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a b s t r a c t

This paper proposes a new multiobjective model predictive control (MO-MPC) of constrained nonlinear
systems. According to objective prioritization, the MO-MPC problem is formulated as a lexicographic
optimization problem. The optimal solutions are obtained by solving a hierarchy of single objective
optimization problems. The conditions guaranteeing the recursive feasibility of the optimization problem
and stability of the closed-loop system are derived, which depend only on the most important objective.
Moreover, a suboptimal algorithm is presented to reduce the computational demand of MO-MPC. One
characteristic of the proposedMO-MPC is that the given objective prioritization is automatically satisfied.
The theoretical results are illustrated by a comparison study of an example.
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1. Introduction

Multiobjective model predictive control (MO-MPC) has re-
ceived attention recently, due to its ability to explicitly deal with
system constraints and optimize a set of performance criteria sys-
tematically and simultaneously over a receding horizon (Maree &
Imsland, 2014; Qin & Badgwell, 2003; Rawlings & Mayne, 2009).
For most practical control problems, performance criteria often in-
volve multiple conflicting control objectives, such as tracking, eco-
nomical profit, environmental concerns, etc., which span different
levels of relative importance. (See Flores-Tlacuahuac, Morales, &
Rivera-Toledo, 2012, Zambrano & Camacho, 2002 and all the ref-
erences therein.) Unlike the case of single objective MPC (SO-MPC)
problems, in general, there is no unique (globally) optimal solution
attainable to theMO-MPC problem (Chinchuluun & Pardalos, 2007
and Maree & Imsland, 2014). One feature of interest for the MO-
MPC problem is to determine a Pareto optimal solution that satis-
fies the priorities of themultiple control objectives and guarantees
the stability of the MO-MPC controller.
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A practical approach for the MO-MPC is to form a scalar cost
function being a weighted sum of individual cost functions with
the weights that reflect the relative priorities of the multiple
objectives. However, selecting a set of appropriate weights is a
nontrivial task since reducing a weight on one objective and in-
creasing the other does not necessarily lead to a proportional re-
sponse in the face of constraints (see, e.g., Long & Gatzke, 2007,
Tyler & Morari, 1999 and Vallerio, Van Impe, & Logist, 2014). Fur-
thermore, for such systems as sewer network (Ocampo-Martinez,
Ingimundarson, Puig, & Quevedo, 2008), certain objectives are only
relevant under specific circumstances. Therefore, the selection of
the weights associated with these objectives might not be appro-
priate when these objectives are irrelevant.

Lately, significant progress in MO-MPC has been reported. For
instance, De Vito and Scattolini (2007) optimized linear MPC by
minimizing themaxof a finite number of objective functions. In Be-
mporad and Munoz de la Pena (2009) the MO-MPC was designed
by minimizing a convex combination of different objective func-
tions and stability of the closed-loop system was guaranteed for
the convex combination that is close to the desired convex combi-
nation. For nonlinear systems, Magni, Scattolini, and Tanelli (2008)
proposed a switched MO-MPC, where the stability was ensured by
a state-dependent switch, i.e., the value of the activated cost func-
tion must be less than the one of the next activated cost function
when the switch occurred. Müller and Allgöwer (2012) exploited
the time-dependent switch of multiple cost functions to design
MO-MPC of discrete-time nonlinear systems and made use of the
average dwell-timemethod to achieve the stability of the proposed
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nonlinear MPC (NMPC). In Zavala and Flores-Tlacuahuac (2012), a
utopia-trackingMO-NMPCwas proposed tominimize the distance
of a set of objective functions to its steady-state utopia point,where
the stability was guaranteed by the terminal constraint and the as-
sumption of strong duality. Benefits of this scheme are that the
controllermakes trade-off in themultiple objective functions auto-
matically and the Pareto optimal set does not need to be computed
on-line.Moreover,Maree and Imsland (2014) presented a dynamic
utopia-tracking MO-NMPC scheme for economic optimization of
cyclic processes, in which the recursive feasibility was derived by
a cyclic terminal constraint; however, the stability of the resulting
closed-loop system is still an open issue.

To handle priorities of multiple objectives effectively, the
propositional logic and binary variables were used and therefore
the original MO-MPC problem was transformed into a mixed
integer nonlinear programming (MINP) (see, e.g., Bemporad &
Morari, 1999, Long & Gatzke, 2005 and Vada, Slupphaug, Johansen,
& Foss, 2001). In general, theMINP is harder to solve than nonlinear
continuous optimization problems. By using the lexicographic
optimization, Kerrigan and Maciejowski (2002) presented a
general framework for design ofMO-MPCwith different prioritized
objectives, where the MO-MPC problem was formulated by a
sequence of single objective MPC problems according to the
objective prioritization. Moreover, Ocampo-Martinez et al. (2008)
designed a lexicographic MO-MPC for control of sewer network
and Padhiyar and Bhartiya (2009) for profile control of distributed
parameter systems. Zheng, Wu, Liu, and Ling (2010) proposed a
new genetic algorithm to compute the lexicographic MO-NMPC
actions. Somemerits of the lexicographic MO-NMPC are that it can
explicitly take into account the priorities of different objectives to
be optimized, no arbitraryweights are used and the Pareto optimal
set does not need to be computed at each time. To the best of
our knowledge, however, no theoretical results of the feasibility of
the lexicographic MO-NMPC problem, the stability and economic
optimization have been reported in available literature.

Here we consider a class of MO-MPC problems of constrained
nonlinear systems, where the objective functions of interest may
be economic costs and conflicting, and are ordered according
to their prioritization. The original MO-NMPC problem is then
formulated as a lexicographic finite horizon optimal control
problem (FHOCP), which is solved via a hierarchy of single
objective FHOCPs. Two concepts of feasibility, i.e., hierarchical
and horizontal feasibility, are introduced to achieve the recursive
feasibility of the lexicographic FHOCP. The conditions for stability
are obtained only using the most important objective function.
The case of varying objective prioritization is discussed. In order
to reduce the computational demand of solving the FHOCP online,
a suboptimal prioritized MO-NMPC algorithm is presented. Then
a well-known result that ‘‘feasibility implies stability’’ (Scokaert,
Mayne, & Rawlings, 1999) for single objectiveMPC is regained. Two
key features of the proposed NMPC are that the control actions
explicitly rely on the objective prioritization and the stability is
dependent only upon the most important objective function. The
main contribution of this work is to present the feasibility and
stability results of the MO-NMPC scheme subject to objective
prioritization. Hence, it is a step forward in stability synthesis of
MO-NMPC schemes that explicitly consider various priorities of
multiple objectives.

2. Problem setup and preliminaries

Let I≥0 denote the set of non-negative integer numbers, I≥a be
the set {i ∈ I≥0 : i ≥ a} and Ia:b be the set {i ∈ I≥0 : a ≤ i ≤ b}
for some a ∈ I≥0 and b ∈ I≥0. Label ‘T ’ in superscript denotes the
transposition of a vector.
Consider the following discrete-time nonlinear system

xk+1 = f (xk, uk), k ∈ I≥0 (1)

where xk ∈ Rn and uk ∈ Rm are the state and control vectors at
sampling time k, respectively, and f (·, ·) is a locally Lipschitz func-
tion on its arguments with f (0, 0) = 0. The system is subject to
constraints on the state and control

xk ∈ X, uk ∈ U, ∀k ∈ I≥0 (2)

where X ⊂ Rn is a closed set and U ⊂ Rm is a compact set, both of
them containing the origin in their interior. Assume that the states
are available for state feedback controllers.

Consider a finite sequence of future control at time k

uk,N = {u0|k, u1|k, . . . , uN−1|k} (3)

where the prediction horizon N ∈ I≥1. For a given state xk and
sequence uk,N , the future state of the system at time k+t predicted
by using the model (1) at time k is denoted as xt|k. Hence, xt+1|k =

f (xt|k, ut|k) with x0|k = xk. We consider l prioritized objectives of
system (1), which are represented by objective cost functions

Ji(uk,N , xk) = Ei(xN|k) +

N−1
t=0

Li(xt|k, ut|k), i ∈ I1:l (4)

where the stage costs Li : X × U → R and the terminal costs Ei :

X → R are continuous on their arguments, i ∈ I1:l and l ∈ I≥2. In
this paper, the objective functions (4) are assumed to be conflicting
and there is no solution optimizing all objectives at the same time.2
Therefore, additional mechanisms must be used to balance these
objectives. Here we exploit the objective prioritization to compute
the optimal control sequence.

Without loss of generality, we assume that the objective func-
tions are in the order of importance so that J1 is the most impor-
tant and Jl the least important to decision makers. According to
this objective prioritization, we define a prioritized multiobjective
FHOCP

min
uk,N

J(uk,N , xk) (5a)

s.t. xt+1|k = f (xt|k, ut|k), x0|k = xk
xt+1|k ∈ X, ut|k ∈ U, t ∈ I0:N−1

(5b)

where the current state xk ∈ X , decision vector uk,N is given by (3)
and J(u, x) is the objective function vector

J(u, x) = [J1(u, x), J2(u, x), . . . , Jl(u, x)]T (6)

whichmaps the constrained control sequenceu and current state x
to a set of values of l objective functions (4). Here the optimization
of the vector is defined in the sense of the dominance notion (Mar-
ler & Arora, 2004), i.e., an objective function vector J(u∗, x) is non-
dominated if and only if there does not exist another vector J(u, x)
such that J(u, x) ≤ J(u∗, x) with at least one Ji(u, x) < Ji(u∗, xk).

In SO-NMPC, the optimal control sequence is computed by
minimizing a single objective function at each time. In contrast to
SO-NMPC, the MO-NMPC must minimize l different (conflicting)
objective functions at each time. Therefore, there is typically no
single optimal solution but rather a set of possible non-dominant
solutions of equivalent quality (Abraham & Jain, 2005). The Pareto
optimality is an effective measure of the equivalent quality in
multiobjective optimization problems (Chinchuluun & Pardalos,
2007; Ehrgott, 2005). Let u∗

k,N be one of the Pareto optimal

2 In the general case when some cost functions are consistent, we combine them
into a single one.
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solutions to problem (5). By the receding horizon principle, the
MO-NMPC law is identified as

umpc
k = u∗

0|k, k ∈ I≥0. (7)

The goal of the paper is to develop an MO-NMPC scheme that
minimizes the objective functions (4) in the order of objective
prioritization while stabilizing system (1) at the origin in the face
of constraints (2). To this end, we first introduce the following
definitions.

Definition 1. A sequence uk,N is called a feasible solution to prob-
lem (5) if it satisfies the constraints in (5) for a given xk ∈ X .

Definition 2 (Chinchuluun & Pardalos, 2007). A feasible solution
ũk,N is Pareto optimal for (5) if and only if there exists no other
feasible solution uk,N such that Ji(uk,N , xk) ≤ Ji(ũk,N , xk) for all
i ∈ I1:l and Jj(uk,N , xk) < Jj(ũk,N , xk) for at least one index j ∈ I1:l.

Definition 3 (Kerrigan & Maciejowski, 2002). A feasible solution
ũk,N is lexicographic optimal for (5) if and only if there exist no
other feasible solution uk,N and an i∗ ∈ I2:l such that Ji∗(uk,N , xk) <
Ji∗(ũk,N , xk) and Ji(uk,N , xk) = Ji(ũk,N , xk) for all i ∈ I1:i∗−1.

In other words, for a lexicographic optimal solution, no objec-
tive value can be further reducedwithout increasing at least one of
the higher-prioritized objectives. A standard method for finding a
lexicographic solution is to solve a sequentially ordered single ob-
jective constrained FHOCPs (Ehrgott, 2005; Marler & Arora, 2004),
i.e.,

J∗1 (xk) = min
uk,N

{J1(uk,N , xk)|(5b)},

J∗i (xk) = min
uk,N


Ji(uk,N , xk)

Jj(uk,N , xk) = J∗j (xk),
(5b), ∀j ∈ I1:i−1

 (8)

for all i ∈ I2:l and derive a lexicographic solution

u∗

k,N = argmin
uk,N


Jl(uk,N , xk)

Jj(uk,N , xk) = J∗j (xk),
(5b), ∀j ∈ I1:l−1


. (9)

In order to improvenumerical computation, the constraints Jj(uk,N ,
xk) = J∗j (xk) in (8) and (9) are often relaxed as

Jj(uk,N , xk) ≤ J∗j (xk) + εj, ∀j ∈ I1:l−1 (10)

where εj ≥ 0 are small tolerances determined by decision-makers.
For simplicity, hereafter the inequalities are written as Jj(uk,N ,
xk) ≤ J∗j (xk).

3. Stabilizing prioritized MO-NMPC

We consider the prioritized multiobjective FHOCP in (5) and
introduce the following assumptions of the objective function
J1(u, x).

Assumption 1. The stage cost L1(x, u) and terminal cost E1(x) are
positive-definite functions with respect to their arguments.

Assumption 2. There exist an invariant set Ω ⊆ X of system
(1), containing the origin in its interior, and a local control law
u = κ loc

1 (x) such that

κ loc
1 (x) ∈ U, f (x, κ loc

1 (x)) ∈ Ω,

E1(f (x, κ loc
1 (x))) − E1(x) + L1(x, κ loc

1 (x)) ≤ 0.
(11)

for any x ∈ Ω .
Remark 1. There are some well-established methods to compute
local control law κ loc

1 (x) and invariant set Ω . If terminal cost E1(x)
is a local Lyapunov function of system (1), its level set can be
used as a terminal set and a local control law can be obtained
using the methods proposed in e.g., Chen and Allgöwer (1998),
Fontes (2001) and Lazar, Heemels, Weiland, and Bemporad (2006).
Another approach is to approximate the nonlinear system by a
linear differential inclusion and to compute a linear local control
law and themaximal invariant set, which is a polyhedron (see, e.g.,
Chen, O’Reilly, & Balance, 2003 and Yu, Chen, Böhm, & Allgöwer,
2009).

By Assumptions 1 and 2, the problem (5) is reformulated by a
lexicographic FHOCP, i.e.

J∗1 (xk) = min
uk,N

{J1(uk,N , xk)|(5b), xN|k ∈ Ω} (12a)

J∗2 (xk) = min
uk,N


J2(uk,N , xk)

J1(uk,N , xk) ≤ J∗1 (xk),
(5b), xN|k ∈ Ω


(12b)

...

J∗i (xk) = min
uk,N


Ji(uk,N , xk)

Jj(uk,N , xk) ≤ J∗j (xk),
(5b), xN|k ∈ Ω, ∀j ∈ I1:i−1


(12c)

for all i ∈ I2:l, where the terminal region Ω ⊆ X and J∗i (xk) is the
optimal value function of the ith-layer FHOCP. That is, the most
important objective function is minimized subject to the original
constraints. If this subproblem is feasible andhas a unique solution,
it is the solution to the whole optimization problem. Otherwise,
the second most important objective function is minimized by
adding a new constraintwhich guarantees that themost important
objective functions preserves its optimal value. If this subproblem
is feasible and has a unique solution, it is the solution to the original
problem. Otherwise, the process continues. The whole process
repeats at each time step. This procedure presents the sequential
solution approach to determine the lexicographic optimal solution
to the whole problem (12), and is summarized by the following
algorithm.

Algorithm 1 (Lexicographic MO-NMPC Algorithm).

(1) Input the objective functions Ji(uk,N , xk) in (4) and their
priorities; set k = 0.

(2) Measure the state xk at time step k.
(3) Compute the optimal control sequenceu∗

k,N using the following
process:
(3.1) Solve the first-layer subproblem (12a) and obtain one of

optimal sequences, u1∗
k,N ;

(3.2) Solve the ith-layer of problem (12a)–(12c) for all i ∈ I2:l
and obtain one of optimal sequences, ui∗

k,N ;
(3.3) Determine a lexicographic optimal sequence of the

whole problem (12), u∗

k,N = ul∗
k,N .

(4) Apply the first element umpc
k = u∗

0|k of the lexicographic opti-
mal sequence to system (1).

(5) Set k = k + 1 and go to step (2). �

In this work, the prioritizedMO-NMPC obtained by Algorithm 1
is called the lexicographicMO-NMPC scheme. Compare to othermul-
tiobjective schemes such as the scalarization scheme (Chinchu-
luun & Pardalos, 2007) and the utopia-tracking method (Zavala
& Flores-Tlacuahuac, 2012, etc.), the lexicographic MO-NMPC ex-
plicitly takes into account the priority constraint of the objective
functions to be minimized. If the first-layer subproblem is initially
feasible, the feasibility of the whole lexicographic problem and the
stability of the closed-loop system can be guaranteed.

Note that for the SO-NMPC, the feasibility of the FHOCP implies
that the feasibility of the problem at time k + 1 is achieved by its
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feasibility at time k (Rawlings & Mayne, 2009). In other words, a
feasible solution to the FHOCP at time k + 1 can be constructed
by some feasible solutions to the problem at time k. However, the
feasibility of the lexicographic MO-NMPC at time k + 1 cannot
be achieved by directly using its feasibility at time k since the
original, prioritized multiobjective FHOCP is transformed into an
l hierarchies of single objective FHOCP. To address this issue, we
here introduce two concepts of feasibility of lexicographic FHOCPs.

Definition 4. The lexicographic FHOCP (12a)–(12c) has the hierar-
chical feasibility at time k if the feasibility of the ith-layer subprob-
lem implies the feasibility of the (i+ 1)th-layer subproblem for all
i ∈ I1:l−1.

Definition 5. The lexicographic FHOCP (12a)–(12c) has the hori-
zontal feasibility if the feasibility of the whole problem at time
k ∈ I≥0 implies its feasibility at time k + 1.

In what follows, we give the results of the feasibility and
stability of the lexicographic MO-NMPC.

Theorem 1. Under Assumptions 1–2, the lexicographic FHOCP
(12a)–(12c) admits the hierarchical feasibility at each time k ∈ I≥0.

Proof. Consider the lexicographic FHOCP (12a)–(12c) with an ini-
tial state xk at time k ∈ I≥0. Assume that the ith-layer subprob-
lem of the whole problem (12) is feasible. Let ūi

k,N be an optimal
solution to this ith-layer subproblem. Then we have Jj(ūi

k,N , xk) ≤

J∗j (xk) for all j ∈ I1:i−1 and terminal state xN|k ∈ Ω . Substituting ūi
k,N

into the (i+1)th-layer subproblem, it is derived that the constraint
(5b) and terminal constraint xN|k ∈ Ω are fulfilled. Moreover, we
have Ji(uk,N , xk) = J∗i (xk) when uk,N = ūi

k,N since ūi
k,N is an opti-

mal solution to the objective function Ji(uk,N , xk). Combining these
implies that ūi

k,N satisfies all constraints in the (i+ 1)th-layer sub-
problem. Hence, ūi

k,N is a feasible solution to the (i + 1)th-layer
subproblem at time k, i.e., the (i + 1)th-layer subproblem is feasi-
ble at time k.

This completes the proof of Theorem 1. �

Theorem 2. Suppose that Assumptions 1–2 hold and the first-layer
subproblem (12a) is feasible at time k ∈ I≥0. Then the lexicographic
FHOCP (12a)–(12c) admits the horizontal feasibility.

Proof. Consider the assumption that the first-layer subproblem
(12a) is feasible at time k ∈ I≥0. Setting i = 1 and by induction, it
is known from Theorem 1 that the whole problem (12) is feasible
at the same time k.

Let u∗

k,N = {u∗

0|k, u
∗

1|k . . . , u∗

N−1|k} be an optimal solution to the
whole problem (12) at time k. From Algorithm 1, we have u∗

k,N =

ul∗
k,N , where ul∗

k,N is an optimal solution to the lth-layer subproblem
of the whole problem (12).

In order to find a feasible solution to the problem (12) at time
k + 1, we consider the following control sequence:

ũ1
k+1,N = {u∗

1|k, . . . , u
∗

N−1|k, κ
loc
1 (xN|k)} (13)

where the control lawκ loc
1 (x) satisfies Assumption2. Since the state

xN|k ∈ Ω , it is known from Assumption 2 that the control action
κ loc
1 (xN|k) ∈ U and the terminal state xN|k+1 ∈ Ω . This suggests

that the sequence defined by (13) is a feasible solution to the first-
layer subproblem (12a) at time k + 1. By induction and applying
Theorem 1 again, we have that the lexicographic FHOCP (12a)–
(12c) is feasible at k + 1, i.e., the whole problem (12) admits the
horizontal feasibility. �
Note that the control sequence (13) is a feasible solution to the
first-layer subproblem (12a) at time k + 1 but not necessarily a
feasible solution to the whole problem (12) at k + 1. From the
result of Theorem 2, we define the admissible set Z(N) as this set
of (x,uk,N ) pairs

Z(N) =


(x,uk,N)

xt+1|k = f (xt|k, ut|k), x0|k = x,
xt|k ∈ X, ut|k ∈ U, xN|k ∈ Ω, t ∈ I0:N−1.


.

The set of admissible states Xmpc(N) is then defined as the projec-
tion of Z(N) onto X

Xmpc(N) =

x ∈ X |∃uk,N ∈ UN s.t. (x,uk,N) ∈ Z(N)


whereUN is the product ofN setsU . Now the stability of the lexico-
graphic NMPC obtained by Algorithm 1 is presented by Theorem 3.

Theorem 3. Suppose that Assumptions 1–2 hold and the first-layer
subproblem (12a) is feasible in Xmpc(N) at time k = 0. Then the
system (1) in closed-loop with the controller obtained by Algo-
rithm 1 is asymptotically stable with the region of attraction Xmpc(N).

Proof. Due to the initial feasibility of the first-layer subproblem
(12a) in set Xmpc(N), it is obtained from Theorems 1 and 2 that the
lexicographic problem (12a)–(12c) is feasible at each time k ∈ I≥0
in Xmpc(N).

Let u∗

k,N and u1∗
k,N be the optimal solutions to the whole prob-

lem (12) and the first-layer subproblem (12a) at time k, respec-
tively. In general, u∗

k,N ≠ u1∗
k,N . As u

∗

k,N is an optimal solution to the
whole problem (12), we have J1(u∗

k,N , xk) ≤ J∗1 (xk) = J1(u1∗
k,N , xk).

Select the sequence (13) as a feasible solution to the first-layer sub-
problem (12a) at time k + 1. It is obtained that J1(u∗

k+1,N , xk+1) ≤

J1(u1∗
k+1,N , xk+1) ≤ J1(ũ1

k+1,N , xk+1), where u∗

k+1,N and u1∗
k+1,N are

the optimal solutions to the whole problem (12) and the first-layer
subproblem (12a) at time k + 1, respectively.

For the value functions J1(u∗

k+1,N , xk+1) and J1(u∗

k,N , xk) at time
k and k + 1, respectively, we derive that

J1(u∗

k+1,N , xk+1) − J1(u∗

k,N , xk)

≤ J1(ũ1
k+1,N , xk+1) − J1(u∗

k,N , xk)

= E1(xN+1|k) − E1(xN|k) + L1(xN|k, κ
loc
1 (xN|k))

− L1(x0|k, u∗

0|k). (14)

From Assumption 2, the inequality (14) yields

J1(u∗

k+1,N , xk+1) − J1(u∗

k,N , xk) ≤ −L1(x0|k, u∗

0|k) < 0. (15)

From Assumption 1, the stage cost L1(x, u) and the terminal cost
E1(x) are continuous, positive definite functions. This implies that
J1(u∗, x) is positive definite and has a lower limit. From the
Lyapunov’s augments (Khalil, 2002), J1(u∗, x) is then a Lyapunov
function of the system (1) in closed-loop with the controller ob-
tained by Algorithm 1. This leads to the asymptotical stability of
the equilibrium point of the closed-loop system. Moreover, since
the terminal region Ω is an invariant set, the set Xmpc(N) is a re-
gion of attraction of the closed-loop system (Rawlings & Mayne,
2009). �

Remark 2. From the proof of Theorem 3 and Assumption 1, it is
known that the stability of the lexicographic NMPC is only deter-
mined by the first objective function, i.e., the most important ob-
jective function. This implies that the other objective functions are
not necessarily positive definite but may be economic functions.
At the same time, the value functions Ji(u∗, x) of the ith-layer sub-
problem for all i ∈ I2:l are not necessarily a Lyapunov function of
the closed-loop system. Hence, the stability of the lexicographic
NMPC is decoupled with the ith-layer subproblem for all i ∈ I2:l.
This will benefit such cases that several objective functions with
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lower priorities have to be given up due tomissing data or actuator
faults, while maintaining the stability of the closed-loop system.

Remark 3. The lexicographicMO-NMPCproposed here alongwith
the results of the economic NMPC (see, e.g., Amrit, Rawlings, &
Angeli, 2011, Angeli, Amrit, & Rawlings, 2012 and Grüne, 2013,
etc.) can deal with the case where the most important objective
function is not necessarily positive definite but may be economic.
In particular, we consider the system (1) that is strictly dissipative
with respect to the supply rate s(x, u) = L1(x, u) − L1(xs, us) and
a storage function λ : X → R, where the equilibrium point (xs, us)
is a steady-state optimal economic point (Angeli et al., 2012). Note
that the cases of L1(xs, us) = 0 and E1(xs) = 0 may not hold in
case of economic optimization. To this end, we define the rotated
regulator cost functions, i.e.,

L̄1(x, u) = L1(x, u) + λ(x) − λ(f (x, u)) − L1(xs, us), (16)

Ē1(x, u) = E1(x) + λ(x) − E1(xs) − λ(xs), (17)

J̄1(uk,N , xk) = Ē1(xN|k) +

N−1
t=0

L̄1(xt|k, ut|k), (18)

and revise Assumption 2, i.e., there exist an invariant set Ω ⊆ X of
system (1), containing the origin in its interior, and a local control
law u = κ loc

1 (x) such that

κ loc
1 (x) ∈ U, f (x, κ loc

1 (x)) ∈ Ω,

E1(f (x, κ loc
1 (x))) − E1(x) + L1(x, κ loc

1 (x)) ≤ L1(xs, us)
(19)

for any x ∈ Ω . By using the similar procedure presented by Amrit
et al. (2011), it can be shown that the optimal value function of (21)
is a Lyapunov function of the closed-loop system and hence, the
steady-state point (xs, us) is an asymptotically equilibrium point of
the closed-loop system with a region of attraction Xmpc(N).

Remark 4. In some applications, the priorities of objectives may
vary in time due to the change of working condition. The change
in objective prioritization yields the results of switching control,
which are similar to the results by Magni et al. (2008) and Müller
and Allgöwer (2012). From the switching control theory (Liberzon,
2003), the stability results (e.g., feasibility and stability) obtained
in case of invariant objective prioritization may not hold when
the priorities of the objectives vary in time. In order to regain the
feasibility of the MO-NMPC problem in case of varying objective
prioritization, one method is to impose a new assumption of the
objective functions to be optimized, i.e.,

Assumption 3. The stage cost Li(x, u) and terminal cost Ei(x) are
continuous and positive definite in their augments for all i ∈ I1:l.
Moreover, there exist an invariant set Ω ⊆ X of system (1),
containing the origin in its interior, and a local control law u =

κ loc
i (x) such that

κ loc
i (x) ∈ U, f (x, κ loc

i (x)) ∈ Ω,

Ei(f (x, κ loc
i (x))) − Ei(x) + Li(x, κ loc

i (x)) ≤ 0.
(20)

for any x ∈ Ω and all i ∈ I1:l. In other words, the invariant set Ω is
a common sublevel set of the terminal cost Ei(x) for all i ∈ I1:l.

Under Assumption 3, the feasibility of the MO-NMPC problem
with varying objective prioritization is achieved by combining
Theorem 1 and the similar procedure for recursive feasibility
presented by Müller and Allgöwer (2012). Note that the invariant
set Ω satisfying (20) might be strongly conservative in terms of
its size. However, the conditions for the stability of the MO-NMPC
are not obtained in case of varying objective prioritization. One
possible way to achieve this stability of theMO-NMPC is to impose
dwell time (Liberzon, 2003) for the objective priority change. The
stability and feasibility for more general MO-NMPC with changing
priority will be pursued in our future work.

4. Suboptimal prioritized MO-NMPC

In the lexicographic FHOCP (12), the number of constraints
is increased after solving each single objective optimization
subproblem. This leads to the computational load of the whole
problem to be more than the sum of loads of the individual
objective problem. To reduce the computational load, we attempt
to decrease the number of layers of thewhole problem (12) by such
methods as uniting the objectives with identical priorities. On the
other hand, global solutions of each layer subproblem generally
cannot be guaranteed or are highly expensive computationally
for nonlinear and non-convex programming. From the viewpoint
of application, hence, one approach of particular interest is
to design a suboptimal version of Algorithm 1. It should be
emphasized that the suboptimality is defined here in terms of each
layer subproblem. In this section, a suboptimal prioritized MO-
NMPC algorithm is presented to guarantee the feasibility of the
lexicographic FHOCP and the stability of the obtained suboptimal
MO-NMPC.

Now we define a suboptimal lexicographic FHOCP, i.e., finding

ũ1
k,N ∈


uk,N ∈ UN

J1(uk,N , xk) ≤ J1(ũ0
k,N , xk),

(5b), xN|k ∈ Ω


(21a)

ũ2
k,N ∈

uk,N ∈ UN


J2(uk,N , xk) ≤ J2(ũ1

k,N , xk),
J1(uk,N , xk) ≤ J1(ũ1

k,N , xk),
(5b), xN|k ∈ Ω

 (21b)

...

ũi
k,N ∈

uk,N ∈ UN


Ji(uk,N , xk) ≤ Ji(ũi−1

k,N , xk),
Jj(uk,N , xk) ≤ Jj(ũ

j
k,N , xk),

(5b), xN|k ∈ Ω, ∀j ∈ I1:i−1

 (21c)

for all i ∈ I2:l, where the sequence ũ0
k,N is an initial feasible solution

satisfying (5b) and terminal constraint xN|k ∈ Ω , and ũi
k,N denotes

a suboptimal solution to the ith-layer subproblem for i ∈ I1:l. Then
a suboptimal version of Algorithm 1 is described by Algorithm 2.

Algorithm 2 (Suboptimal MO-NMPC Algorithm).
(1) Input the objective functions Ji(uk,N , xk) in (4) and their

priorities; set k = 0 and pick a sequence ũ0
0,N satisfying (5b)

and terminal constraint xN|0 ∈ Ω with initial state x0.
(2) Measure the state xk at time step k.
(3) Solve the ith-layer subproblem of (21) for all i ∈ I1:l and find a

suboptimal sequence ũi
k,N .

(4) Determine a lexicographic suboptimal sequence of the whole
problem (21), ũk,N = ũl

k,N , and apply the first element umpc
k =

ũ0|k to the system (1).
(5) Set k = k + 1 and find a control sequence ũ0

k,N that satisfies
(5b), terminal constraint xN|k ∈ Ω and

J1(ũ0
k,N , xk) ≤ J1(ũk−1,N , xk−1). (22)

(6) Go to step (2). �

The lexicographic suboptimal MO-NMPC by Algorithm 2 has
the similar the feasibility and stability results to the lexicographic
optimal MO-NMPC by Algorithm 1.

Theorem 4. Under Assumptions 1–2, the lexicographic suboptimal
FHOCP (21a)–(21c) admits the hierarchical feasibility at each time
k ∈ I≥0.
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Proof. The proof procedure is close to that of Theorem 1 and then
is omitted here. �

Theorem 5. Suppose that Assumptions 1–2 hold and there is a
solution ũ0

k,N that satisfies constraints (5b) and xN|k ∈ Ω at time k ∈

I≥0. Then the lexicographic suboptimal FHOCP (21a)–(21c) admits the
horizontal feasibility.

Proof. Considering the first-layer subproblem (21a) at time k ∈

I≥0, it is known clearly that the sequence ũ0
k,N is its feasible

solution. Setting i = 1 and by induction, it is derived from
Theorem 4 that the whole suboptimal problem (21) is feasible at
time k.

Let ũk,N = {ũ0|k, ũ1|k, . . . , ũN−1|k} be a suboptimal solution to
the whole problem (21) at time k. From Algorithm 2, we have
ũk,N = ũl

k,N , where ũl
k,N is a suboptimal solution to the lth-layer

subproblem of (21). In order to find a feasible solution to thewhole
problem (21) at next time k+ 1, we consider the following control
sequence:

ũ0
k+1,N = {ũl

1|k, . . . , ũ
l
N−1|k, κ

loc
1 (xN|k)} (23)

where control law κ loc
1 (x) satisfies Assumption 2. Since the

terminal state xN|k ∈ Ω , it is known from Assumption 2 that the
control action κ loc

1 (xN|k) ∈ U and the terminal state xN|k+1 ∈ Ω .
This suggests that the sequence (23) satisfies the constraints (5b)
and terminal constraint xN|k+1 ∈ Ω . Moreover, considering the
value functions J1(ũ0

k+1,N , xk+1) and J1(ũk,N , xk) at time k and k+1,
respectively, we have

J1(ũ0
k+1,N , xk+1) − J1(ũ,

k,Nxk)

= J1(ũ0
k+1,N , xk+1) − J1(ũl

k,N , xk)

= E1(xN+1|k) − E1(xN|k) + L1(xN|k, κ
loc
1 (xN|k))

− L1(x0|k, ũ0|k). (24)

FromAssumption 2, the inequality (22) holds. Hence, the first-layer
subproblem (21a) has a feasible solution, i.e., (23), at time k + 1.
Then by induction and applying Theorem 4 again, it is obtained
that the lexicographic suboptimal FHOCP (21a)–(21c) is feasible
at time k + 1, i.e., the whole problem (21) admits the horizontal
feasibility. �

Remark 5. The proof of Theorem 5 implies that the sequence (23)
gives a candidate of the initial feasible solution ũ0

k,N at each time
k ∈ I≥0, which can be used as warm starting to decrease the
computational demand of solving the first-layer subproblem at the
next time.

Theorem 6. Suppose that Assumptions 1–2 hold and there is an ini-
tial solution ũ0

k,N in Xmpc(N) at time k = 0. Then the system (1) in
closed-loop with the controller obtained by Algorithm 2 is asymptoti-
cally stable with the region of attraction Xmpc(N).

Proof. Due to the existence of the initial solution ũ0
k,N in Xmpc(N)

at time k = 0, it is derived from Theorems 4 and 5 that
the lexicographic suboptimal problem (21a)–(21c) is feasible in
Xmpc(N) at each time k ∈ I≥0.

Let ũk,N and ũ1
k,N be a suboptimal solution to thewhole problem

(21) and the first-layer subproblem (21a) at time k, respectively.
Note that ũk,N ≠ ũ1

k,N , in general. As ũk,N is a suboptimal solution
to the whole problem (21), we have J1(ũk,N , xk) ≤ J1(ũ1

k,N , xk).
Select the sequence (23) as an initial feasible solution to the first-
layer subproblem (21a) at time k + 1. We have J1(ũk+1,N , xk+1) ≤

J1(ũ1
k+1,N , xk+1) ≤ J1(ũ0

k+1,N , xk+1), where ũk+1,N and ũ1
k+1,N are

the suboptimal solutions to the whole problem (21) and the first-
layer subproblem (21a) at time k + 1, respectively.
Table 1
Two cases of the objective prioritization.

High Middle Low

Case 1 J1(u, x) J2(u, x) J3(u, x)
Case 2 J2(u, x) J1(u, x) J3(u, x)

Consider the value functions J1(ũk+1,N , xk+1) and J1(ũk,N , xk)
at time k and k + 1, respectively. From Assumption 2 and the
inequality (24), we derive that

J1(ũ,
k+1,Nxk+1) − J1(ũk,N , xk) ≤ J1(ũ0

k+1,N , xk+1) − J1(ũ,
k,Nxk)

≤ −L1(x0|k, ũ0|k) < 0. (25)

Using the similar procedure of the proof of Theorem 3, then we
have the conclusion that the equilibrium point of the closed-
loop system is asymptotically stable in the region of attraction
Xmpc(N). �

Remark 6. In single objective MPC, one of well-known conclu-
sions is that ‘‘feasibility implies stability’’ (Rawlings & Mayne,
2009; Scokaert et al., 1999). Theorem 6 suggests that this conclu-
sion is also true in case of multiobjective optimization given by
Algorithm 2. As argued by Scokaert et al. (1999), a benefit of this
conclusion is that we can use early termination to decrease the
computational demand of solving each layer subproblemwhile ob-
taining a stabilizing MO-NMPC controller.

5. Numerical example

To illustrate the effectiveness of the proposed results, we con-
sider the nonlinear system described by

xk+1 =


1 1
0 1


xk +


x2,k sin x1,k

0


+


0.5
1


uk. (26)

Here the state and control variables are subject to the box con-
straints |xi,k| ≤ 1, i = 1, 2 and |uk| ≤ 1 for all time k ∈ I≥0, respec-
tively. For this example, we assume that there are three different,
prioritized cost functions to be minimized at the each time, i.e.,

J1(uk,N , xk) = ∥P1xN|k∥∞ +

N−1
t=0

(∥Q1xt|k∥∞ + ∥R1ut|k∥∞) (27)

J2(uk,N , xk) = xTN|kP2xN|k +

N−1
t=0

(xTt|kQ2xt|k + uT
t|kR2ut|k) (28)

J3(uk,N , xk) =

N−1
t=0

(ut|k − ut−1|k)
T (ut|k − ut−1|k) (29)

where u−1|k = uk−1 and weighted matrices

Q1 =


1 0
0 0.1


, R1 = 0.1, P1 =


9.6 1.4

−0.3 9.4


,

Q2 =


0.1 0
0 1


, R2 = 0.2, P2 =


0.4 0.2
0.2 1.3


.

Note that the terminal costs E1(x) = ∥P1x∥∞ and E2(x) = xTP2x are
positive definite functions, but the terminal cost E3(x) in J3(u, x) is
not a positive definite function as E3(x) = 0 for all x ∈ X .

The goal of this example is to design anMO-NMPC that simulta-
neouslyminimizes the objective functions (27)–(29) according to a
given objective prioritization andmeanwhile stabilizes the system
(26) to the origin in the presence of the box constraints. Here we
consider two cases of the objective prioritization given in Table 1.

To compare the results achieved here, the utopia-tracking MO-
NMPC scheme (e.g. Zavala & Flores-Tlacuahuac, 2012) is used. Let
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Fig. 1. The terminal region Ω1 (left) and Ω2 (right).
Fig. 2. The closed-loop state trajectories.
UT-NMPC and LO-NMPC denote the utopia-tracking MO-NMPC
and the lexicographic optimal MO-NMPC obtained by Algorithm 1,
respectively. For both controllers, all FHOCPs are solved by the
MatLab function ‘fmincon’ using MATLAB 7.1 under Windows 7
and an Intel(R) Core(TM) 2 Duo CPU with 2.2 GHz and 2 GB RAM.
The solution at time k is used to be an initial guess for solving the
FHOCP at next time k + 1 to improve the computational efficiency
of NMPC controllers. Let the prediction horizon N = 10 and the
small tolerance εi = 0.05J∗i . Pick an initial state x0 = [−0.8, 0.5]T
for all simulation experiments.

Case 1: In this case, decision-makers first focus on the l∞-norm
of weighted states over a time interval, then system transition and
finally control increments. Consider the most important objective
J1(u, x).We compute the local control law u = κ loc

1 (x) and terminal
region Ω1 to satisfy Assumption 2. By the linearized system of
(26) at the origin, a local control law is obtained as Bemporad and
Munoz de la Pena (2009) and Lazar et al. (2006)

κ loc
1 (x) = −


0.5 1.4


x. (30)

Then we calculate the terminal region

Ω1 = {x ∈ R2
: ∥P1x∥∞ ≤ 5.01} (31)
such that it is invariant for the system (26) in closed-loop with
u = κ loc

1 (x). The region Ω1 is shown by the polytope in the left
graph of Fig. 1.

The left graphs of Figs. 2 and 3 demonstrate the different
responses of system (26) driven by LO-NMPC (solid), UT-NMPC
(dash) and SO-NMPC minimizing J1 (dotted, denoted by J1-NMPC)
and minimizing J2 (dash-dotted, denoted by J2-NMPC), respec-
tively. Clearly, J1-NMPC minimizing the l∞-norm of weighted
states, leads to more oscillatory state responses and J2-NMPC re-
sults in a slow transition. In contrary, LO-NMPC and UT-NMPC con-
sider the objective functions (27)–(29) simultaneously and aim to
improve the responses of the closed-loop system in terms of the
magnitudes of signals and the transition time. In particular, LO-
NMPCgenerates smaller state fluctuation and faster transition than
other algorithms compared, which properly reflects decision mak-
ers’ control goal.

The left graphs of Fig. 4 depict the value profiles of cost functions
(27)–(29) derived by LO-NMPC (solid), UT-NMPC (dash), J1-NMPC
(dotted) and J2-NMPC (dash-dotted), respectively. It is seen that J1-
NMPC and J2-NMPC only minimize their individual cost function,
but not the others. Moreover, the values of the cost functions
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Fig. 3. The control input profiles.
C

Fig. 4. The value profiles of the cost functions.
achieved by UT-NMPC lie between those by J1-NMPC and J2-
NMPC. Finally, considering the objective prioritization in case 1,
we observe that the values of J1 achieved by LO-NMPC are equal
to those by J1-NMPC and the values of J2 and J3 by LO-NMPC are
less than those by J1-NMPC. Note that due to the lower priorities
of J2 and J3, the values of J2 and J3 reached by LO-NMPC are not
necessarily less than those by J2-NMPC. In fact, the values of J2
reached by LO-NMPC are less than those by the others only after
three time steps, which suggests that the value profiles derived
by LO-NMPC do not inside the ‘tube’ defined by the value profiles
derived respectively by J1-NMPC and J2-NMPC.

Case 2: In this case, the most important objective function is
(28), i.e., J2(u, x). Hence, decision-makers first emphasize system
transient performance, then the l∞-norm of weighted states over
a time interval and finally control increments. By solving the LQR
problem of the linearized system of (26) at the origin, we have a
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Table 2
Average time taken to solve the NMPC problems.

UT-NMPC (ms) LO-NMPC (ms) LS-NMPC (ms)

N = 5 88 140 5.6
N = 10 147 260 9.1
N = 20 759 992 16.2

local control law and a terminal region

κ loc
2 (x) = −


0.2 1.0


x,

Ω2 = {x ∈ R2
: xTP2x ≤ 0.39}

(32)

which satisfy Assumption 2 with respect to J2. The terminal region
is shown by the ellipsoid in the right graph of Fig. 1.

The right graphs of Figs. 2 and 3 show the different responses
of system (26) driven by LO-NMPC (solid), UT-NMPC (dash)
and LS-NMPC (dotted), respectively. Here LS-NMPC denotes the
lexicographic suboptimal MO-NMPC obtained by Algorithm 2.
Obviously, UT-NMPC generates the same responses for different
objective prioritizations. However, LO-NMPC designed in case 2
have different responses from those achieved in case 1 (see the
left graphs of Figs. 2 and 3). The reason of these differences is that
the LO-NMPC and LS-NMPC depend on the objective prioritization.
Moreover, comparing the dash-dotted lines in the left graphs of
Fig. 2 to the solid lines in the right graphs of Fig. 2, it is known
that the system in closed-loop with LO-NMPC in case 2 have better
responses than in closed-loop with J2-NMPC.

The right graphs of Fig. 4 show the value profiles of the three
cost functions in case 2, derived by LO-NMPC (solid), UT-NMPC
(dash) and LS-NMPC (dotted), respectively. We note that for the
objective prioritizations in case 2, UT-NMPC generates the same
cost functions values as those in case 1 (see the left graphs of Fig. 4).
On the contrary, LO-NMPC first guarantees the minimization of
J2 and then tackles the minimization of the rest, which is shown
by the solid lines in the right graphs. This implies that LO-NMPC
is designed by taking into account the objective prioritization.
Compared to the LO-NMPC, the LS-NMPC has an increase in terms
of cost functions values, which is the price one has to pay in order
to improve online computation efficiency of solving FHOCPs (see
Table 2).

In addition, in order to compare the computational demand of
the algorithms, Table 2 tabulates the average computational time
taken to solve the NMPC problems at one time step applied by
UT-NMPC, LO-NMPC and LS-NMPC. In LS-NMPC, the two-division
method is used to compute a suboptimal control sequence of
FHOCP (21a)–(21c). It is observed that the computational demand
of LO-NMPC is almost two times that of UT-NMPC, which is caused
mainly by the fact that LO-NMPC simultaneously minimizes three
single objective optimization problems at each time. However,
there is a substantial reduction in computational demand of LS-
NMPC by Algorithm 2 due to simplifying the problem from finding
an optimal solution to searching a feasible solution. Note that
this computational reduction is achieved at the expense of the
optimality of performance, i.e., the loss of optimality, which is
demonstrated by the solid and dotted lines in right graphs of Fig. 4.
But the complex interplay between the computational reduction
and the performance variation is still an open issue to be pursued
in our future work.

6. Conclusions

In this paper we proposed a lexicographic MO-NMPC scheme
to solve prioritized multiobjective optimal control problems of
constrained nonlinear systems. The feature of this scheme is that
it takes explicitly into account the objective prioritization during
the period of designing controllers, which provides a systematic
method to balance multiple competing criteria without using
weighting matrices. The conditions for guaranteeing feasibility
and stability of the MO-NMPC are determined only by the most
important objective function. Hence, this scheme can deal with
some economic objectives. A suboptimal MO-NMPC algorithm
was presented to reduce the computational load for solving the
optimization problem and the property that feasibility implies
stability in single objective NMPC was regained in MO-NMPC. The
comparison results of the example demonstrated the performance
and effectiveness of the scheme proposed in the paper.
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