETER identification and output regulation are
often conflicting objectives, with identification requiring

persistently exciting inputs [1] that are rich in harmonics
for parameter convergence, while output regulation objectives
typically involve tracking a set point or reference trajectory
that does not generate persistently exciting inputs. This trade-
off between parameter identification and output regulation
objectives makes optimization-based approaches a natural
framework for simultaneous identification and control (SIC)
methodologies. The “dual control” problem, proposed by
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Feldbaum in 1960 [2], casts the SIC objective as a stochastic
optimal control problem, which trades off minimization of the
regulated output error and parameter uncertainty. However,
the analysis of the dual control problem requires nonlinear
stochastic control theory and solutions are difficult, if not
impossible, to obtain for all but simple problems [3]. Because
of this limitation, there has been a lot of interest in finding
approximate (or suboptimal) approaches to achieving the dual
control objective. In particular, model predictive control has
been explored as a framework for SIC [4]–[8]. While a trade-
off is unavoidable for most systems, overactuated1 systems
provide an opportunity to introduce excitation for parameter
identification in such a way that it does not perturb regulated
outputs. For example, Leve and Jah [9] and Weiss et al. [10]
exploit the “null motion” of an overactuated spacecraft to
introduce excitation for parameter identification without dis-
turbing the control objective. Similarly, in [11], overactuation
in an experimental electric vehicle is leveraged to provide
additional excitation for accurate tire-road friction coefficient
estimation.

Permanent magnet synchronous machines (PMSMs), which
include both surface-mount PM (SMPM) and interior PM
(IPM) rotor configurations, are an example of an overactuated
system in that there are two inputs, the direct and quadrature-
axis voltages, for a single regulated output (i.e., torque for the
purposes of this paper). These machines have become a popu-
lar choice for many drive applications due to their high torque
density and potential for high efficiency. However, variations
in the machine parameters due to temperature changes, skin
effect, and saturation can detune the transient characteristics of
the drive and cause significant steady-state errors in regulated
torque [12]. Temperature variations primarily impact the stator
resistance, which can increase by as much as 100% [12],
and, to a lesser degree, the PM flux, which has a negative
temperature coefficient of around 0.1% per ◦C for neodymium
(NdFeB) magnets [13]. In addition to variations with temper-
ature, in the case of high-pole-pair designs and high-speed
applications, the electrical frequencies in the stator can reach
levels where skin effect begins to cause a noticeable increase
in stator resistance.

1Overactuated systems, in the context of this paper, are systems in
which the number of inputs is greater than the number of outputs to be
controlled.

1063-6536 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

A wide variety of approaches have been proposed by
researchers over the years to address the issue of parameter
variation in PMSMs. In [14], a nonlinear adaptive controller
that achieves asymptotic position tracking using full-state feed-
back (i.e., current, speed, and position measurements) is pre-
sented for SMPM machines, while the approaches presented
in [15] and [16] address the position tracking problem when a
velocity measurement is not available (i.e., using only current
and position measurements). Adaptive control techniques have
even been employed to estimate parameters for extended
machine models with the goal of minimizing torque ripple
in PMSMs [17]. Least square estimators (LSEs) have been
designed for the purpose of estimating machine parameters
online in both closed-loop [18], [19] and open-loop [20], [21]
configurations. The approach presented in [18] divides the
estimation task into a “fast” LSE for the inductances and a sep-
arate “slow” LSE for resistance and torque constant, which are
the functions of slow thermal variations. Mohamed [22] uses
the gradient (steepest descent) algorithm to adaptively estimate
parameter variations, which are modeled as lumped time-
varying disturbances. The use of artificial neural networks
has been explored as well [23]. Still, Lyapunov-based designs
are an attractive approach, as they provide some stability
assurances as part of the design process [24], [25]. To avoid
some of the complexity associated with parameter estima-
tion based on dynamic models, Kim and Lorenz [26] and
Lee et al. [27] develop their parameter estimators using
steady-state machine models. These methods, however, do
not specifically consider the SIC objective; that is, designs
which ensure that inputs to the plant are persistently exciting
while minimizing the impact of the excitation on the regulated
outputs.

This paper presents an experimentally verified, Lyapunov-
based adaptive control design for PM synchronous ac
machines, which exploits overactuation to achieve parameter
identification and torque regulation objectives simultaneously.
We begin by discussing the SIC objective, and the proposed
method of regulating states to the output error-zeroing man-
ifold in the context of torque regulation for PMSMs. After
reviewing the dynamic PMSM machine model, the derivation
and stability proof for the proposed Lyapunov-based adaptive
controller is presented. The adaptively tuned control law
utilizes a combination of feedforward and feedback decou-
pling terms, in addition to proportional feedback, to achieve
reference current tracking in the presence of parameter uncer-
tainty. Excitation for parameter estimation is introduced via
the direct-axis current reference input. The necessary and
sufficient conditions for parameter convergence are discussed,
and simulation results verifying the performance of the control
design in both ideal and practical scenarios are presented.
Challenges that are encountered in experimental implemen-
tations are discussed, along with the experimental results
obtained for a 250-W surface-mount PMSM. Finally, this
paper represents a significant extension of our conference
paper [28]. Specifically, we have extended the design to the
more general PMSM model, included a more comprehensive
discussion of the proposed SIC methodology for overactu-
ated systems, provided a thorough analysis of persistently

Fig. 1. Depiction of a 1-D manifold in R
2.

exciting inputs as well as necessary and sufficient conditions
for parameter convergence, and updated and expanded the
experimental results. A list of common notation is provided
in Table I.

II. SIMULTANEOUS IDENTIFICATION AND CONTROL

OBJECTIVE AND METHODOLOGY

In this paper, when we refer to SIC, we are referring
specifically to control designs which ensure that the sufficient
conditions for accurate parameter identification (i.e., persis-
tently exciting inputs) are maintained in addition to achieving a
control objective, such as output regulation. This is in contrast
to typical adaptive control designs, which generally guarantee
zero steady-state control error, regardless of the accuracy
of the estimated parameters. However, in some applications,
accurate knowledge of the system parameters is desirable, for
example, for condition monitoring, or to guarantee specific
transient characteristics. While there are clear advantages to
having accurate parameter knowledge, identification and con-
trol are typically conflicting objectives, necessitating a tradeoff
as discussed in Section I. However, overactuated systems
provide an opportunity to achieve both identification and
control objectives simultaneously and without compromise,
since there is no unique input vector for a given output
value.

The SIC design approach demonstrated in this paper on
torque regulation in PMSMs is based on constraining the
states of the system (i.e., the direct and quadrature-axis stator
currents, i r

d and i r
q ) to a set, which corresponds to a particular

desired (regulated) output value. Specifically, we are interested
in regulating the (unmeasured) electromagnetic torque output
of PMSMs, τ , for which the regulated output error is defined
as follows:

eτ = τ ∗ − τ = τ ∗ − h
(�θ, i r

d , i r
q

)
(1)

where τ ∗ is the reference torque input and h(·) : R
2 �→ R is

the nonlinear torque output mapping provided in (4), which
is dependent on the parameters, �θ . Note that eτ describes a
1-D manifold, i.e., a line, in the 2-D (i r

d , i r
q ) state space

(see Fig. 1). We define this output error-zeroing manifold as
follows:

M := {(
i r
d , i r

q

) ∈ R
2 : eτ = τ ∗ − h

(�θ, i r
d , i r

q

) = 0
}
. (2)

Thus, restricting the system state to this manifold ensures that
our output regulation objective is achieved, while the nonzero
dimension of M provides space, in which the state may vary
for identification purposes.
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TABLE I

LIST OF COMMON NOTATION

While it is possible to drive the state to points in the set M
with a single input, provided that M is in the controllable
subspace, it is generally not possible (with a single input)
to vary the state within the set M without departing for a
time, which results in a perturbation of the regulated output.
Overactuation provides additional inputs to the system, which
may be co-ordinated in such a way that the state not only
converges to M, but also varies within the set, without depart-
ing. Recall that the torque regulation problem for PMSMs
is overactuated, since we have two inputs to the system,
vr

d and vr
q , but only one “regulated” output, i.e., torque. Thus,

for our application, we wish to find an input pair, (vr
d , vr

q )(t),
such that the states, i r

d and i r
q , converge asymptotically to the

set M, as defined in (2), while generating sufficient excitation
for parameter estimation by varying (i r

d , i r
q) within M. This is

achieved by designing an adaptive current regulator, developed
in Section IV, which ensures asymptotic tracking of filtered
reference currents in the presence of parameter uncertainty.
The reference currents are computed by specifying a reference
torque and a persistently exciting direct-axis current reference
and solving the torque output mapping for the quadrature-axis
current.

III. FIELD-ORIENTED TWO-PHASE EQUIVALENT

DYNAMIC MODEL FOR PMSMs

Field-oriented control [29] and its variants have become the
standard for high-performance control of ac machinery and
drive systems. By projecting the sinusoidal electrical variables
into appropriate rotating reference frames using the Park
transform [30], a decoupling of the torque-and-field-generating
components of electrical currents is achieved. The resulting
field-oriented machine dynamics are analogous to that of
a separately excited (field-winding) dc machine, where

Fig. 2. Cross section of the two-phase equivalent, two-pole smooth air-gap
IPM PMSM machine.

field-and-torque-generating electrical currents are indepen-
dently controlled.

The proposed control algorithm is designed around the stan-
dard rotor field-oriented two-phase equivalent PMSM model
(see Fig. 2) [31]. This model and the subsequent control design
are derived under the following assumptions.
A1: The machine to be controlled has a smooth airgap

(i.e., slotting effects are neglected), is fed by an ideal
voltage source inverter, and is balanced in its construc-
tion such that it can be accurately represented by its
two-phase equivalent model.

A2: Linear magnetics is assumed (i.e., magnetic saturation
effects are neglected), and core losses are neglected.

A3: The rotor (electrical) velocity, ωre, is a known
(i.e., measured) function of time, where |ωre| and |ω̇re|
are bounded for all t ≥ 0.

A4: The sampling frequency of the digital implementation is
high enough that a continuous-time control design can
be sufficiently approximated.

A5: The only uncertain parameters are resistance, R, PM flux
linkage, �PM, and the direct and quadrature inductances,
Ld and Lq , respectively.

These are common assumptions that are valid under normal
operating conditions.

The first three assumptions (A1–A3) simplify the model and
reduce its order, while the last two assumptions (A4 and A5)
pertain to the control design and methodology. Under these
assumptions, the dynamic model of a PMSM in the rotor
reference frame (denoted by the superscript r ), in which the
direct-axis is aligned with the rotor PM flux, is given by

Ld
dir

d

dt
= −Rir

d + ωre Lqir
q + vr

d

Lq
dir

q

dt
= −ωre Ldir

d − Rir
q + vr

q − ωre�PM (3)

with the unmeasured nonlinear torque output mapping

τ = 3P

4

[
(Ld − Lq )i r

d + �PM
]
i r
q . (4)
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IV. ADAPTIVE CONTROL DESIGN

A. Reference Current Calculation

Given τ ∗ and i∗r
d , we solve for the reference quadrature

current, i∗r
q , which is the primary torque generating component

of the stator currents

i∗r
q = τ ∗

3P
4

(
�̂Li∗r

d + �̂PM
) (5)

where the “hat” ( ˆ ) is used to denote the estimated parameters
and �̂L = L̂d − L̂q .

Remark: Expression (5) is well defined provided that
�̂Li∗r

d + �̂PM 	= 0. For this condition (i.e., �̂Li∗r
d + �̂PM = 0)

to occur in practice, an impractically large direct-axis current
(i.e., one which would likely exceed the current limitations of
the machine) and/or extremely erroneous parameter estimates
are required, which is impossible due to the presence of a
switching-sigma modification used to bound the parameter
estimates to reasonable values.

As shown in Section V, the derivatives of the refer-
ence current trajectories are needed to properly formulate
the closed-loop error dynamics, and subsequent Lyapunov-
based design, for asymptotic tracking of time-varying signals
(i.e., we are looking to track signals rather than regulate
to a set point). In this paper, we use reference filters as a
convenient way of computing these derivatives online while
also ensuring that the voltage commands remain bounded
under step changes in the unfiltered reference commands
(particularly torque)

�̃i r = {M(s)}�i∗r d

dt
�̃i r = {sM(s)}�i∗r (6)

where the “tilde” ( ˜ ) is used to denote the filtered reference
currents and M(s) is a stable, minimum phase, strictly proper,
unity dc gain, first-order low-pass filter.2 Note that if the
derivatives of τ ∗ and i∗r

d are bounded and known a priori,
then the reference filters may be eliminated. Next, we seek an
adaptive current-regulating control design which will ensure
asymptotic tracking of the filtered reference currents in the
presence of parametric uncertainty.

Remark: Note that the adaptive current-regulating control
design which follows only guarantees that the measured stator
currents, �i r , asymptotically track the filtered reference cur-

rents, �̃i r . The unfiltered reference signals, �i∗r , and �̃i r (and
subsequently, �i r ) will differ accordingly, as determined by the
frequency response characteristics of the user designed Linear
Time-Invariant reference filter, M(s).

B. Adaptive Current Regulator

The direct and quadrature stator current errors are defined
as follows:

er
id = ĩ r

d − i r
d er

iq = ĩ r
q − i r

q . (7)

2{·} denotes a dynamic operator with transfer function “·.”

The following control law:

vr
d = R̂ĩ r

d + L̂d
dĩ r

d

dt
− ωre L̂q i r

q + K pder
id

vr
q = R̂ĩ r

q + L̂q
dĩ r

q

dt
+ ωre L̂d i r

d + K pqer
iq + ωre�̂PM (8)

where K pd , K pq > 0 are constant proportional control gains,
and is formulated using a combination of feedforward, feed-
back, and decoupling terms, designed to yield exponentially
stable stator current error dynamics (9) under perfect model
knowledge (i.e., R̂ = R, L̂d = Ld , L̂q = Lq , and
�̂PM = �PM)

ėr
id = − 1

Ld
(R + K pd )er

id

ėr
iq = − 1

Lq
(R + K pq)er

iq . (9)

Note that the use of a derivative term in the feedforward
portion of the control law (8) does not amplify noise, as the
differential operator is acting on reference signals (6) which
are free of noise.

However, when the parameters R, Ld , Lq , and �PM are not
well known, one can show that the closed-loop error dynamics
are given by

�̇er
i = L−1�
�eθ − (RI + Kp)L−1�er

i (10)

where Kp = diag[K pd , K pq ] is a diagonal matrix of the
proportional control gains, L = diag[Ld , Lq ] is a diagonal
matrix of the direct- and quadrature-axis self-inductances,
�er

i = [er
id er

iq ]
 is the stator current error vector, and �eθ =
[eR eLd eLq e�]
 is the parameter error vector, with eR =
R− R̂, eLd = Ld − L̂d , eLq = Lq − L̂q , and e� = �PM −�̂PM.
Finally, the regressor matrix, �, in (10) is given by

�
(t, �er
i ) =

[ �φ

d

�φ

q

]

=
⎡

⎢
⎣

ĩ r
d

d

dt
ĩ r
d −ωrei r

q 0

ĩ r
q ωrei r

d
d

dt
ĩ r
q ωre

⎤

⎥
⎦. (11)

To stabilize (10) and ensure that our SIC objectives are
achieved in the presence of parameter uncertainty, adaptation
is required. A block diagram of the proposed controller
implementation is given in Fig. 3, where the crossing arrows
behind blocks symbolize portions of the controller, which
are tuned by the adaptation. To derive the adaptive update
law, a Lyapunov stability analysis of the closed-loop system
is performed. The adaptive law is then selected such that
it makes the Lyapunov function monotonically decreasing,
thereby guaranteeing closed-loop stability of the controlled
system. The following Lyapunov function candidate forms the
basis of the derivation:

V
(�er

i , �eθ

) = 1

2

(�er

i L�er

i + �e

θ �−1�eθ

)
(12)

where � = �
 > 0 is the adaptation gain matrix. The first
derivative of (12) with respect to time is given by

V̇
(�er

i , �eθ

) = �er

i L�̇er

i + �e

θ �−1 �̇eθ . (13)
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Fig. 3. Block diagram of the proposed control law.

Substituting (10) into (13), with some manipulation, yields

V̇ = −�e r

i [R I + Kp]�er

i + �e

θ ��er

i + �e

θ �−1 �̇eθ . (14)

It is assumed that the actual machine parameters are chang-
ing very slowly, that is

�̇eθ = �̇θ − ˙̂�θ ≈ − ˙̂�θ (15)

where �̂θ = [R̂ L̂d L̂q �̂PM]
. Finally, the adaptive law is
selected as

˙̂�θ = ���er
i (16)

and so (14) becomes

V̇
(�er

i , �eθ

) = −�er

i [R I + Kp]�er

i ≤ 0. (17)

Therefore, the closed-loop system (3), with control law (8)
and adaptation (16), is stable in the sense of Lyapunov [32].

To establish asymptotic convergence of the stator current
error (i.e., �er

i → 0 as t → ∞), Barbalat’s lemma [32] is used
to show that V̇ (�er

i , �eθ ) → 0 as t → ∞. Note that the preceding
Lyapunov stability analysis has established that V (�er

i , �eθ ) is
differentiable and has a finite limit as t → ∞. To establish
the uniform continuity of V̇ (�er

i , �eθ ), we compute

V̈ (�er
i , �eθ ) = −2�er


i [RI + Kp]�̇er
i (18)

and note that �er
i and �eθ are bounded from (12) and (17),

�̃i r and (d/dt)�̃i r are bounded by design, and so �i r = �̃i r − �er
i is

bounded. Thus, �̇er
i is bounded [from inspection of (10)], and so

V̈ (�er
i , �eθ ) is also bounded. Therefore, from Barbalat’s lemma,

we have that V̇ (�er
i , �eθ ) → 0 as t → ∞, and so we conclude

that the control law (8) with adaptive law (16) renders the
system (3) stable in the sense of Lyapunov, with �er

i → 0 as
t → ∞.

Finally, we note that, in practice, our implementation
of the adaptive update law (16) includes a “switching
σ -modification” [1] for robustness, which acts as a “soft
projection,” applying a leakage term, σ , to the adaptive law

only when a parameter is exceeding an expected limit on its
range of variation. A benefit of this modification is that the
ideal behavior of the adaptive law is preserved so long as the
estimated parameters remain within their acceptable bounds

(i.e., | �̂θi(t)| < M0,i ).

V. PARAMETER IDENTIFICATION

A. Parameter Convergence

With the controller (8) and adaptive (16) laws presented
in Section IV, the closed-loop error dynamics (control and
parameter) take the form

�̇er
i = L−1�
(t, �er

i )�eθ − L−1(RI + Kp)�er
i

�̇eθ = −��(t, �er
i )�er

i (19)

which may be rewritten as follows:
d

dt

[�er
i�eθ

]
=

[
A

(
t, �er

i

) + B
(
t, �er

i , �eθ

)

C
(
t, �er

i

)

]

(20)

where A(t, �er
i ) = −L−1(RI+Kp)�er

i , B(t, �er
i , �eθ ) = L−1�
�eθ ,

and C(t, �er
i ) = −���er

i . In addition, we note that the Lyapunov
analysis in Section IV establishes uniform global stability of
the closed-loop system (19). It follows from [33, Th. 3] that
the origin of the closed-loop system (20) is uniformly globally
asymptotically stable if, and only if, �(t, 0) is persistently
exciting, i.e., there exist T > 0, α0 > 0, and α1 > 0 such that

α1I ≥
∫ t+T

t
�(σ, 0)�
(σ, 0)dσ ≥ α0I ∀t ≥ 0. (21)

B. Persistently Exciting Inputs

To determine necessary and sufficient conditions for persis-
tent excitation, and thus for parameter convergence, we will
take advantage of the connection between persistent excitation
and linear independence of the functions, which make up
the rows of the regressor matrix. The definition for linear
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independence of vector-valued functions (of time) is similar to
that of constant vectors (e.g., in R

n) with the difference being
that an interval of interest (i.e., the domain) is specified. The
definition for linear independence of vector-valued functions
is given here for convenience.

Definition 1 (Linear Independence of Functions [34]):
A set of 1× p real-valued functions, �fi (t), where i = 1, . . . , n,
are said to be linearly dependent on the interval [t0, t1] over
the field of reals if there exist scalars ci , not all zero, such
that

c1 �f1(t) + c2 �f2(t) + · · · + cn �fn(t) = 0

for all t ∈ [t0, t1]. Otherwise, they are said to be linearly
independent on the interval [t0, t1].

Naturally, there are a number of theorems which may be
used to check whether or not a set of functions is linearly
independent. For example, the Grammian matrix may be used.

Theorem 2 (Grammian [34]): Let �fi (t), for i =
1, 2, . . . , n, be 1 × p real-valued continuous functions
defined on the interval [t1, t2]. Let F be the n × p matrix
with �fi (t) as its i th row. Define

W(t1, t2) �
∫ t2

t1
F(t)F
(t)dt .

Then, �f1(t), �f2(t), . . . , �fn(t) are linearly independent on
[t1, t2] if, and only if, the n × n constant Grammian matrix,
W(t1, t2), is positive definite.

At this point, the connections between linear independence
of the functions which comprise the rows of the regressor
matrix, and persistent excitation can be made by noting that
the definition of persistent excitation is based on the Grammian
matrix. For completeness and easy reference, this connection
is summarized in Theorem 3.

Theorem 3 (Linearly Independent Functions and Persistent
Excitation): Consider the matrix function �(t) : R≥0 �→
R

n×m , where the elements of �(t) are bounded for all time, t .
The regressor matrix �(t) is persistently exciting if, and only
if, the rows of �(t) are linearly independent on the interval
[t, t + T ] for all t ≥ 0 and some T > 0.

Proof: It follows from the Grammian matrix and its
properties and is provided in the Appendix. �

The regressor matrix (11) is a function of the reference
signals, ĩ r

d and ĩ r
q , as well as the states of the system,

i r
d and i r

q . However, we may rewrite the states in terms of their
corresponding reference signals and tracking errors, leading to
the following representation of the regressor matrix:
�

(
t, �er

i

) = �o(t) + �e
(
t, �er

i

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ĩ r
d ĩ r

q

d

dt
ĩ r
d ωre ĩ r

d

−ωre ĩ r
q

d

dt
ĩ r
q

0 ωre

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0 0
0 −ωreer

id
ωreer

iq 0
0 0

⎤

⎥
⎥
⎦. (22)

Recall that our analysis in Section IV established that the
stator current error is bounded [i.e., �e(t, �er

i ) ∈ L∞] and
goes to zero asymptotically [i.e., �e(t, �er

i ) → 0 as t → ∞].

From [1, Lemma 4.8.3], it follows that if the matrix �o(t)
is persistently exciting, then �(t, �er

i ) is persistently exciting.
In addition, we note that from [33, Th. 3], it is sufficient to
show that �(t, 0) ≡ �o(t) is persistently exciting.

To simplify our analysis, we will conservatively assume
that the command torque and rotor electrical velocity are
constant, i.e., τ̃ = T̃0 and ωre = 
re, as well as Ld ≈ Lq .
These assumptions generally represent something of a “worst
case” scenario, since a time-varying torque reference and/or
rotor electrical velocity, as well as a significant magnetic
saliency, i.e., Lq � Ld , will aid in parameter identification
by providing additional excitation. Either directly, in the case
of a varying torque command (and/or rotor velocity), or
indirectly, via coupling between the command currents through
the torque expression (5) in the presence of a significant
magnetic saliency. Note that for the torque to remain constant
in the presence of excitation introduced via the direct-axis
dynamics, the quadrature-axis current must vary in an inverse
manner, introducing additional excitation to the quadrature-
axis dynamics. Under these assumptions, we can rewrite the
matrix �o(t) as follows:

�o(t) =

⎡

⎢
⎢
⎢
⎢
⎣

ĩ r
d(t) Cτ T̃0

d

dt
ĩ r
d(t) 
reĩ r

d(t)

−
reCτ T̃0 0
0 
re

⎤

⎥
⎥
⎥
⎥
⎦

(23)

where Cτ is a positive constant scalar and Cτ =
(4/(3P�PM)) > 0. In addition, we will neglect the reference
filter M(s) in our analysis, as it has no effect on the results.3

Without loss of generality, we may take ĩ r
d = sin(ωt)

�o(t) =

⎡

⎢
⎢
⎣

sin(ωt) Cτ T̃0
ω cos(ωt) 
re sin(ωt)
−
reCτ T̃0 0

0 
re

⎤

⎥
⎥
⎦. (24)

From Theorem 3, we may establish necessary and sufficient
conditions for the regressor matrix (24) to be persistently
exciting, by establishing conditions under which the rows of
�o(t) in (24) are linearly independent. To do this, we will use
Theorem 4 for checking linear independence of functions.

Theorem 4 (Derivative Test [34]): Assume that the 1 × p
real-valued continuous functions �f1(t), �f2(t), . . . , �fn(t) have
continuous derivatives up to order (n − 1) on the interval
[t1, t2]. Let F be the n × p matrix with �fi (t) as its i th row,
and let F(k) be the kth derivative of F. If there exists some t0
in (t1, t2) such that the n × np matrix

[F(t0)
...F(1)(t0)

...F(2)(t0)
... · · · ...F(n−1)(t0)]

has rank n, then the functions, �fi (t), are linearly independent
on the interval [t1, t2] over the field of reals.

Since we are interested in sinusoidal inputs, we will con-
sider t0 ∈ [0, ((2π)/ω)]. Applying Theorem 4 to (24), we take
t0 = (π/(2ω)) and compute

det([�o(t0)�̇o(t0)]) = −Cτ T̃0ω
2
3

re. (25)

3Given a persistently exciting u with u̇ bounded, and a stable, minimum
phase, proper transfer function M(s), it follows that y = M(s)u is also
persistently exciting [1].
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Fig. 4. Simulation result demonstrating state-trajectory convergence to
the desired constant torque manifolds using the proposed adaptive control
design methodology with a step change in the commanded torque from
0.2 to 0.4 N-m at a fixed rotor speed of 2000 r/min.

We conclude that the rows of �o(t) are linearly independent
on [0, (2π/ω)], and �(t, �er

i ) is, therefore, persistently exciting,
provided that the following holds.

1) The direct-axis command current, ĩ r
d , has at least one

sinusoidal component (i.e., ω 	= 0).
2) The command torque is nonzero, T̃0 	= 0.
3) The rotor (electrical) velocity is nonzero, 
re 	= 0.
Remark: It should be noted that, in practice, it is important

to normalize the rows of the regressor matrix such that
the peak values are all around unity. Otherwise, the wide
range of machine parameters, which are separated by orders
of magnitude, will lead to convergence issues due to poor
numerical conditioning. Note that this scales the corresponding
parameter estimates as well.

Remark: When the rotor speed is not constant, but changing
slowly with respect to the electrical reference variables, the
same analysis can be carried out following the analysis tech-
niques used in robust adaptive control [1]. The assumption that
the rotor speed is slowly varying is justified by the time-scale
separation between the electrical and mechanical dynamics.

VI. SIMULATION RESULTS

A. Ideal Case

Simulations using the MATLAB/Simulink are used to val-
idate the proposed SIC design for PMSMs. We present the
results for the ideal case first, which assumes a “continuous-
time” controller implementation, no time delay, and noise-
free stator current measurements. In addition, the inverter is
assumed to be ideal in that the sinusoidal voltage commands
generated by the control algorithm are fed directly into the
machine model.

The proposed control methodology is demonstrated
in Fig. 4, specifically constraining the system state (i.e., the
stator currents) to manifolds, M, which correspond to a
constant torque output (i.e., zero regulated output error). The
adaptive controller is initialized with mismatched parameters,
and a step change in the command torque occurs 3 s into the
simulation. Machine parameters that exaggerate the curvature
of the manifolds were selected for the purpose of demonstrat-
ing the effectiveness of the proposed methodology.

Fig. 5. Simulation of an ideal implementation of the proposed SIC
design for PMSMs demonstrating parameter stagnation due an initial lack
of persistent excitation, and the improvement resulting from the introduction
of the excitation signal at 0.75 s.

The simulation results shown in Fig. 5 demonstrate the
stagnation of the parameter estimates when there is a lack of
persistent excitation (t ≤ 0.75 s). Inspection of Fig. 5 reveals
that, initially, when the direct-axis current and output torque
commands are zero, the parameters fail to fully converge,
as expected. In addition, while there is partial convergence
at 0.25 s due to excitation provided by the step change in
command torque, the resistance and direct-axis inductance
estimates do not converge quickly and fully until the excitation
signal is added at 0.75 s. Finally, the black arrows in the
“zoomed-in view” plots in Fig. 5 point out overshoot in the
torque resulting from the lack of parameter convergence.

B. Sampled-Data Implementation: Time Delay
and Compensation

The experimental implementation of the proposed control
algorithm must take into account the sampled-data nature
of its execution on a microprocessor. In particular, sampling
of stator currents and encoder measurements is synchronized
with a center-based pulsewidth modulation (PWM) structure to
prevent the pickup of electromagnetic interference generated
by switching transitions during sampling. A consequence of
this synchronization is that it leads to a one-switching-period
delay between sampling measurements and updating duty
cycles, as shown in Fig. 6.

The presence of this time delay will impose limits on
control gains, K pd and K pq . In addition, the use of reference-
frame advancing in the inverse Park transform is required, as
the rotor angular displacement during the delay interval can
be significant. This discrepancy between the rotor position
at the beginning and at the end of a sample period can
lead to instability and parameter drift in the adaptive con-
troller. To compensate for this angular displacement, the rotor
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Fig. 6. Timing sequence of digital controller implementation.

Fig. 7. Simulation of sampled-data system without reference-frame advancing
at a speed of 2000 r/min with step changes in command torque (the same as
in Fig. 8), leading to poor parameter estimator performance.

position, θre, at the center of the next sample period is
predicted assuming that the rotor velocity, ωre, is constant over
the sample period, Ts

θ̂re[k + 1] = θre[k] + 3

2
ωre[k]Ts (26)

where k = 1, 2, 3 . . . represents the discrete-time indices.
The predicted rotor position (26) is then used to compute
the inverse Park transform in the discrete-time controller
implementation.

To demonstrate the impact that this rotor angle discrepancy
has on the parameter estimator, we include the simulation
results in Fig. 7. A triggered subsystem is used in Simulink
to capture the sampled-data nature of the experimental imple-
mentation. The subsystem is triggered by an inverter model,
which is using center-based PWM at a rate of 8 kHz, like the
experimental setup, and includes a one-time-step delay. The
simulation which produced Fig. 7 did not include reference-
frame advancing based on (26). The switching-σ modification
bounds the parameter estimates. However, the inspection of
Fig. 7 clearly reveals that the parameter estimates (resistance
and quadrature-axis inductance in particular) are sensitive to
this rotor angle discrepancy resulting from the time delay
present in the sampled-data implementation.

For comparison (to Fig. 7), we provide simulation
results that include reference-frame advancing based on (26)
in Figs. 8 and 9. This simulation uses the same Simulink code
that was used to generate the experimental code using Real-
Time Workshop. It should be noted that the inverter model in
this result did not include dead-time effect [13]. The “nominal”
parameters provided in Table II were used in the PMSM
model. Inspection of Fig. 8 reveals that the algorithm works
as intended under sampled-data conditions, provided that the
time delay is compensated via reference-frame advancing.

Finally, the simulation results provided in Fig. 9 demon-
strate operation under field weakening [12], in which
a negative direct-axis current is commanded to reduce the

Fig. 8. Simulation of the proposed adaptive control design in a sampled-
data scenario with reference-frame advancing based on (26) and measurement
noise at a rotor speed of 2000 r/min.

Fig. 9. Simulation of there proposed adaptive control design under field
weakening (i.e., there is a negative offset in the direct-axis current) in a
sampled-data scenario with reference-frame advancing based on (26) and
measurement noise at a rotor speed of 2000 r/min, with a step change in
machine parameters at 3.5 s.

TABLE II

“NOMINAL” TEST MACHINE PARAMETERS

Electromotive Force generated by the PMs and extend the
speed range of the machine under voltage constraints. This
is accomplished by simply adding a negative (field weaken-
ing) direct-axis current offset to the excitation signal. The
simulation results in Fig. 9 also demonstrate the ability to
track a step change in parameters, which occurs 3.5 s into



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REED et al.: SIMULTANEOUS IDENTIFICATION AND ADAPTIVE TORQUE CONTROL OF PMSMs 9

Fig. 10. Experimental setup.

the simulation. Note that, while the excitation signal can be
reduced in amplitude, as it was in Fig. 9 (in comparison with
Fig. 8), a smaller excitation signal will slow down parameter
convergence (for equivalent gains) and will cease to provide
any benefit when the excitation signal amplitude approaches
the noise levels of the system.

VII. EXPERIMENTAL VALIDATION

A. Test Machine Parameters

For simulation and comparison purposes, the “nominal”
test machine parameters were determined offline using
standard techniques. The (dc) stator resistance was measured
with a digital multimeter, inductance with an Agilent E4980A
LCR meter, and the PM flux linkage was identified using
an open-circuit test and a linear regression. These nominal
parameters, denoted by an overbar, are provided in Table II.
We must emphasize that we do not expect that the parameter
estimates provided by our adaptive controller will converge
to these values, since they are not necessarily the true phys-
ical parameters of the machine. For instance, the resistance
measured with a Digital Multimeter does not account for skin
effect and inverter losses, while the formation of eddy currents
in the rotor iron can lead to an error in the measured inductance
when using a standard LCR meter.

B. Description of the Experimental Setup

The proposed robust adaptive control algorithm has been
implemented on experimental hardware, depicted in Fig. 10,
using a dSPACE DS1104 controller board, and the test
machine (Table III) is a three-phase, ten-pole, 250-W SMPM
machine from MOTORSOLVER with “nominal” parameters
(denoted by the over bar) listed in Table II. A 250-W dc
machine from the same manufacturer serves as the load for
the SMPM machine.

A power MOSFET inverter is used to drive the motors
with a switching frequency of 8 kHz and a bus voltage of
42 Vdc. First-harmonic dead-time compensation is used to
mitigate the voltage discrepancy resulting from the insertion
of “dead time” in the gate-drive signals [35]. Duty cycles
are calculated using conventional PWM, and the Analog-
to-Digital Converter sampling is synchronized with, and

TABLE III

MANUFACTURER MACHINE RATINGS

Fig. 11. Experimental torque steps with adaptation on at 2000 r/min.

offset from, the center-based PWM signals to avoid sam-
pling during a switching event (as discussed in Section VI).
Note that the sampling rate of our controller is also 8
kHz due to this synchronization of switching and sam-
pling. Finally, position/velocity feedback is provided by
a 2048-line (per revolution) incremental encoder.

C. Experimental Results

Since mechanical torque was not measured during these
experiments, the quadrature stator current (in the rotor ref-
erence frame) is used to evaluate the transient performance of
the proposed torque regulator in addition to the estimated elec-
tromagnetic torque (27), which can vary with the parameter
estimates

τ̂ = 3P

4

[
(L̂d − L̂q )i r

d + �̂PM
]
i r
q . (27)

It should be noted that, since torque is not measured directly,
accurate knowledge of the PM flux linkage, as well as the
direct and quadrature self-inductance, is required for accurate
torque regulation. Torque steps, used to evaluate the perfor-
mance of the proposed adaptive torque regulator, are provided
in Figs. 11 and 12.

In Fig. 11, we see that the estimated torque tracks the
commanded value very well without any undesirable jumps
or drifting in the parameter estimates. A direct-axis current
reference of ĩ r

d = 1.5 sin(150t) + 1.5 sin(300t) amps provides
excitation for parameter estimation. Note that the estimated
parameter values have been normalized with respect to their
“nominal” values in Table II, which are not necessarily the
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Fig. 12. Experimental transient responses of estimated torque (top) and
measured quadrature-axis current (bottom) across a wide range of rotor speeds.

true values (which are unknown), to facilitate plotting on the
same axis for comparison.

A feature of the proposed adaptive controller design is that
its closed-loop transient response remains consistent across a
wide range of operating points. To demonstrate this, torque
steps from 0 to 0.4 N-m were performed at 2500, 1200,
and 0 r/min, and are shown in Fig. 12. Note that the
responses overlay, indicating that the controller is performing
as expected. In addition, the “ripple” or “noise” which can
be seen in the signals is expected, and is largely due to
the nonideal slotting effects in the machine. Furthermore, the
decision to stop at 2500 r/min is based on the fact that the
voltage constraints of the inverter are encountered at around
3000 r/min. Field weakening may be used to extend operation
to higher speeds by adding the appropriate negative offset to
the excitation signal (i.e., including a negative dc bias in the
persistently exciting direct-axis reference current).

As discussed earlier in this paper, the proposed adaptive
control design achieves the SIC objective in that it allows
excitation signals to be introduced for parameter identification
whose impact on the output is minimized (asymptotically,
in the case of our design). This property is demonstrated
in Fig. 13, in which the transient response of the experimental
adaptive parameter estimator for a constant torque command
of 0.2 N-m at a fixed rotor speed of 2000 r/min is plotted.
Initially, the parameter values are intentionally mismatched
such that the excitation signal disturbs the torque output.
Inspection of Fig. 13 reveals that, as the estimates converge,
the disturbance caused by the excitation signal vanishes,
as expected.

To gauge the performance of our parameter identifica-
tion, we recorded the steady-state values of the estimated
parameters over a range of operating points, in which the
parameters are all identifiable (i.e., nonzero rotor speed and
torque command). Inspection of the results in Fig. 14 indicate
that the parameter estimation is working very well overall. The
resistance estimate is fairly consistent across rotor speed, but
increases slightly with the torque command, potentially due
to temperature rise. The estimated direct-axis inductance and

Fig. 13. Experimental adaptive parameter estimator for a constant torque
command of 0.2 N-m at a fixed rotor speed of 2000 r/min demonstrating
transient characteristics of the parameter estimator as well as asymptotically
vanishing torque perturbation due to the excitation signal.

Fig. 14. Experimental characterization of steady-state parameter estimates
over a wide range of rotor speeds and torque commands.

PM flux linkage are very consistent across rotor speed and
torque, as expected. The drop in the estimated PM flux
linkage at 500 r/min is likely due to the increasing impact
of the dead-time effect at lower speeds (which generally
correspond to smaller stator voltages). Finally, the wider vari-
ation in the quadrature-axis inductance was anticipated, as this
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parameter was observed to be particularly sensitive to encoder
misalignment while tuning the experimental controller. This
behavior was also observed in simulations, which introduced
a fixed rotor angle offset error. However, we have found that
the impact of this variation on the controller performance
(i.e., output regulation) is negligible.

Still, it is worth noting that the quadrature-axis inductance
estimate seems to improve at higher speeds, yielding a nearly
flat trend at 2000 r/min (see Fig. 14), and estimates around
the same value as the direct-axis inductance. This is to
be expected as our test machine was a SMPM machine,
which, characteristically, have a negligible magnetic saliency
(i.e., it is commonly assumed that Ld ≈ Lq for SMPM
machines). Recall that, under a constant torque command and
rotor speed, the third row of the regressor, which relates to
the quadrature inductance estimate [see (24)], is dependent
on the following term: −
reCτ T̃0. At a minimum, a nonzero
torque command, T̃0, and rotor speed, 
re, are needed for the
regressor to be persistently exciting; otherwise, the third row of
the regressor will be all zeros and the estimate of quadrature-
axis inductance will stagnate. Practically, it is expected that
the estimate of the quadrature-axis inductance, Lq , will suffer
from drifting in the presence of modeling errors, such as
encoder misalignments, at low speeds and/or torque com-
mands. This may explain why the estimate of Lq seems to
improve at high speeds, as well as higher torque commands,
as observed in Fig. 14.

VIII. CONCLUSION

This paper extended results from [28], which presented a
new robust adaptive torque regulating controller for SMPM
machines that estimates resistance, inductance, and PM flux
linkage online. The adaptive controller for PMSMs presented
was derived using Lyapunov’s stability theorem, and a robust
modification to the derived adaptive law is used to ensure
closed-loop stability in the presence of unmodeled distur-
bances. The control law utilizes a combination of adap-
tively tuned feedforward (to achieve zero steady-state error),
d − q decoupling (to improve transient response), and
proportional feedback (to add robustness to disturbances)
terms. Overactuation of the system is exploited to simulta-
neously achieve parameter convergence and torque regulation.
Excitation for parameter identification is introduced via the
direct-axis current reference input, and necessary conditions
for persistent excitation were discussed. Simulation results ver-
ifying the performance of the control design were presented.
Finally, remarks specific to experimental implementation chal-
lenges and the experimental results validating the performance
of the proposed design were discussed.

If desired, machine parameter may be identified during
startup. The excitation may then be turned OFF after a com-
missioning phase, and the adaptation stopped by setting the
adaptation gain to be the zero matrix. However, by keeping
the adaptation and excitation active, the controller will be
able to compensate for parameter variations, particularly in
the inductances and PM flux linkage whose variations directly
impact the accuracy of the unmeasured regulated torque
output. Finally, the magnitude of the excitation signal can

be reduced when operating near the voltage/current limits
of the machine, shutting OFF the excitation and adaptation
completely when the amplitude approaches the noise level of
the system. The main impact of reducing the amplitude of
the excitation signal is slower parameter convergence, while
drifting may occur when the amplitude reaches the noise level.

APPENDIX

PROOF OF THEOREM

Consider the matrix function �(t) : R≥0 �→ R
n×m where

the elements of �(t) are bounded for all time, t .
“If ”
Assume that regressor matrix �(t) is persistently exciting.

It follows that there exist α1, α0, T > 0 such that:

α1I ≥
∫ t+T

t
�(σ )�
(σ )dσ ≥ α0I ∀t ≥ 0.

From [34, Th. 5-1], the Grammian matrix, W(t, t + T ), is
positive definite, that is

W(t, t + T ) �
∫ t+T

t
�(σ )�
(σ )dσ ≥ α0I

if, and only if, the rows of �(σ ) are linearly independent on
[t, t + T ]. Thus, it follows that if �(t) is persistently exciting,
then the rows of �(t) are linearly independent on [t, t + T ].

“only if ”
Assume that the rows of �(t) are linearly independent on

[t, t + T ] for all t ≥ 0 and some T > 0. It follows that the
Grammian matrix is positive definite, i.e., there exists α0 > 0
such that

W(t, t + T ) ≥ α0I ∀t ≥ 0.

Furthermore, since the elements of �(t) are bounded for all
time, t , it follows that there exists α1 > 0 such that:

α1I ≥ W(t, t + T ) ≥ α0I ∀t ≥ 0.

Thus, if the rows of �(t) are linearly independent on [t, t +T ]
for all t ≥ 0 and some T > 0, then �(t) is persistently
exciting. �
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[6] J. Rathouskỳ and V. Havlena, “MPC-based approximate dual controller
by information matrix maximization,” Int. J. Adapt. Control Signal
Process., vol. 27, no. 11, pp. 974–999, 2013.

[7] I. Kolmanovsky and D. P. Filev, “Optimal finite and receding horizon
control for identification in automotive systems,” in Identification for
Automotive Systems (Lecture Notes in Control and Information Sci-
ences). London, U.K.: Springer, 2012, pp. 327–348.

[8] A. Weiss and S. D. Cairano, “Robust dual control MPC with guaranteed
constraint satisfaction,” in Proc. IEEE 53rd Annu. Conf. Decision
Control (CDC), Dec. 2014, pp. 6713–6718.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

[9] F. Leve and M. Jah, “Spacecraft actuator alignment determination
through null motion excitation,” in Proc. 62nd Int. Astron. Congr., 2011.

[10] A. Weiss, F. Leve, I. V. Kolmanovsky, and M. Jah, “Reaction wheel
parameter identification and control through receding horizon-based
null motion excitation,” in Advances in Estimation, Navigation, and
Spacecraft Control. Heidelberg, Germany: Springer, 2015, pp. 477–494.

[11] Y. Chen and J. Wang, “Adaptive vehicle speed control with input
injections for longitudinal motion independent road frictional condition
estimation,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 839–848,
Mar. 2011.

[12] R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor
Drives. Boca Raton, FL, USA: CRC Press, 2009.

[13] B. K. Bose, Modern Power Electronics and AC Drives.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.

[14] R. Marino, S. Peresada, and P. Tomei, “Nonlinear adaptive control
of permanent magnet step motors,” Automatica, vol. 31, no. 11,
pp. 1595–1604, 1995.

[15] S. Di Gennaro, “Adaptive output feedback control of synchronous
motors,” Int. J. Control, vol. 73, no. 16, pp. 1475–1490, 2000.

[16] A. Loria, G. Espinosa-Pérez, and S. Avila-Becerril, “Global adaptive
linear control of the permanent-magnet synchronous motor,” Int. J.
Adapt. Control Signal Process., vol. 28, no. 10, pp. 971–986, 2014.
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