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Model Parametrization and Adaptation Based on the
Invariance of Support Vectors With Applications to
Battery State-of-Health Monitoring

Caihao Weng, Jing Sun, Fellow, IEEE, and Huei Peng

Abstract—Support vector regression (SVR) algorithms have
been applied to the identification of many nonlinear dynamic
systems due to their excellent approximation and generalization
capability. However, the standard SVR algorithm involves an
iterative optimization process, which is often computationally
expensive and inefficient. For applications such as the battery
state-of-health (SOH) monitoring, where the identification algo-
rithm needs to be applied repeatedly for multiple cells because
of the variation in model dynamics (due to battery aging and
cell-to-cell difference), the computational burden could pose diffi-
culties for real-time or onboard implementation. In this paper, the
battery V' —Q curve identification problem for SOH monitoring
is studied. Based on experimental battery aging data, we develop
a model parametrization and adaptation framework utilizing the
simple structure of SVR representation with determined support
vectors (SVs) so that the model parameters can be estimated in
real time. Through mathematical analysis and simulations using a
mechanistic battery aging model, it is shown that the SVs of the
battery models stay invariant, even when the batteries age or vary.
The invariance of the SVs is verified using experimental aging
data. Consequently, the resulting model for the battery V —Q
curve can be directly incorporated into the battery management
system (BMS) and adapted online for SOH monitoring. Moreover,
the general characteristics of the data that could maintain the
SVR invariance are identified. The proposed automated model
parametrization process (via an optimization algorithm) can be
extended to nonlinear dynamic systems with the given properties.

Index Terms—Battery management systems (BMSs), lithium-
ion batteries, model parametrization, state of health (SOH),
support vector regression (SVR).

NOMENCLATURE
T Support vector (SV) model input.
Y SV model output.
I Constant term of SV model.
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€ Maximum tolerated estimation error.

w Weighting parameter for constraint tightness.
I3 Kernel coefficient of SV model.

at,a” Nonnegative decomposition of 3.

£, €6 Slack variables for constraint relaxation.

st, s Slack variables for equality constraints.

K Kernel matrix.

A, b, c,x Constraint matrix, constraint vector, objective vec-
tor, and decision variable of the reformulated stan-
dard linear programming.

Optimal basis matrix.

Set of indexes for optimal basis.

Identified SVs.

Number of data points used for regression.

v Number of identified SVs.

Battery terminal voltage.
Battery charged capacity.

I. INTRODUCTION

HE RESEARCH and development of rechargeable energy

storage systems has moved at an unprecedented pace in
recent years, driven primarily by interests in improving system
reliability, achieving higher system efficiency, and reducing
environmental impact [1]-[3]. Among the various choices of
energy storage technologies, lithium-ion systems stand out due
to their superior portability and energy efficiency [4]-[6].

One major challenge for battery energy management is
battery state-of-health (SOH) monitoring, particularly onboard
detection of capacity fading during operations [7]-[11]. In
our previous work, an incremental capacity analysis (ICA)-
based battery capacity estimation method was proposed for
onboard implementation [12]. The ICA technique differentiates
the battery charged capacity () with respect to the terminal
voltage V, and transforms the plateaus of the voltage curve
into clearly identifiable d@)/dV peaks on the incremental ca-
pacity (IC) curve [13], [14]. The efficacy of ICA has been
shown with various lithium-ion batteries (LiFePO,, LiINMC,
LNCAO, LiMn;y0y, etc.) [13], [15]-[18]. One alternative way
of extracting the battery aging signature and analyzing battery
SOH from the voltage curve is the differential voltage analysis
(DVA) [19]. In contrast to the ICA, the DVA is based on the
dV/d@ curve. The accuracy of DVA-based capacity fading
prediction has been shown in [20] and [21]. The major difficulty
in performing ICA and DVA is the sensitivity to noise in
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battery voltage measurement, particularly for LiFePO, batter-
ies [16]-[18]. Since all the peaks on an IC curve lie within
the flat region of the V' —() curve, computing the derivatives
directly from the data could lead to inaccurate and undesirable
results, even after careful data filtering. This issue was success-
fully addressed by using the SV regression (SVR) algorithm, as
discussed in [12].

The SVR method is the application of the SV algorithm,
which was initially developed by Drucker ef al. at the AT&T
Bell Laboratories, for data regression [22]. It has been an
active area of research and played a significant role in solving
problems such as data classification and function estimation
over the last two decades [23]-[26]. The method relies on the
use of the kernel trick, which maps data points to a higher
dimensional feature space through an inner product to make
them linearly separable, so that a nonlinear separating surface
can be represented with a linear model in the feature space
[23], [27]. Consequently, the nonlinear data can be estimated
and classified using linear methods, as long as the problem is
formulated in terms of kernel evaluations [28], [29].

Different from the SV algorithm for data classification (e.g.,
output y € {£1} in a two-classes case), the SVR problem is
concerned with estimating real-valued functions (i.e., output
y € R) [27]. By incorporating the e-insensitive loss function, a
regression problem is constructed such that a function f(x) that
has at most ¢ deviation from the target values y can be found
[25], [27], [30]. In this case, estimation errors less than ¢ are
treated as zero, and only the losses greater than ¢ is concerned
in the objective function. It has been shown that the use of
e-insensitive loss function yields sparse and, thus generalizable,
solutions [31].

Despite the simple structure, the standard SVR algorithm
involves solving an optimization problem whose dimension
depends on the size of the training data set and, therefore, re-
quires nontrivial computational efforts to determine the kernel
parameters. Since the resulting high-dimensional optimization
process is often computationally expensive, the potential ap-
plications are limited, particularly for onboard and real-time
estimation problems.

Moreover, unlike most SVR problems where the optimiza-
tion is only performed once, for applications such as the SOH
monitoring of a multiple-cell battery system, the algorithm
needs to be applied to every cell individually and repeatedly due
to aging and cell-to-cell variations. The need for repeated op-
timization can dramatically increase the computational burden
and make the real-time implementation on a resource-limited
platform difficult or impossible.

Motivated by our initial success in applying the SVR for
battery SOH monitoring (reported in [12]) as well as the
associated computational challenges identified in the process,
this paper aims to develop an onboard implementable model
parametrization and adaptation framework. More specifically,
we will exploit the simple structure of SVR representation,
and study under what conditions the parametric model of
battery V' —@ curves identified from one reference cell can be
applied to different cells at different aging stages. If the SVs
remain invariant from the SVR model of one cell to another,
or from one aging state to another, then only the coefficients of
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the SVR model need to be updated for model identification.
Furthermore, given the special sampling scheme, we can
eliminate the iterative optimization procedure altogether. This
framework could greatly reduce the computational load as
the resulting model parameters can be estimated in real time.
Moreover, the parametric structure could help us to better
understand the physical properties of the underlying prob-
lems and take advantage of the knowledge we have about the
systems [32].

This paper reports the findings of exploiting the parametric
SVR model for real-time battery system characterization, and
proposes a framework for online battery SOH monitoring.
The study is based on test data collected from eight A123
APR18650 cells, which use LiFePO, as the positive electrode
material and graphite as the negative electrode. The data were
collected over a period of 18 months [33]. The test data used
for this study were acquired through a battery test bench,
which includes an Arbin BT2000 tester, a thermal chamber
for environment control, a computer for user—machine inter-
face and data storage, a switchboard for cable connection,
and battery cells [33]. The data acquisition system has a
logging frequency of 10 Hz, and the measurement precision
of both current and voltage is 0.02% (i.e., 1| mV for voltage
measurement) [34].

The remainder of this paper is organized as follows.
Section II formulates the linear programming SVR (LP-SVR)
problem for the identification of V' —(Q curve. Section III ex-
tends the general LP problem into a parametric LP problem
with sensitivity study. Section IV shows the data variation
when battery ages through simulation and actual test data.
Section V solves the proposed parametric LP problem using
Monte Carlo simulations and establishes the parametric model
based on the invariance of the SVs. The conclusions are given in
Section VI.

II. BATTERY V' —(@Q CURVE AND SUPPORT VECTOR
REGRESSION MODEL

A. Battery V—@Q Curve Identification for Incremental
Capacity Analysis

ICA has the advantage of detecting a gradual change in
cell behavior during a life-cycle test, with greater sensitivity
than those based on conventional charge/discharge curves, and
yielding key information on the cell behavior associated with its
electrochemical properties [15], [35]. As shown in Fig. 1, which
shows the test data at different aging stages for a LiFePO,
battery, the IC curve [see Fig. 1(b)] has more identifiable aging
signs than the V' —Q) curve p [see Fig. 1(a)]. It is useful partic-
ularly for battery SOH monitoring as the extracted peak values
and their change pattern on the IC curves are closely related to
the battery capacity fading and can be used for characterizing
the aging mechanism. However, because of measurement noise,
performing the ICA directly from the measured V' —Q) curve
has proven to be not a viable option [12], [16], [18], [36],
particularly for onboard battery management systemss (BMSs),
where the measurement precision is limited; development of ap-
propriate data processing functions is required so that ICA can
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Fig. 1. Aging signature extracted using ICA.
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Sensitivity of the numerically derived d@Q/dV curve to measurement

be applied. Fig. 2 shows how sensitive numerical differentiation
is to the measurement noise.

In our previous work, several numerical procedures are
developed and evaluated for extracting the IC curves from
battery V' —(@) data. While the ICA results are sensitive to the
selection of the curve fitting method, the SVR approach with
the Gaussian radial basis function (rbf) kernel is shown to be the
most robust and effective method. Using SVR to represent the
V —@ relation and then using an analytic derivative to obtain
the IC curve provide the most consistent identification results
with moderate computational load [12].
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B. Support Vector Regression Model

As discussed earlier, the SVR was chosen for the battery
V —@Q curve identification because of its demonstrated potential
in the realm of nonlinear system identification [37]-[39]. Let
T = ¢, y = v be the input and output of the SVR model, where
q represents the battery charged capacity, andv is the measured
voltage. The SVR model for the V—(@) curve can thereby be
represented as

N
y=> Bik(zi,z)+p )]
i=1

where N is the number of data points in the data set, 3; and p
are the model parameters, whose values are determined based
on the data set, and (-, -) is the selected kernel. In this paper,
the rbf kernel is used and is expressed as

7112
K(x,z") = exp <—||x — | ) @)

202

where o is the adjustable parameter for the kernel function.

The parameters used in model (1) are identified by solving
a convex quadratic programming (QP) problem. Through the
QP-SVR and appropriate selected kernel, the flatness property
is enforced in both the feature space and input space [25], [37].
Conventional QP-SVR has been successfully applied in identi-
fying nonlinear dynamic systems [37], [39], [40]. However, the
implementation of QP-SVR may not guarantee sufficient model
sparsity. LP-SVR that employs an ¢; norm as a regularizer was
then proposed to improve the model sparsity and computational
efficiency [38], [41]-[43]. In our previous work, LP was used
as the optimization engine to derive the SVR model [12].

The SVR using ¢; regularizer formulates the optimization
problem as follows:

min

N
18l +w > (&5 +4,)

CHTR 2N 3 n—1
SN BiK (i, ) =y < e+ E
subject to { ¢ — vazl BiK (i, xn) —p<e+&, @)

EY.6 >0

where £ and &, are the slack variables introduced to cope
with the infeasible constraints, w is the weighting factor, ¢
is the precision parameter, || - ||; denotes the ¢; norm in the
coefficient space, and 3 is defined as 3 = (31,...,,)". The
optimal result usually gives zero value for most of the /3;, and
the x; corresponding to nonzero [3; are called SVs [25].

To establish the problem as an LP optimization, the coeffi-
cients 3; need to be decomposed (using the property of linear
piecewise convex function minimization) as [44]

Bi=aof —a; |Bi|l=0of +a; 4)

where ;" and «; are nonnegative and satisfy ;" - ; = 0.



WENG et al.: MODEL PARAMETRIZATION AND ADAPTATION BASED ON THE INVARIANCE OF SVs

C. Formulation of Linear Programming Support
Vector Regression

Following the derivation reported in [38], the SVR problem
using ¢; regularizer can be reformulated as an LP problem, i.e.,

at
o
minc’ | £
£
1
at
o
K -K -I 0 1 et
-K K 0 -1 -1 &
subject to 5
] o 5
<(5+y>
E-Y
at,a g6 >0
where
T
c=|1,....5Lw,...,w,0
—— ——
2N 2N
y = yn)"
ot = (af,....a%)"
_ _ \T
a = (ay,...,ay
T
&= (.60
_ _ \T
£ :(617"'?§N> (6)

and I'isan N x N identity matrix. K is the kernel matrix with
entries defined as K;; = IC(x;, x5)

K(zi,21)  K(z1,22) K(z1,zn)
K(xo, 1) Ko, x2) K(xo,zN)

K= : : . . - (D
K(zn,z1) K(zy,2) K(zn,zn)

The LP problem (5) is bounded and feasible by default and
can always be solved using a standard algorithm such as the
simplex method or the interior point method.

Fig. 3 shows how the LP-SVR algorithm is implemented
for the identification of the battery V —(@ curve. First, the
parameters in model (1) are determined, and the SVR model
of the V—Q curve, i.e.,

Ngv
flan) = Bik(svi,n) + 1 ®)
=1

is obtained, where sv; (i = 1,..., Ny, ) are the SVs identified
by the LP-SVR algorithm, and Ny, is the total number of SVs
(Ngy < N).

Then, the IC curve can be computed from the fitted V' —Q
curve as follows:

Q 1 1
AV fin) SN 8K (svis )

)
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Fig. 3. Implementation of LP-SVR for battery V—@Q and IC curve
identification.

Using the ICA technique, we can then extract battery aging
information through the changes observed from the IC peaks.
Please note that the correlation between battery capacity and
IC peaks could be influenced by environmental temperature.
Therefore, our SOH monitoring framework is designed based
on battery charging data collected under constant temperature.
We think it is a valid assumption since active thermal manage-
ment systems are implemented on most commercial electric
vehicles. On the other hand, since the ICA is mainly based
on the lithium intercalation process, it might not be directly
applicable to battery chemistries such as Pb—Acid and Ni-MH.
Nonetheless, because voltage data of any battery cells are
associated with their fading and degradation, it is possible that
one could extract an aging signature (perhaps different from
lithium-ion batteries) using the d@/dV analysis from those
chemistries as well.

Although LP-SVR works well for retrieving the IC curve
from battery voltage measurement, it has to be applied repeat-
edly to different cells at different ages. For applications such as
electric vehicles, which usually contain hundreds or thousands
of battery cells, the extensive computational effort required for
solving the LP problems could not be satisfied on-board or in
real time.

If the simple structure produced by the LP-SVR, (8), can be
generalized as a parametric model with kernel functions as the
basis and the SVs invariant, for all cells under all conditions,
conventional parameter estimation methods such as the least
squares can be directly used, and the computational efficiency
would be greatly improved. In this case, the LP-SVR algorithm
is only used for the initial model identification and parametriza-
tion, whereas the parameter adaptation to fit individual cell data
and aging status could be achieved through linear parameter
identification that does not require iterative optimization.
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III. CONDITIONS FOR SUPPORT VECTORS INVARIANCE
AND PARAMETRIC LINEAR PROGRAMMING

To investigate the possibility of using the SVR model as a
parametric model with invariant SVs, an LP sensitivity study is
performed to understand the variations of the SVs with respect
to the data variation. For the convenience of performing LP
sensitivity study, we can transform problem (5) into a standard
LP formulation, i.e.,

min c¢'x
X
. Ax=b
subject to {XZO (10)
where
T
c=|(1,....,Lw,...,w,0,...,0
——
2N 2N 2N+2
x = (atia g% utustis)
A K -K -I 0 I -1 I 0
T \-K K 0O -I -1 1 0 1I
b<€+y)
E—-Yy
p=pt o an

T and p~ are added to ensure nonnegativity on the decision
variable, and s* and s~ are added to convert the inequality
constraints into equality. This new formulation is equivalent to
the original problem (5) [44].

A. Formulation of Parametric Linear Programming

Let us assume that we have found an optimal basis matrix B
for the standard LP problem, where

B =(Aqq) Aqp Aqoim)) (12)

and Aq(1), ..., Aq(m) are linear independent columns chosen

as the optimal basis from the constraint matrix A. Then, B must

satisfy the following conditions [44]:

B'b>0

c—cgB'A> 0 (13)
where cp consists of the entries in the objective vector c
corresponding to the optimal basis matrix B, i.e.,

14

T
cB = (Co1) Co) co(m))

Now, consider the different LP problem (10) for a different
data set that is obtained either for a different cell or for the same
cell at a different aging stage. In our study, the battery charging
data are always sampled between the same range of charged
capacity with the same rate (i.e., the variable x in problem (3)
does not change from cell to cell and time to time). Although
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this might appear to be a limitation of the technique for on-
board implementation, those data samples should be available
for SOH monitoring periodically during normal operations as
the range of the charged capacity data that we are using is within
the typical operating range of electric vehicles. Because of the
sampling scheme, the matrix K and the constraint matrix A do
not vary as the data set changes. In addition, the objective vector
c is always kept constant. The only term that is changed is b
in the constraint. Therefore, the condition ¢ — cg B~ A > 0is
always satisfied even when data variation occurs. The optimal
condition for the original optimal basis matrix B to be satisfied
by the new data set can then be reduced to

B 'b > 0. (15)

Since the optimal basis matrix B decides the values of the
SVs, it can be concluded that the SVs for the battery V' —Q
curve model would not change if, given B, (15) is satisfied for
the new data set. If (15) is satisfied for all data sets collected
for different cells and at different aging stages, we call the SVs
invariant, and the same SVs and basis functions can be used to
represent different V' —() characteristics for different cells and
at different time.

Moreover, b only depends on the variable y, which is the
voltage measurement from the battery charging data. Hence,
the sensitivity analysis only needs be performed with respect
to y in this paper, and problem (10) can be rewritten as

min ¢’y

Ax =b(y)

x = 0. (16)

subject to {
The formulation shown in problem (16) is typically re-
ferred to as parametric LP [45]. In conventional parametric
LP problems, the dependence of b on the varying parameters
is usually linear. One can find the correspondence between
all the optimal basis and the varying parameters by solving
systems of linear equalities. However, in our battery V—Q
identification problem, the data variation is nonlinear, and a
proper parametrization needs to be found for characterizing the
variation.

B. Special Scenario: Constant Shift in the Battery Data

Before proceeding to more complex cases, let us first con-
sider the special scenario: constant shift in the battery data.
Let y; be the reference data set, and y, be the data set with
a constant shift (i.e., yo = y1 + p). We have the following
proposition.

Proposition 3.1: A constant shift in the data does not change
the SVs.

Proof: Assume that the optimal solution of (16) corre-
sponding to the data y; is x,, where

X, = (a0 &5 €l sls) (17)

Note that the column vectors in B that correspond to u+ or p~

are not related to the invariance of SVs, and they can be treated

independently from the rest of the basis vectors. For that reason,
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let x, and A be the submatrices of X. and A, excluding the
columns associated with 1+ or p~, respectively. That is

A K -K -I 0 I O0
" \-K K 0 -I 0 I
X. = (oo 68 €0shs0). (18)
‘We then have

A< =1\ (b _ _ _[(e+y
Ax*+<_1 1)(#*>Ax*b(y1)(€_y1 ~

19)

On the other hand, let

(a0 ) - () () e

By substituting (20) into (19),
obtained:

. 1 —1 +
e 7
Ax.

<5+y1> <1)p(5+y1+p>
E—Yy1 -1 E—y1—p

= <€+YQ> = b(y2)

the following equation is

€—Y2 1)
where one should see that the change in p would be compen-
sated by adjusting either u+ or ™, without affecting the value
of x,.. The LP problems with y; and that with y- share the same
X as part of their optimal solutions. Therefore, the variation in
the constant term p does not change the SVs.

IV. VOLTAGE DATA VARIATION

A. Characterization of Battery Data Variation Using
Mechanistic Battery Aging Model Simulation

The variation in battery voltage measurement during aging
could be simulated using the mechanistic battery aging model
developed in [46]. The battery model considers the aging
mechanism of both the positive and negative electrodes and
could reflect the qualitative relationship between the equilib-
rium potentials and battery aging status. Fig. 4 shows the equi-
librium potentials of LiFePO, batteries. The analytic models
for the equilibrium potentials can be found in literature [47],
[48]. The overall equilibrium potential of the battery cell is
the difference between the positive electrode and the negative
electrode: Viotal = Vpe — Vg (see Fig. 5).

As discussed in [17], the capacity fading in LiFePOy cells is
mainly caused by the loss of cycable lithium at the early stages
of aging. The loss of cycable lithium could be simulated by
shifting the relative location of the two potential curves [46].
The simulation results are shown in Fig. 6, where the voltage
output of the model of the aged cells V,gcq is plotted versus the
output of the reference cell V¢, which represents a new battery.
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It is observed that the relation between V,zeq and V;er could
be approximated by a quadratic function, i.e.,

Y = p2y? + p1y« + po (22)

where pg, p1, and po are the parameters of the quadratic
function.

B. Data Verification

The quadratic approximation (22) found using the mechanis-
tic battery aging model that relates the voltage response of the
aged cell to that of a fresh new cell can be verified with the
actual test data. As aforementioned, the data used in this paper
are collected from eight A123 APR18650 cells over a period of
18 months. Fig. 7 shows two sets of data variation at different
aging stages. The curves can be fitted with quadratic functions
with good accuracy.

Hence, the quadratic function is indeed a good approxima-
tion and can be used for characterizing the voltage variation.

V. INVARIANCE OF THE SUPPORT VECTORS AND LINEAR
PARAMETRIC MODEL

A. Results from Monte Carlo Simulations

Since the characteristics of voltage variation are identified,
we can then investigate under what conditions the optimal basis
computed from the reference data stays invariant when the
parameters of the quadratic function vary as the cell ages. In
particular, we are interested in finding the following feasible
region for SV invariance. Assuming that the problem

min ¢’y

Ax =b(y«)

x>0 @3)

subject to {
has the optimal basis B, then for any pair of p; and po, if the
corresponding b(y) satisfies B~'b(y) > 0, the pair (p1, p2) is
considered feasible. Otherwise, the pair is infeasible.
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Fig. 8. Monte Carlo simulations for determining feasible region of (p1, p2)
corresponding to the optimal basis B.

As discussed earlier (see Prop. 3.1), the variation in the
constant term py does not affect the invariance of the SVs, and
it can be ignored in solving the parametric LP problems.

Different from the general approaches for solving the con-
ventional parametric LP problems, the dependence of b on the
varying parameters p; and py is nonlinear. Instead of solving
systems of linear equalities, the determination of feasibility
for each parameter pair (p1,p2) is done through Monte Carlo
simulations. The results are shown in Fig. 8, where the green
region highlights the feasible region.

On the other hand, we can find the region, where y and y.
have a monotonic increasing relation, by computing

dy

S =2p2y«+p1 >0

0y« &4

and therefore, the region (marker by blue dashed lines in Fig. 8)
is defined by the following two boundary functions:

P1 Z - (2y*,min)p2

b1 Z - (2y*,max)p2- (25)

From the simulation results shown in Fig. 8, one can see that
the feasible region computed by the Monte Carlo simulations
coincides with the region where y is monotonic increasing. The
results imply that the SVs for the battery V' —@) curve model
would stay invariant as long as the variation in the voltage data
satisfies a quadratic and monotonic increasing relationship. As
shown in Figs. 5 and 6, the monotonic quadratic relationship
is consistent with our simulation results and observations from
the battery data.

B. Model Parametrization

According to the analysis performed earlier, the SVs should
not change even when battery ages or varies for our appli-
cations. Fig. 9 show the LP-SVR results for the data of one
cell at different ages. The invariance of the SVs can be clearly
observed from the plot. Therefore, the structure obtained by
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Fig. 9. Invariance of SVs from LP-SVR results.

the initial LP-SVR results can be used as a parametric model
for the identification of battery V —@ curves. The model is
parametrized as follows:

Ny
v=> BiK(svi,q) + . (26)
i=1

For onboard implementation, the estimation problem of the
model parameters 3 and y can be formulated as follows:

v;=0"9, (27)
where
0 =(p"."
¢; = [K(svi,q5), ... K(sVa,, q5), 1]T
B=1[4,...Bn.]" (28)

and the parameters could be solved by the standard least squares
method (LSM)

0= (27®) '3V (29)
where

V =[v1,...,on]"

D =[¢y,..., 05", (30)

Given that the battery (V, Q) data are collected at a fixed
sample of () points, ® in (29) is a constant matrix for all time.
Therefore, the parameter 8 can be simply calculated as

0=hTv 31)

where
—1

h=®(®"®) (32)

is a constant matrix and can be computed offline.

The computational time of using the LP-SVR and the LSM
for the V—@Q curve identification are compared in Table I.
The four groups of data are sampled within the same range of
charged capacity but with different sampling rate; therefore, the
results of different sizes of data could also be compared. One

TABLE 1
COMPUTATIONAL TIME COMPARISON
# of Data Points LP-SVR (sec.) LSM (sec.)
20 0.4733 0.000011
50 4.201 0.000011
100 30.01 0.000011
200 211.5 0.000016

TThe assessment summarized in Table I was performed on a
laptop computer with a 32-bit Intel Core2 Duo CPU @ 2.53
GHz and 4.0 GB RAM

can see that the computational time of the LSM takes far less
than that of the LP-SVR and is insensitive to the dimension of
sampled data.

The parametric battery V' —() curve model provides a more
robust and computationally efficient way to obtain the IC curves
from raw data measurement without sacrificing any estimation
accuracy.

VI. CONCLUSION

This paper has reported the findings of exploiting the para-
metric SVR model for real-time battery system characterization
and proposed a framework for lithium-ion battery SOH moni-
toring. To investigate the sensitivity of the parametric structure
to battery voltage data variation, a parametric LP problem
is formulated. The voltage variation is characterized through
simulations using mechanistic battery aging model and verified
using battery test data. The parametric LP is solved by Monte
Carlo simulations. Because of the data characteristics, the SVs
in the V—@Q curve model of LiFePO, battery do not change,
even when the battery cells age or vary. A model parametriza-
tion based on the SV invariance is thereby established. The
resulting linear parametric model can be directly implemented
in onboard BMS for SOH monitoring.
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