
712 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 5, MAY 2014

Multiscale Asymmetric Orthogonal Wavelet Kernel
for Linear Programming Support Vector Learning

and Nonlinear Dynamic Systems Identification
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Abstract—Support vector regression for approximating nonlin-
ear dynamic systems is more delicate than the approximation of
indicator functions in support vector classification, particularly
for systems that involve multitudes of time scales in their sampled
data. The kernel used for support vector learning determines
the class of functions from which a support vector machine
can draw its solution, and the choice of kernel significantly
influences the performance of a support vector machine. In
this paper, to bridge the gap between wavelet multiresolution
analysis and kernel learning, the closed-form orthogonal wavelet
is exploited to construct new multiscale asymmetric orthogonal
wavelet kernels for linear programming support vector learning.
The closed-form multiscale orthogonal wavelet kernel provides
a systematic framework to implement multiscale kernel learning
via dyadic dilations and also enables us to represent complex
nonlinear dynamics effectively. To demonstrate the superiority
of the proposed multiscale wavelet kernel in identifying complex
nonlinear dynamic systems, two case studies are presented that
aim at building parallel models on benchmark datasets. The
development of parallel models that address the long-term/mid-
term prediction issue is more intricate and challenging than
the identification of series-parallel models where only one-step
ahead prediction is required. Simulation results illustrate the
effectiveness of the proposed multiscale kernel learning.

Index Terms—Linear programming support vector regression,
model sparsity, multiscale orthogonal wavelet kernel, NARX
model, parallel model, type-II raised cosine wavelet.

I. Introduction

S INCE THE inception of support vector learning, the
burgeoning of kernel learning has expanded the theory

of computational learning to a new horizon [1]–[3]. As a
universal approach for solving the problems of multidimen-
sional function estimation, the support vector machine (SVM)
was initially developed to solve pattern recognition problems.
More recently, the notion of support vector learning has been
successfully generalized to various fields such as nonlinear
regression, linear operator equations, and signal processing by
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introducing the ε-insensitive loss function [4]–[8]. When SVM
is employed to tackle the problems of function approximation
and estimation, the approaches are often referred to as the
support vector regression (SVR).

As a typical nonparametric kernel learning approach, the
advent of SVR also provides a promising avenue to nonlinear
dynamical system modeling. With the aid of duality, the
conventional SVR formulates the modeling task as a quadratic
programming problem, through which a kernel expansion
representation for the underlying system can be calculated
with generalization capability [9]–[11]. However, since all
data points not inside the ε-tube are selected as support
vectors, substantial redundant terms may be included in the
nonparametric kernel expansion representation derived from
conventional quadratic programming support vector regression
(QP-SVR) when used for identifying complex nonlinear dy-
namical systems [12]–[14]. This may lead to the loss of model
succinctness and thereby the degradation of computational
efficiency in evaluating the model, which has been a main
stumbling block in applying SVR for nonlinear systems iden-
tification, where large quantities of sampled data are usually
involved in training. Meanwhile, the required calculation for
solving the quadratic programming problem can be computa-
tionally burdensome in practice.

To surmount these problems, the algorithm of linear pro-
gramming support vector regression (LP-SVR) was proposed
in [15] and [16]. Due to the different support vector selection
mechanism, LP-SVR is exceptional in building parsimonious
models, which makes it advantageous for nonlinear systems
identification. Rather than capitalizing on duality to reformu-
late the optimization problem in terms of kernel function as
is done in QP-SVR, LP-SVR uses the kernel expansion as
a model representation in the hypothesis space, and the �1

norm of the kernel expansion coefficients vector serves as a
regularizer for controlling the model complexity and structural
risk, which inherently enforces sparseness of the solution.
This leads to the superiority of LP-SVR in model sparsity,
computational efficiency, and adaptability to more general non-
Mercer kernel functions [14], [17].

On the other hand, the kernel expansion model in SVR for
capturing the underlying system dynamics is more delicate
than that used for approximating the indicator functions in
support vector classification, and various systems modeling
problems need various sets of kernel functions due to the
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complexity of the dependencies [6]. The kernel functions
determine the class of functions from which an SVM can draw
its solution, and the choice of kernel significantly affects the
performance of an SVM [18]. Therefore, it is of practical and
theoretical importance to construct specific kernels that reflect
the specific properties of the underlying system dynamics. In
the realm of nonlinear dynamic system identification, the non-
linear autoregression with exogenous input (NARX) model is
used widely for representing discrete-time nonlinear systems,
and the regressor for the NARX model consists of two parts, an
autoregressive (AR) part and a moving-average (MA) part. The
mathematical description of the NARX model is as follows:

ŷn = f (yn−1, yn−2, · · · , yn−P, un, un−1, · · · , un−Q+1)
(1)

where un and yn are the input and output to the system at time
instant tn, and the vectors yn−1 = [yn−1, yn−2, · · · , yn−P ]T

and un = [un, un−1, · · · , un−Q+1]T are the AR and MA parts,
respectively. The AR part is a window of past system outputs
with output order P , and the MA part is a window of past
and current system inputs with input order Q. In the endeavor
of applying kernel learning strategies for identifying NARX
models, the idea of the composite kernel was conceptualized
and developed for taking account of the different cause-
effect relationships of the AR and MA parts to the NARX
model output instead of assimilating them [19]–[21]. The
model represented by a composite kernel expansion is in the
form of

ŷn =
N∑
i=1

βi(k1(yi−1, yn−1) + k2(ui, un)) (2)

where βi is the expansion coefficient and N is the number of
sampled data. The k1 and k2 are the kernel functions for the
AR and MA parts, respectively, and k1(yi−1, yn−1)+k2(ui, un)
is defined as the composite kernel. The composite kernel ex-
pansion model (2) enables us to use different kernel functions
for the AR and MA parts of the regressor in (1).

Furthermore, how to design the apposite kernel functions
k1 and k2 in (2) for identifying the underlying nonlinear
dynamics is obviously crucial. Due to the ubiquity of tran-
sient characteristics and multiscale structures in nonlinear
dynamics, refinable kernel functions capable of characteriz-
ing the dynamics of the underlying time series and taking
account of local as well as global complexity in signals
are highly desirable. Compared to other basis functions, the
most significant property of wavelets lies in their ability in
capturing localized temporal and frequency information of
rapidly changing transient signals [22].

In this paper, we investigate one class of closed-form
orthogonal wavelets, the type-II raised cosine wavelet, from
which a new multiscale orthogonal wavelet kernel for nonlin-
ear dynamic system modeling is educed. Although the wavelet
kernels for support vector learning have been discussed in
[23]–[25], most of them are based on a Morlet wavelet given
by a sine (cosine) wave modulated by a Gaussian envelope
[26], and they have an explicit closed form but do not lead
to the interscale orthogonality required in the framework of

multiresolution analysis. Hence, the use of nonorthogonal
wavelets as kernel functions is unable to elicit a system-
atic implementation of multiscale learning in the manner of
multiresolution analysis. On the other hand, the attraction of
using an orthogonal wavelet kernel function mainly lies in the
ease of crystallizing the capability of orthogonal wavelet for
multiresolution analysis into the systematic implementation of
multiscale kernel learning via dyadic dilations. However, the
difficulties encountered in constructing an orthogonal wavelet
kernel mainly lie in the fact that almost all the known
orthonormal wavelets are not expressible in closed form, and
can only be expressed in terms of integrals or recurrence
formulas [27], [28]. Although it is known that Haar and
Shannon orthonormal wavelets can be expressed in explicit
formulae, the discontinuity in the Haar wavelet and the poor
time localization of the Shannon wavelet limit their utility in
the multiscale modeling context [28].

Recent research has confirmed the existence of nontrivial
orthonormal wavelets (i.e., not the Haar and Shannon), such as
the raised cosine wavelet and Young’s function based wavelets
[27]–[29], that have relatively simple analytic forms, and
therefore new avenues for kernel-based multiscale learning and
analysis are available. In our research, the use of the type-II
raised cosine wavelet for constructing kernel functions enables
a systematic implementation of the multiscale learning strategy
via dyadic dilations under the framework of multiresolution
analysis. The asymmetry of the proposed innovative multiscale
kernel function is one salient feature that sets it apart from
most of widely used kernel functions. Although the asymmet-
rical kernels have been found useful in nonlinear regression
and object tracking [30]–[32], they were rarely studied and
applied in the context of support vector learning [33]. It
is well-known that only the Mercer kernel can be used for
conventional quadratic programming support vector learning
to ensure the positive definiteness of the Hessian matrix
[1]–[6] for optimization. However, as isotropic similarity mea-
sures, the symmetric kernels have limited capability in repre-
senting an anisotropic object in a compact and sparse model.
The asymmetric kernel, with the symmetric kernel as a special
case, offers more flexibility in representing irregular complex
dependencies. In this paper, on the strength of the adaptability
of LP-SVR to non-Mercer kernels, a new trail to multiscale
kernel learning is blazed for estimating complex dependen-
cies by constructing the asymmetric closed-form orthogonal
wavelet kernel. While new nonstandard kernels are attracting
more and more interest in constructive approximation theory
[34], [35], this is the first study of asymmetrical multiscale
orthogonal wavelet kernels for support vector learning to our
best knowledge.

Our simulation study focuses on the development of parallel
models for a hydraulic robot arm and the Box and Jenkin’s
gas furnace system using published benchmark datasets, to
validate the effectiveness and practicality of the developed
multiscale orthogonal wavelet kernel for nonlinear dynamic
system identification. The NARX model (1) is also called
the series-parallel model because the system and model are
parallel with respect to un but in series with respect to yn.
Contrary to the series-parallel model (1), where the past values
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of the system input and the system output constitute the
regressor, the regressor of the parallel model is composed of
the past values of the system input and the model output,
that is

ŷn = f (ŷn−1, ŷn−2, · · · , ŷn−P, un, un−1, · · · , un−Q+1).
(3)

Hence, the parallel models are recurrent per se due to the
feedback involved. It is opined in the community of systems
identification that building parallel models of nonlinear dy-
namic systems is one of the most formidable technical chal-
lenges [36], [37]. In the literature, most studies of nonlinear
system identification concentrate on the series-parallel model,
because of its ease in optimizing the model parameters. Much
less has been reported on the study of effective approaches
for identifying parallel models of the nonlinear dynamical
systems. An early attempt to exert support vector learning for
parallel model identification was reported in [38], where the
least square support vector machine (LS-SVM) was employed
for modeling autonomous nonlinear systems. Yet the issue
of complete loss of model sparsity associated with LS-SVM
has made it unsuitable for nonlinear system identification in
practice [39].

This paper is organized as follows. In the next section, a
brief review of linear programming support vector learning
with composite kernel is given for completeness. The con-
struction of a new multiscale asymmetric orthogonal wavelet
kernel is developed in Section III. Section IV presents the
simulation study for identifying the nonlinear parallel model
on two benchmark datasets. Finally, Section V concludes
this paper. The following generic notations will be used
throughout this paper: lower case symbols such as x, y, α, · · ·
refer to scalar valued objects, lower case boldface symbols
such as x, y, β, · · · refer to vector valued objects, and finally
capital boldface symbols such as K1, K2, · · · , are used for
matrices.

II. Linear Programming SVR With

Composite Kernel

Conventionally, the problem of system identification con-
sists of setting up a suitably parameterized identification model
and adjusting the parameters of the model to optimize a
performance function based on the error between the system
and the identification model outputs. Contrary to that, a model
identified through support vector regression is represented as
the kernel expansion on the support vectors, which are the data
points in a selected subset of the training data [4]–[6]. In other
words, the model is represented in a data-dependent nonpara-
metric form. The vector pairs [(yi−1)T , (ui)T ]T corresponding
to the nonzero coefficients βi in model representation (2) are
the support vectors (SV).

Consequently, the model sparsity, which is defined as the
ratio of the number of support vectors to the number of all
training data points, plays a key role in controlling model
complexity and alleviating model redundancy. A kernel ex-
pansion model with substantial redundant terms is against

the parsimonious principle which ensures the simplest pos-
sible model that explains the data, and may deteriorate the
generalization performance and increase the computational
requirements substantially.

The number of nonzero components in the coefficients vec-
tor β = [β1, β2, · · · , βN ]T largely determines the complexity
of the kernel expansion model (2). In order to enforce the
sparseness of the model, the linear programming support vec-
tor learning employs the �1 norm of the coefficients vector β in
model (2) as a regularizer in the objective function to control
the model complexity and structural risk. By introducing the
ε-insensitive loss function, which is defined as

L(yn − ŷn)=
{

0, if |yn − ŷn| ≤ε

|yn − ŷn| − ε, otherwise
(4)

the regularization problem to be solved for procuring the
model becomes

minimize R reg[f ]= ‖β‖1 + C

N∑
n=1

L(yn − ŷn) (5)

where the parameter C controls the extent to which the
regularization term influences the solution and ε is the error
tolerance. Geometrically, the ε-insensitive loss function defines
a ε-tube. The idea of using the �1 norm to secure a sparse
representation in LP-SVR is also explored in the emerging
theory of compressive sensing [40]–[42].

By introducing the slack variables ξn, n = 1, 2, . . . , N, to
accommodate otherwise infeasible constraints and to enhance
robustness, the regularization problem (5) can be transformed
into the following equivalent constrained optimization prob-
lem:

minimize ‖β‖1 + C
N∑

n=1
ξn

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N∑
i=1

βi(k1(yi−1, yn−1) + k2(ui, un)) − yn≤ε + ξn

yn −
N∑
i=1

βi(k1(yi−1, yn−1) + k2(ui, un))≤ε + ξn

ξn≥0 n = 1, 2, . . . , N
(6)

where the constant C>0 determines the tradeoff between the
sparsity of the model and the amount up to which deviations
larger than ε can be tolerated. For the purpose of converting
(6) into a linear programming problem, the components βi

of the coefficients vector β and their absolute values |βi| are
decomposed as follows:

βi = α+
i − α−

i |βi| = α+
i + α−

i (7)

where α+
i , α−

i ≥0, and for a given βi there is only one
pair (α+

i , α−
i ) fulfilling both equations in (7) because{

[1 1]T, [−1 1]T
}

is a nonstandard basis for R2. It is un-
derscored that both variables cannot be positive at the same
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time, i.e., α+
i · α−

i = 0. In this way, the optimization problem
(6) can be reformulated as

minimize
N∑
i=1

(α+
i + α−

i ) + C
N∑

n=1
ξn

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

(α+
i −α−

i )(k1(yi−1, yn−1)+k2(ui, un))

−ξn≤ε+yn

−
N∑
i=1

(α+
i −α−

i )(k1(yi−1, yn−1)+k2(ui, un))

−ξn≤ε − yn

ξn≥0, n = 1, 2, · · · , N.
(8)

Next, define the vector

c = (1, 1, · · · , 1︸ ︷︷ ︸
N

, 1, 1, · · · , 1︸ ︷︷ ︸
N

, C, C, · · · , C︸ ︷︷ ︸
N

)T (9)

and write the �1 norm of β as

‖β‖1 = (1, 1, · · · , 1︸ ︷︷ ︸
N

, 1, 1, · · · , 1︸ ︷︷ ︸
N

)

(
α+

α−

)
(10)

with the N-dimensional column vectors α+ and α− defined as
α+=
(
α+

1, α+
2, · · · , α+

N

)T
and α−=

(
α−

1 , α−
2 , · · · , α−

N

)T
, the

constrained optimization problem (8) can be cast as a linear
programming problem in the following form:

minimize cT

⎛
⎝ α+

α−

ξ

⎞
⎠

subject to

⎧⎪⎪⎨
⎪⎪⎩
(

K1+K2 −(K1+K2)−I

−(K1+K2) K1+K2 −I

)
·
⎛
⎝ α+

α−

ξ

⎞
⎠≤
(

y+ε

ε−y

)
α+, α−≥0, ξ≥0

(11)
where ξ = (ξ1, ξ2, · · · , ξN )T , y = (y1, y2, · · · , yN )T and I is
an N×N identity matrix. K1 and K2 are the kernel matrices
with entries defined as (K1)in = k1(yi−1, yn−1), (K2)in =
k2(ui, un). The calculation of the vectors α+, α− and the
support vectors selection can be accomplished by solving
the optimization problem (11) using the well-known simplex
or primal-dual interior point algorithms. With the solution
to linear programming problem (11), the coefficients of the
composite kernel expansion model (2) can be calculated by
using (7), and thereby the model (2) can be built as follows:

ŷn =
∑
i∈SV

βi(k1(yi−1, yn−1) + k2(ui, un)). (12)

This composite kernel expansion on selected support vectors is
for representing the nonlinear dynamics underlying the time
series {ui, yi}, i = 1, 2, · · · , N. One disadvantage of
LP-SVR is the lack of the theoretical understanding of the
support vector selection mechanism [12].

Most of the preceding work applying support vector learning
to nonlinear systems identification [9]–[11], [17], [25] treat
system identification as a general regression problem, where
the AR and MA parts are consolidated in the regressor. How-
ever, the chosen single kernel function might be ineffective in

characterizing different cause-effect relationships of the AR
and MA parts to the model output. Modeling the different
dependencies by heterogeneous kernel functions is the main
motivation for using the composite kernel, which provides new
degrees of freedom in representing nonlinear dynamics and
also makes the model more amenable to control law design.

III. Construction of the Multiscale Orthogonal

Wavelet Kernel

The methodology of wavelet has been successfully applied
for nonlinear dynamic systems identification because of its
exceptional capability in rendering multiresolution decompo-
sition and capturing localized temporal and frequency infor-
mation. This capability will be further exploited through the
orthogonal wavelet kernel developed in this section.

A multiresolution analysis is a decomposition of L2(R),
into a chain of nested subspaces · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂
· · · Vj−1 ⊂ Vj ⊂ Vj+1 · · · such that:

1) (separation) ∩
j∈Z

Vj = {0};
2) (density) ∪

j∈Z
Vj = L2(R);

3) (scaling) f (x) ∈ V0 if and only if f (2jx) ∈ Vj;
4) there exists a scaling function ϕ ∈ V0 whose integer-

translates span the space V0, and for which the set
{ϕ(x − m), m ∈ Z} is an orthonormal basis;

where j is the dilation index for the resolution level, m denotes
the translation index, and the subspaces Vj are simply scaled
versions of V0. The scaling function ϕ is also called the father
wavelet, and its binary dilations and translations constitute
orthonormal bases for all Vj subspaces. Let Wj be the or-
thogonal complement of Vj in Vj+1, i.e., Wj = Vj+1 	Vj.Vj is
called the approximation space, and Wj is called the wavelet
space or detail space. The wavelet function ψ is defined
such that {ψ(x − m)}m∈Z is an orthonormal basis of W0. The
wavelet space Wj is a dilation of W0 and the basis of Wj

is ψj, m(x) = 2j/2ψ(2jx − m), i.e., Wj = span ({ψj, m}m∈Z).
In other words, the wavelet functions span the orthogonal
complement between approximation spaces at two subsequent
scales. By successively decomposing the approximation space
as Vj+1 = Wj ⊕ Vj , it arrives that ⊕

j∈Z
Wj = L2(R) according

to the density property, i.e., L2(R) can be decomposed as a
direct sum of the spaces Wj .

In the presence of irregular localized features, a multireso-
lution learning algorithm may be required to take care of local
and global complexity of the input–output map. Multiresolu-
tion approximation can be defined as a mathematical process
of hierarchically decomposing the input–output approximation
to capture both macroscopic and microscopic features of the
system behavior. The unknown function underlying any given
measured input–output data can be considered consisting of
high-frequency local input–output variation details superim-
posed on the comparatively low frequency smooth back-
ground. At each stage, finer details are added to the coarser
description, providing a successively better approximation to
the input–output data.
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As the cornerstone of nonlinear support vector learning
algorithm, the kernel functions play an essential role in pro-
viding a general framework to represent data. However, as the
conexus between wavelet multiresolution analysis and non-
parametric kernel learning, the construction of the orthogonal
wavelet kernel is not a trivial task due to the fact that almost
all known orthonormal wavelets, except for the Haar and the
Shannon, cannot be expressed in a closed form in terms of
elementary analytical functions, such as the trigonometric,
exponential, or rational functions [27], [28]. Without a closed
form, the use of the orthogonal wavelet as kernel functions
for nonparametric learning will be limited because of the
resulting memory requirement, computational burden, and loss
of accuracy. Although the Morlet wavelet has been capitalized
on to construct wavelet kernels in the literature [23]–[25],
a systematic implementation of multiresolution modeling is
not provided because of the non-orthogonality of the Morlet
wavelet.

In an attempt to develop multiscale support vector learning
strategies that provide spatially varying resolution, one newly
discovered closed-form orthogonal wavelet, the type-II raised
cosine wavelet, is explored herein to construct a novel multi-
scale orthogonal wavelet kernel. As in the harmonic analysis
signal reconstruction technology, the raised-cosine scaling
function is derived from its power spectrum (spectrogram).
The power spectrum of the raised-cosine scaling function is
defined as [27] and [29]

|ϕ̂(ω)|2 =

⎧⎪⎨
⎪⎩

0, |ω|≥π(1+b)
1
2

(
1 + cos |ω|−π(1−b)

2b

)
, π(1 − b) < |ω| < π(1 + b)

1, |ω|≤π(1 − b)
(13)

where ϕ̂(ω) is the Fourier transform of the scaling function
ϕ(x), that is

ϕ̂(ω) =
∫ ∞

−∞
ϕ(t)e−iωtdt. (14)

The spectrum of the type-I raised cosine scaling function
is the usual positive square root of the power spectrum (13),
and details of the type-I raised cosine wavelet can be found in
[27] and [29]. The spectrum of the type-II raised cosine scaling
function ϕ̂(ω) derived from (13) is complex, ϕ̂(−ω) = ϕ̂(ω),
and given as follows:

ϕ̂(ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, ω≥π(1 + b)

1
2

[
1 + exp i

(
ω−π(1−b)

2b

)]
, π(1 − b)≤ω≤π(1 + b)

1, 0≤ω≤π(1 − b).
(15)

As a special case of Lemarié–Meyer wavelets, the peculiar-
ity of raised cosine wavelets lies in that they are expressible
in a simple closed form, which is eminently significant for the
construction of the multiscale orthogonal wavelet kernel. By
using the inverse Fourier transform, the type-II raised cosine
scaling function can be calculated from (15) as follows:

ϕ(x) =
sin π(1 − b)x + sin π(1 + b)x

2πx(1 + 2bx)
(16)

which is a real-value function and visualized in Fig. 1.

Fig. 1. Scaling function of the type-II raised cosine wavelet.

To derive the type-II raised cosine wavelet function from
the explicit form of the scaling function (16) along the line of
least resistance, one may apply the following theorem directly
[29].

Theorem. Let ℘ be the set of all g ∈ L1(R) such that
g(x)≥0 and

supp g ⊂ [−π
/

3, π
/

3]

g(x) is even, and
∫ υ

−υ

g(x)dx = π for some 0 < υ≤π
/

3

where supp g = {x ∈ R| g(x) �= 0}. For each g ∈ ℘, the
function ϕ(x) defined by its spectrum

ϕ̂(ω) =
1

2
+

1

2
exp iϑ(ω) (17)

where ϑ(ω) =
∫ ω−π

−ω−π
g(x) dx is a real band-limited orthonor-

mal cardinal scaling function and the corresponding mother
wavelet function ψ(x) is given by

ψ(x) = 2ϕ(2x − 1) − ϕ

(
1

2
− x

)
. (18)

The rigorous proof of this theorem can be found in [29].
Apparently, the type-II raised cosine scaling function spectrum
ϕ̂(ω) given by (15) is in the form of (17). Hence, it follows
from this theorem that the type-II raised cosine wavelet
function ψ(x) is in the form of

ψ

(
x +

1

2

)
=

1

2πx [1 + 4bx]
[sin 2π(1 − b)x + sin 2π(1 + b)x]

− 1

2πx [1 − 2bx]
[sin π(1 − b)x + sin π(1 + b)x] .

(19)
Parallel to the corresponding scaling function (16), the

type-II raised cosine wavelet function (19) is also an asym-
metric function, which is illustrated in Fig. 2.

Like most Lemarié–Meyer wavelets, raised cosine wavelets
are orthonormal, band-limited, and fast-decaying in time. In
particular, a distinctive and interesting property associated with
type-II raised cosine wavelets is that the wavelet function



LU et al.: MULTISCALE ASYMMETRIC ORTHOGONAL WAVELET KERNEL 717

Fig. 2. Type-II raised cosine wavelet function.

is also a sampling function at the half-integers in the sense

that ψ(n + 1/2) = δ0n where δ0n =

{
0, n �= 0
1, n = 0

[27], [28].

The strong affinity between reproducing kernel expansion in
reproducing kernel Hilbert space and sampling expansions was
unveiled recently [43]–[47], which enlightens us to capitalize
on the type-II raised cosine wavelet to construct an innovative
kernel function. In the framework of multiresolution analysis,
the 1-D multiscale wavelet kernel can be constructed in virtue
of the type-II raised cosine wavelet function

k(x, y) =
max∑

j=min

λjψ(2jx − y) (20)

where the resolution level index j corresponds to a ladder
of subspaces for accommodating the characteristics in the
different binary dilated scale levels. The kernel (20) can be
easily generalized to the multidimensional version by using
the tensor product

k(x, y) =
d∏

i=1

maxi∑
j=mini

λjψ(2jxi − yi) (21)

where d stands for the dimension of the vectors x and y. Most
commonly-used kernel functions can be classified into either
translation-invariant kernels, such as the radial basis function
(RBF) kernel and inverse multiquadric kernel, or rotation-
invariant kernels, such as the sigmoid kernel and polynomial
kernel. However, as a multiscale kernel function, the orthog-
onal wavelet kernel defined by (21) is neither translation-
invariant nor rotation-invariant.

In particular, the asymmetry inherited in the type-II raised
cosine wavelet function distinguishes the kernel function (21)
from other kernel functions, including the Morlet wavelet
kernel. The Morlet wavelet kernel defined by

k(x, y) =
d∏

i=1

φ

(
xi − yi

δ

)
(22)

where φ(x) = cos(1.75x)exp(− x2

2 ), is apparently symmet-
ric and translation-invariant. Albeit the possibility of using

asymmetric kernels for support vector learning was mentioned
and investigated in [33] and [48], the related research has been
sparse. In this paper, the adaptability of LP-SVR to more
general kernels makes it possible to represent and approxi-
mate unknown systems by asymmetric kernel expansion. The
anisotropic representation capability inherited in the asym-
metric kernel allows it to go beyond the limit of symmetric
kernels in estimating complex dependencies and representing
irregular features. It is also noteworthy that the cross-kernel
used for solving the linear operator equation via SV learning
is essentially an asymmetric kernel and the expansion on
asymmetric kernels is used to represent the approximation
solution to the linear operator equation [49].

IV. Application to Nonlinear Dynamic Modeling

The essence of modeling is prediction, and forecasting
future behavior based on past observations has been a long
standing topic in system identification and time series mod-
eling [50]–[52]. According to the different regression vectors
used, the identification model for dynamical systems can be
categorized as the series-parallel model or NARX model and
the parallel model or nonlinear output error model [36]. With-
out coupling to the real systems, the nonlinear parallel models
are emancipated from relying on the outputs of the actual
systems. In effect, the parallel model (3) is a recurrent NARX
model, whose computational capability and equivalence to
the Turing machine were emphasized in [53] and [54]. The
identification of the series-parallel model amounts to building
a one-step ahead predictor, while the identification of the
parallel model is for long-term/mid-term prediction.

In the realm of nonlinear systems identification, there is
general consensus that one of the most formidable technical
challenges is how to build a model usable in parallel con-
figuration, which is much more intractable than building the
series-parallel model due to the feedback involved. However,
a multitude of applications, e.g., fault detection and diagnosis,
predictive control, simulation, etc. require a parallel model
since a prediction of many steps into the future is needed.

In theory, long-term/mid-term predictions can be obtained
from a short-term predictor, for example a one-step ahead
predictor, simply by applying the short predictor many times
(steps) in an iterative way. This is called iterative prediction
[50]–[52]. The other way, called direct prediction, provides
a once-completed predictor with a long-term prediction step,
and the specified multistep prediction can then be obtained
directly from the established predictor in a manner similar to
computing one-step predictions [50], [51]. The main downside
of the direct modeling approach is that it requires different
models for different steps ahead prediction. It is generally
believed that the iterative prediction approach is in most cases
more efficient than the direct approach assuming that the
dynamics underlying the time series are correctly specified
by the model [50].

In this simulation study, to demonstrate the superiority and
effectiveness of the proposed novel kernel function for non-
linear dynamical system modeling, the LP-SVR learning algo-
rithm with multiscale asymmetric orthogonal wavelet kernel is
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Fig. 3. Model in series-parallel configuration.

Fig. 4. Model in parallel configuration.

used to build the parallel models for a benchmark hydraulic
robot arm dataset and the well-known Box and Jenkins’ dataset
in virtue of the iterative prediction approach. Although these
two datasets have been used widely for performance evaluation
of various system identification methods in the literature [11],
[17], [25], [55]–[58], to our best knowledge, this is the first
study on learning the parallel models for long-term/mid-term
prediction on these benchmark datasets.

Partitioning the benchmark datasets into training and valida-
tion subsets, the identification procedure includes two phases.
The one-step ahead predictor, i.e., the series-parallel model as
shown in Fig. 3, is first learned on the training dataset, and
then in the second phase the procured one-step ahead predictor
is used in the parallel configuration for long-term/mid-term
prediction on the validation dataset, as shown in Fig. 4.

For the sake of comparison, several commonly used kernel
functions are employed for modeling on the same dataset as
well, such as the Morlet wavelet kernel defined by (22), the
Gaussian RBF kernel defined by

k(x, y) = exp

(
− ‖x − y‖2

2σ2

)
(23)

the polynomial kernel defined by

k(x, y) = (1 + 〈x, y〉)q (24)

the inverse multiquadric kernel defined by

k(x, y) =
1√

‖x−y‖2 + c2
(25)

and the B-spline kernel defined by

k(x, y) =
d∏

i=1

B2J+1 (xi − yi) (26)

where σ, q, c, J are the adjustable parameters of the above
kernel functions. For the B-spline kernel, B-spline function
B�(·) represents a particular example of a convolutional basis
and can be expressed explicitly as [59], [60]

B�(x) =
1

�!

�+1∑
r=0

(
� + 1

r

)
(−1)r
(

x +
� + 1

2
− r

)�

+

(27)

where the function (·)+ is defined as the truncated power
function, that is

x+ =

{
x, for x > 0

0, otherwise.
(28)

A. Hydraulic Robot Arm Dynamical System Identification

For the hydraulic robot arm dynamical system, the position
of a robot arm is controlled by a hydraulic actuator. The
control input un represents the size of the valve opening
through which oil flow into the actuator, and the output
yn is a measure of the oil pressure which determines the
robot arm position. In modeling this dynamical system, with
the aim of achieving a fair comparison, the same regressor
[yn−1, yn−2, yn−3, un−1, un−2] and dataset partition scheme as
those in the literature are adopted herein [11], [17], [25], [55].
The first half of the data set containing 511 training data pairs
is used for training in series-parallel configuration, and the
other half for validation data in parallel configuration.

In the training phase, the model (12) with yn−1 =
[yn−1, yn−2, yn−3] and un = [un−1, un−2] is learned by LP-SVR
to attain the one-step ahead approximator. Upon training
completion, our objective is to provide satisfactory multistep
prediction without using the actual system output yn, i.e., to
validate the model in parallel configuration as follows:

ŷn =
∑
i∈SV

βi(k1(yi−1, ŷn−1) + k2(ui, un)) (29)

where ŷn−1 = [ŷn−1, ŷn−2, ŷn−3]. The approximation accura-
cies on the training and validation datasets are evaluated by
calculating the root mean square error (RMSE)

ERMS =

√√√√ 1

M

M∑
n=1

[
ŷn − yn

]2
(30)

where ŷn is the estimated output of the model and M is the
number of data in the dataset for evaluation. The validation
accuracy is crucial in evaluating generalization performance
of the model. In applying SVR with kernel functions to train
the model, manual tuning of the kernel parameters as well as
ε and C for optimum results is required.
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Fig. 5. Training in series-parallel configuration for the model (12) of robot
arm by LP-SVR with multiscale asymmetric wavelet kernel (solid line: actual
system output, dotted line: model output).

Fig. 6. Validation in parallel configuration for the model (29) of robot arm by
LP-SVR with multiscale asymmetric wavelet kernel (solid line: actual system
output, dotted line: model output).

By setting the parameters ε = 0.02, C = 0.46 and the kernel
functions k1(yi−1, yn−1) and k2(ui, un) as

k1(x, y) =
3∏

i=1

−4∑
j=−5

λjψ(2jxi − yi) (31)

k2(x, y) =
0∑

j=−4

λjψ(2jx1 − y1)×
−1∑

j=−9

λjψ(2jx2 − y2) (32)

where the kernel parameters λj = 2(j/μ) and μ = 2.9, the
training result based on the multiscale asymmetric wavelet
kernel (31) and (32) is illustrated in Fig. 5, and the training
RMSE is 0.1027. The attained model is subsequently validated
on the validation dataset in parallel configuration for long-
term/mid-term prediction, and the validation result is shown
in Fig. 6 and Table I. Following the same procedure, the
other kernel functions are also used to train model (12)

TABLE I

Robot Arm Parallel Model Identification by LP-SVR With

Different Composite Kernel Functions

Fig. 7. Validation in parallel configuration for the model (29) of robot arm
by LP-SVR with Gaussian RBF kernel (solid line: actual system output, dotted
line: model output).

TABLE II

Robot Arm Parallel Model Identification By QP-SVR With

Different Composite Kernel Functions

by LP-SVR and QP-SVR, respectively. After tuning the pa-
rameters for optimum results, the validation performances
of models learned by LP-SVR in parallel configuration are
depicted in Figs. 7–11. In conjunction with the model sparsity,
the RMSEs on the training and validation datasets obtained by
these comparative models are listed in Table I for LP-SVR and
Table II for QP-SVR.

Measured by the support vector ratio, the sparsity of the
model with multiscale asymmetric wavelet kernel is com-
mensurate with the models adopting polynomial kernel and
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Fig. 8. Validation in parallel configuration for the model (29) of robot arm
by LP-SVR with polynomial kernel (solid line: actual system output, dotted
line: model output).

Fig. 9. Validation in parallel configuration for the model (29) of robot arm
by LP-SVR with B-spline kernel (solid line: actual system output, dotted line:
model output).

Morlet wavelet kernel in Table I. It is evident that the valida-
tion accuracy shown in parallel configuration is considerably
improved by using the multiscale asymmetric wavelet kernel,
which implies excellent generalization performance.

In parallel configuration, the errors for the s-step prediction
are the accumulation of the errors of the previous (s − 1)
steps. Generally, the longer the forecasting horizon, the larger
the accumulated errors are and the less accurate the iterative
method is. Hence, it is remarkable that, while using the
identical regressor on the same training and validation datasets,
this parallel model validation accuracy is even better than
some of those obtained in series-parallel configuration by other
popular learning strategies. For example, the RMSE was 0.467
for a one-hidden-layer sigmoid neural network case and 0.579
for a wavelet network case [55].

In terms of computing time for training, LP-SVR is around
seven times faster than QP-SVR on this dataset (Intel Core i5
processor), and the computing resource required by QP-SVR

Fig. 10. Validation in parallel configuration for the model (29) of robot arm
by LP-SVR with inverse multiquadric kernel (solid line: actual system output,
dotted line: model output).

Fig. 11. Validation in parallel configuration for the model (29) of robot arm
by LP-SVR with Morlet wavelet kernel (solid line: actual system output,
dotted line: model output).

might become prohibitively expensive when increasing the
size of the training dataset. It is also obvious by comparing
the model sparsities in Tables I and II that the LP-SVR
substantially exceeds QP-SVR in producing succinct model
representations.

B. Box and Jenkins’ Identification Problem

The well-known Box and Jenkins’ gas furnace dataset
was recorded from a combustion process of a methane–air
mixture. The original dataset consists of 296 input–output
data pairs that were recorded at a sampling rate of 9 s. The
gas combustion process has one input variable, gas flow rate
un, and one output variable, the concentration of carbon
dioxide (CO2) in the outlet gas, yn. The instantaneous value
of the output yn can be regarded as being influenced by ten
variables yn−1, yn−2, · · · , yn−4, un−1, un−2, · · · , un−6

[56], [58]. In modeling this dynamical system, the regressor
[yn−1, yn−2, un−2, un−3, un−4] is employed herein. The



LU et al.: MULTISCALE ASYMMETRIC ORTHOGONAL WAVELET KERNEL 721

Fig. 12. Training in series-parallel configuration for the model (12) of a gas
furnace by LP-SVR with multiscale asymmetric wavelet kernel (solid line:
actual system output, dotted line: model output).

Fig. 13. Validation in parallel configuration for the model (35) of a gas
furnace by LP-SVR with multiscale asymmetric wavelet kernel (solid line:
actual system output, dotted line: model output).

first 150 data pairs are used for training in series-parallel
configuration, and the subsequent 140 data pairs are used
for validation in parallel configuration. Due to the different
distribution and magnitude order of the measurements in
this dataset, the data standardization and proper rescaling are
necessary before the start of training [61].

In training the model (12) with yn−1 = [yn−1, yn−2] and
un = [un−2, un−3, un−4], the kernel functions k1(yi−1, yn−1)
and k2(ui, un) are set as

k1(x, y) =
2∏

i=1

2∑
j=1

λjψ(2jxi − yi) (33)

k2(x, y) =
0∑

j=−11

2jψ(2jx1 − y1)×
3∏

i=2

1∑
j=−4

2jψ(2jxi − yi)

(34)
where the kernel parameters are λj = 2(j/μ) and μ = 2. The
training result based on the multiscale asymmetric wavelet

Fig. 14. Validation in parallel configuration for the model (35) of a gas
furnace by LP-SVR with Gaussian RBF kernel (solid line: actual system
output, dotted line: model output).

Fig. 15. Validation in parallel configuration for the model (35) of a gas
furnace by LP-SVR with polynomial kernel (solid line: actual system output,
dotted line: model output).

Fig. 16. Validation in parallel configuration for the model (35) of a gas
furnace by LP-SVR with B-spline kernel (solid line: actual system output,
dotted line: model output).
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Fig. 17. Validation in parallel configuration for the model (35) of a gas
furnace by LP-SVR with inverse multiquadric kernel (solid line: actual system
output, dotted line: model output).

Fig. 18. Validation in parallel configuration for the model (35) of a gas
furnace by LP-SVR with Morlet wavelet kernel (solid line: actual system
output, dotted line: model output).

kernel (33) and (34) is illustrated in Fig. 12, and the cor-
responding RMSE is 0.5001. Subsequently, the model is
validated in parallel configuration

ŷn =
∑
i∈SV

βi(k1(yi−1, ŷn−1) + k2(ui, un)) (35)

where ŷn−1 = [ŷn−1, ŷn−2]. The validation results are plotted
in Fig. 13, and the corresponding RMSE is 1.1956. The
model is also trained with other kernel functions by LP-SVR
and QP-SVR, respectively. The validation performances of
models learned by LP-SVR in parallel configuration are de-
picted in Figs. 14–18. Together with the model sparsity, the
training RMSE and validation RMSE are listed in Tables III
and IV. Again, similar to that in the robot arm case study,
the advantages of multiscale asymmetric wavelet kernel in
modeling accuracy, generalization capability, and model

TABLE III

Gas Furnace Parallel Model Identification By LP-SVR with

Different Composite Kernel Functions

TABLE IV

Gas Furnace Parallel Model Identification By QP-SVR with

Different Composite Kernel Functions

sparsity with LP-SVR are clearly demonstrated through the
simulation results.

V. Conclusion

In spite of the prosperity of wavelet theory in the realms
of signal processing and multiscale modeling, the utility of
the wavelet multiresolution analysis in kernel learning has
been quite limited owing to the lack of explicit closed-form
expressions of almost all orthonormal wavelets. The main
contribution of this paper is to bridge the gap between wavelet
multiresolution analysis and support vector learning by con-
structing a closed-form multiscale orthogonal wavelet kernel
and demonstrating its value in nonlinear dynamic modeling.
Also, in the scenario of LP-SVR with composite kernel, the
efficacy of the proposed multiscale orthogonal wavelet kernel
function is evaluated and confirmed through simulation study.

Based on the illuminating discovery of nontrivial closed-
form orthogonal wavelets, a new multiscale asymmetric or-
thogonal wavelet kernel, the type-II raised cosine wavelet
kernel, is devised in this paper. With the capability to represent
complex dependencies at different scales, the proposed orthog-
onal wavelet kernel function enables multiscale support vector
learning under the framework of multiresolution analysis. On
the other hand, the anisotropy of the asymmetric kernel confers
more flexibility in representing irregular complex dependen-
cies, and thereby this research significantly complements the
dearth of the investigation on asymmetric kernel functions in
the realm of computational learning theory. The advantages
of the proposed kernel design are demonstrated on two chal-
lenging nonlinear dynamic system modeling problems, where
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parallel models capable of long-term/mid-term prediction are
developed and shown to have substantial benefits in both
modeling accuracy and sparsity when compared to other
widely used kernel functions.
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