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< An on-board battery state-of-health (SOH) monitoring framework is proposed.
< Capacity loss and therefore SOH can be monitored by using partially charging data.
< Support vector regression algorithm is used for robust aging signature extraction.
< Established a quantitative correlation to predict capacity fade with high accuracy.
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a b s t r a c t

Battery state of health (SOH) monitoring has become a crucial challenge in hybrid electric vehicles
(HEVs) and all electric vehicles (EVs) research, as SOH significantly affects the overall vehicle perfor-
mance and life cycle. In this paper, we focus on the identification of Li-ion battery capacity fading, as the
loss of capacity and therefore the driving range is a primary concern for EV and plug-in HEV (PHEV).
While most studies on battery capacity fading are based on laboratory measurement such as open circuit
voltage (OCV) curve, few publications have focused on capacity loss monitoring during on-board oper-
ations. We propose a battery SOH monitoring scheme based on partially charging data. Through analysis
of battery aging cycle data, a robust signature associated with battery aging is identified through in-
cremental capacity analysis (ICA). Several algorithms to extract this signature are developed and eval-
uated for on-board SOH monitoring. The use of support vector regression (SVR) is shown to provide the
most consistent identification results with moderate computational load. For battery cells tested, we
show that the SVR model built upon the data from one single cell is able to predict the capacity fading of
7 other cells within 1% error bound.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The research and development of electric vehicles (EVs) pro-
gressed at unprecedented pace in recent years, driven primarily by
their energy efficiency and environmental benefits [1]. Locally, EVs
do not emit any pollutants or consume any gasoline, and in com-
binationwith electricity from renewable energy, they could achieve
low emission and fuel consumption on a well-to-wheel basis [2].
However, the performance of EVs is limited due to the challenges in
ergy Research Center-Clean
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the development of reliable, low cost and long life cycle battery
systems.

While researchers continue to develop next-generation batte-
ries with higher energy and power density [3], there are many
difficulties to be solved for the battery management. Two impor-
tant functions are the state-of-charge (SOC) estimation and state-
of-health (SOH) determination, and both have been studied
extensively in the literature [4]. SOC is commonly defined as “the
percentage of the maximum possible charge that is present inside a
rechargeable battery” and SOH is “a ‘measure’ that reflects the
general condition of a battery and its ability to deliver the specified
performance in comparison with a fresh battery” [5]. Typically,
the quantitative definition of SOH is based either on the battery
capacity or the internal resistance, depending on specific
applications.
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Table 1
Main specifications of the LiFePO4 cell.

Nominal
capacity (Ah)

Nominal
voltage (V)

Upper cut-off
voltage (V)

Lower cut-off
voltage (V)

1.10 3.30 3.60 2.00

Fig. 1. Battery test schedule from Ref. [22].
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Many methods for on-line SOC estimation have been studied
including coulomb counting, open circuit voltageeSOC (OCVeSOC)
mapping and model based approach with extended Kalman filter
(EKF) [6e8]. In contrast, the development of on-line SOH moni-
toring technique is more challenging because of the complicated
electrochemical mechanism involved in battery aging.Whereas it is
possible to assess the resistance growth issue by both off-line tests
such as electrochemical impedance spectroscopy (EIS) [9,10] and
on-line identification algorithms such as the use of least squares
methods [11e13], the detection of capacity fading still largely relies
on laboratory measurements and off-line analysis [14e16].

One conventional and most common method in determining
battery capacity fading is based on the OCVeSOC curve [15].
However, it requires fully charging or discharging the battery at
low rate (e.g., 1/25 C) or measuring the open circuit voltage after a
long relaxation period (more than 2 h) at SOC levels that span the
entire range. Both methods require time-consuming tests and thus
are not applicable for on-board implementation with in-situ
operation data. An alternative approach to estimate capacity loss
is the so-called incremental capacity analysis (ICA) [17]. By
differentiating the battery charged capacity (Q) versus the termi-
nal voltage (V), ICA transforms voltage plateaus on the charging/
discharging voltage (VeQ) curve, which are associated to the
staging of graphite anode, into clearly identifiable dQ/dV peaks on
the incremental capacity (IC) curve [14,17]. The concept of ICA
originates from the study of the lithium intercalation process and
the corresponding staging phenomenon [14,18e20]. ICA has the
advantage to detect a gradual change in cell behavior during a life-
cycle test, with greater sensitivity than those based on conven-
tional charge/discharge curves and yield key information on the
cell behavior associated with its electrochemical properties
[16,21]. Although ICA was shown to be an effective tool for
analyzing battery capacity fading, most studies have focused on
understanding the electrochemical aging mechanism and no study
has been reported based on the on-board application of ICA.
Meanwhile, since all the peaks on an IC curve lie within the
voltage plateau region of the VeQ curve, which is relatively flat
and more sensitive to measurement noise, calculating dQ/dV
directly from the data set is difficult. Hence, effective and robust
algorithms of obtaining the IC curve need to be developed.

This paper aims at developing algorithms that can apply ICA for
battery SOH monitoring with partially charging data. Several nu-
merical procedures were developed and evaluated for extracting
the IC peaks and associating them with capacity fading. In partic-
ular, our support vector regression (SVR) approach was found to be:

(a) Insensitive to measurement noises
(b) Robust to data range and size
(c) Effective in extracting a signature that shows strong depen-

dence to battery age

Our study is based on a battery life cycle test data set collected
over a period of 18 months. We showed that the SVR model built
upon the data from one single cell is able to predict the capacity
fading of 7 other cells with less than 1% error. Even though the
aging data are collected for A123 LiFePO4 cells and the quantitative
relation identified in this work have not been demonstrated to
work on other types of cells, we believe that the procedure and
algorithms reported in this paper are general and should be
applicable to many of Li-ion battery systems.

The remainder of this paper is organized as follows: Section 2
introduces experiment setup and results obtained by applying
ICA off-line. In Section 3, ICA results based on partial data with
conventional methods are presented. Section 4 introduces the
linear programming based SVR (LP-SVR) and elucidates the
implementation of LP-SVR in obtaining the IC curve. The conclu-
sions are given in Section 5.
2. Experiment setup and off-line ICA results based on OCV

2.1. Battery testing systems and schedule

The test data used for this study are acquired through the bat-
tery test bench set up in Ref. [22], which includes an Arbin BT2000
tester, a thermal chamber for environment control, a computer for
user-machine interface and data storage, a switch board for cable
connection, and battery cells. The data acquisition system has a
sampling frequency of 10 Hz.

The batteries used for this test are lithium ion phosphate
(LiFePO4) APR18650M1A cells from A123 with the specifications
listed in Table 1. Eight cells are tested with the same load profile for
comparison and validation. As shown in Fig. 1, the experiment
procedure starts with a series of characterization tests (which
consist of a static capacity test using current rate½ C, a hybrid pulse
test, a DC resistance test, a dynamic stress test (DST) and a Federal
Urban Driving Schedule (FUDS) test) conducted at three different
temperatures (in the order of 10 �C, 35 �C and 22 �C). After these
tests, 100 aging cycles are conducted at 22 �C. In each aging cycle,
the cells are charged and discharged at a constant rate until the cut-
off voltage is detected [22]. For this study, the data sets from the ½ C
rate static capacity test are mainly used.

More detailed discussion of the battery testing systems and
schedules can be found in Ref. [22].
2.2. Off-line OCV identification and ICA results

As indicated in Ref. [17], the ideal ICA results should be obtained
with a close-to-equilibrium OCV curve. Hence, we first start the ICA
study by identifying OCV curves from the experiment data set. Note
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Fig. 4. IC peak value comparison for all eight cells.
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that there is no OCV data collected at extremely low charging rate
(i.e., 1/25 C); we therefore perform identification on the static ca-
pacity test data (which has charging/discharging rate at ½ C) using
a parametric model developed in Refs. [23e25].

The model of the OCV curve is expressed as

OCVðzÞ ¼ K0 �
K1

z
� K2zþ K3ln ðzÞ þ K4ln ð1� zÞ (1)

where K0e4 are the model parameters and z is the normalized SOC,
and the discrete battery model used for charging/discharging pro-
cess is formulated as

zkþ1 ¼ zk �
�
hiDt
C

�
ik;

yk ¼ OCVðzkÞ � Rik

¼ K0 �
K1

zk
� K2zk þ K3lnðzkÞ þ K4lnð1� zkÞ � Rik

(2)
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Fig. 3. Comparison of OCV and IC curve at different battery aging cycles.
where hi is the charging/discharging efficiency, Dt is the time step, C
is the battery capacity, ik is the input current, yk is the model output
(terminal voltage) and R is the parameter that represents battery
internal resistance [22].

Because the batterymodel is linear in parameters, we could thus
formulate the estimation problem as the following

yk ¼ qTVfVk;

qV ¼ ½K0;K1;K2;K3;K4;R�T ;

fVk ¼
�
1;�1

zk
;�zk; lnðzkÞ; lnð1� zkÞ; ik

�T
:

(3)

The parameters qV can be solved by the standard least squares
method,
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Fig. 5. Correlation between battery faded capacity and IC peak.
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qV ¼
�
FT
VFV

��1
FT
VY ;

where Y ¼ ½y1; y2;.; yn�T ;
FV ¼ ½fV1;fV2;.;fVn�T :

(4)

An example of the OCV identification results and the corre-
sponding IC curve is shown in Fig. 2. Note that the OCV is plotted
against the battery charged capacity Q, instead of the normalized
SOC. With the parametric OCV model identified, the IC curve is
obtained by taking analytic derivative of the mathematic expres-
sion (1). One single peak can be observed from the IC curve. It
should be noted, according to Ref. [17], there are three identifiable
peaks on the IC curve. However, the number of peaks that can be
extracted numerically from the experimental data depends on the
OCV model and the numerical approach. Using the parametric
model (1) and analytic derivative calculation, on one peak is
identified. Nevertheless, the purpose of using this parametric OCV
model is to reveal and validate that the aging signature can indeed
be extracted from battery data through ICA. In later sections,
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Fig. 7. Zoom-in of the numerically derived IC curves.
however, wewill discuss how ICA can be applied directly to battery
charging data without the parametric OCVmodel, and show results
where all three peaks are identified.

Applying the identification procedure to different data sets
collected at different aging cycles, the results shown in Fig. 3
represent the change in OCV and IC curve for the first 2300 cycles
of one battery under testing. Compared with the other cells, the
battery #7 in Fig. 4 shows themost consistent aging behavior and is
therefore used as the reference battery cell in our study. Unless
otherwise notified, all single cell results in this paper are based on
the battery #7. The numerical values in the plot legends represent
the aging cycle number. Monotonic trends in the peaks, as the
battery ages, can be clearly identified on both OCV and IC curves.
However, notice that the IC curve provides greater sensitivity than
the OCV curve.

The same trend can be observed from all eight cells at all tem-
peratures. Fig. 4 shows the normalized IC peak values for all battery
cells at the displayed aging cycles. With the exception of 4 outliers
out of 48 data sets, the eight cells give consistent decreasing IC
peaks, which confirms the validity of using IC peaks as the signa-
ture for battery capacity fading.
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Fig. 9. Comparison of polynomial fitted IC curves for different cycles.
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At last, the battery capacity is plotted versus the IC peak in Fig. 5
and a linear correlation can be observed between the two values.

Up to now, the monotonic characteristic of IC peaks as batteries
degrade has been verified through the off-line identification, and a
correlation between capacity and IC peak is established. Therefore
ICA is shown to be a useful tool for battery SOH assessment. For on-
line SOH monitoring, however, OCV curves change as batteries age,
and the updated OCV curves are not available for conducting ICA.
Moreover, most real-life charging data does not span the entire SOC
range, thus the off-line identification method discussed in this
section cannot be applied. On the other hand, since the peak of IC
curve appears around the nominal voltage of 3.3 V, we believe that
this signature can be extracted from normal EV charging data
(which is limited in its SOC range) with appropriate algorithms.
Toward this end, we propose and analyze several SOH monitoring
frameworks in the following sections.

3. ICA results using conventional data processing and curve
fitting methods

3.1. Numerical derivative with smoothing

As mentioned before, the updated OCV curve is not available
during real-life operation, the ICA has to therefore rely on the
vehicle charging data, which gives the charging voltage (VeQ)
curve.
5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

IC Peak

Ba
tte

ry
 C

ap
ac

ity
 (A

h)

numerical derivative results
identified correlation using numerical derivative
polynomial results
identified correlation using polynomial

Fig. 11. Correlation between faded capacity and IC peak by using VeQ data.
Applying numerical derivative directly to the data is the most
intuitive approach, given the definition of IC. Because the mea-
surement noise has a rather big influence on the flat portion of the
charging voltage curve, judicious data processing is required before
numerical derivative can be performed. In our study, the raw data
curve is fittedwith a 3rd order polynomial curve piecewisely with a
moving window. The derivative of the middle point of each win-
dow is recorded. The resulting derivative curve is then smoothed by
averaging. The results are shown in Fig. 6. There are three notice-
able peaks in the plot, which agrees with the results shown in Ref.
[17]. The peaks are associated with the staging process in the
negative electrode as discussed in Refs. [14,18,21]. The peak at
higher voltage gives a clearly decreasing trend as battery ages
(shown in Fig. 7) and is thereby selected for further study.

Although the numerical derivative results do yield a clear
monotonic change on the IC peaks, the results are very noisy and
not suitable for further quantitative analysis. In addition, the data
processing procedure is time-consuming and thus not computa-
tionally efficient. Nonetheless, the numerical results identify the
range where the relevant peaks appear and therefore a local
polynomial curve can be fitted. The polynomial fitting results are
discussed in the next subsection.

3.2. Polynomial curve fitting

The charging data around the main voltage plateaus (e.g.,
ranging from 0.45 Ah to 0.85 Ah for the battery of nominal capacity
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Table 2
Sensitivity of IC peak value to different data range.

Range of
Q (AheAh)

0.55e0.90 0.55e0.93 0.55e0.95 0.35e0.85 0.45e0.85 0.60e0.85

IC Peak 10.17 10.18 10.18 10.05 10.17 10.14
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1.1 Ah) is selected for the analysis. Because the selected data only
contains two IC peaks at the higher voltage range as shown in the
previous subsection and Fig. 6, a 5th order polynomial (which can
represent exactly two peaks) is chosen to be fitted with the
charging data and then differentiated for ICA. Two ICA peaks can be
observed on the IC curve. Same as before, the value of the peak at
higher voltage is recorded for analysis. An illustration of this
method is shown in Fig. 8 and a comparison of the curves involving
aging effect is plotted in Fig. 9.

Polynomial curve fitting gives much smoother IC curves
compared to the ones by numerical derivative and efficient algo-
rithms (such as the least squares method) are readily available for
use. However, our analysis reveals an unacceptably high sensitivity
of the results to the selected data range. As shown in Fig. 10, the
shape of the IC curve may change significantly when slightly
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different data range is used for the fitting. A more robust method
for ICA is thus needed.

The correlation between faded battery capacity and IC peaks
obtained from the above two methods are displayed in Fig. 11. Both
methods lead to 2nd order correlations between the faded capacity
value and the corresponding IC peak value. Although quantitatively
the twomethods give different results, the qualitative relationships
are the same.

4. ICA results using SVR

4.1. ICA results obtained by LP-SVR

The support vector algorithm is a nonlinear generalization of the
Generalized Portrait algorithm developed by Vapnik et al. in the
sixties [26]. SVR adopts the original machine learning algorithm
and applies it for non-parametric function estimation. Conven-
tional SVR is formulated as a convex quadratic programming (QP)
problem and has been successfully applied in identifying nonlinear
dynamic systems [27]. However, the implementation of QP-SVR is
computationally expensive and sufficient model sparsity cannot be
guaranteed. LP-SVR that employs [1 norm as regularizer was then
proposed to improve the model sparsity and computational effi-
ciency [28,29].

SVR is chosen for this study because of its excellent approxi-
mation and generalization capability, and its demonstrated po-
tential in the realm of nonlinear system identification [27,28,30].

Since we are only interested in obtaining the IC (dQ/dV) curve,
we decide to use SVR to fit the reverse of charging curve (QeV). The
kernel based QeV model is described by

f ðxnÞ ¼ PN
i¼1

bikðxi; xnÞ;
xn ¼ vn;
xi ¼ vi;
yn ¼ qn

(5)

where xn and yn are model input and output, xi is the base data
point used for the kernel function, qn is the battery charged
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capacity, vn and vi represent the measured voltage, N is the number
of data points in the data set, bi is the model parameters and kð$; $Þ
is the selected kernel. In this study, the Gaussian radial basis
function (rbf) kernel is used and is expressed as

kðx; x0Þ ¼ exp

 
�kx� x0k2

2s2

!
(6)

where s is the adjustable parameter for the kernel function.
The parameters bis in SVR are computed by an optimization

algorithm.
In this work, we used LP as the optimization engine to derive the

SVR model. The LP-SVR formulates the optimization problem as
follows,

minimize
1
2
kbk1 þw

XN
n¼1

xn;

subject to

8>>>>>>><
>>>>>>>:

yn �
PN
i¼1

bikðxi; xnÞ � εþ xn

PN
i¼1

bikðxi; xnÞ � yn � εþ xn

xn � 0

(7)

where xns are the slack variables, w is the weighting factor, ε is the
precision parameter, k$k1 denotes the [1 norm in coefficient space
and b is defined as

b ¼ ½b1 b2 . bN �: (8)

The optimal result usually gives zero value for most of the bis
and the xis corresponding to non-zero bis are called support vectors
(SVs).

An example of the IC curve obtained through LP-SVR is shown in
Fig. 12. Note that the SVR algorithm gives a robust and smooth
result even though a shorter range of data (0.6 Ahe0.85 Ah), which
only contains the one peak that we are interested in, is used here.
The algorithm performed well in terms of both model sparsity and
data approximation. The insensitivity to data range is further
demonstrated in Figs. 13 and 14, where the same results are ob-
tained when different data range is used (Fig. 13), and when only a
sub-segment of data is used (Fig. 14). The IC peak values with
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respect to different data range are compared in Table 2. One can see
that the maximum difference between the tabulated IC peak values
is about 1%.
4.2. ICA results obtained by SV based parameter identification
(SVPI)

To further improve the computational efficiency, and make it
feasible for on-board implementation, we investigated the perfor-
mance of the IC peak identification algorithm when the SVs are
fixed from cycle to cycle (i.e., only apply LP-SVR to the initial data
set to find SVs and favorable kernel functions, and then use the SVs
and kernels as a parametric model for other aged battery data sets).

The LP-SVR problem is then reduced to an SVPI problem,

f ðxnÞ ¼ PNsv

i¼1
bikðsvi; xnÞ ¼ qTSVfSV;

qSV ¼ �
b1;b2;.;bNsv

	T
;

fSV ¼ �
kðsv1; xnÞ; kðsv2; xnÞ;.; k



svNsv

; xn
�	T

(9)
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Fig. 18. Normalized correlation between battery capacity and IC peak plotted with
validation data.



Fig. 19. ICA based on-board SOH monitoring framework.

1 Recorded on a computer with a 2.53 GHz Intel Core 2 Duo CPU and 4.0 GB RAM.
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where svis are the SVs identified previously by LP-SVR formulated
in (7), Nsv is the total number of SVs and the parameters bis can be
solved by parameter identification method such as least squares.
Typically, Nsv � N. In this study, we have Nsv ¼ 9 and N ¼ 200.

Comparisons between the IC curves and corresponding peak
values obtained by LP-SVR and by SVPI are displayed in Fig. 15. One
can see that both methods give qualitatively the same results but
the IC peak values from the two methods start to deviate from each
other after 1900 cycles, which implies that the SVPI with a fixed set
of SVs works well over a wide range of data and it is only necessary
to update the SVs after a long period operation. Moreover, as
plotted in Figs. 15 and 16, if the SVs are re-derived with the 1900
cycle data, we can obtain qualitatively (Fig. 15) and quantitatively
(Fig. 16) the same results by both methods at all aging cycles.

We can establish a 2nd order correlation between battery ca-
pacity and IC peak through the SVR results as well. The correlation
curves identified by LP-SVR and SVPI are both plotted in Fig. 17. By
updating the SVs at 1900 cycles, the two identified correlations are
almost identical (the two curves overlap each other as shown in
Fig. 17).

The correlation shown in Fig. 16, which is obtained for battery
#7, will be used as the capacity fading prediction model. To validate
the model, SVPI is also performed (with updated SVs) on the data
sets of all other 7 battery cells at the chosen aging cycles. The sig-
natures of decreasing IC peaks can be extracted clearly from all cells
with partially charging data (about 60%e85% SOC range). The
normalized IC peaks and the capacities of all batteries are plotted in
Fig.18 with the correlation curve identified using data of battery #7.
The maximum difference in the capacity is about 1% except the 5
outliers. Therefore, by normalizing both the capacities and IC peak
values, the identified quantitative correlation can be used for
effective on-board capacity estimation and SOH monitoring.

In terms of computational efficiency, because the major burden
comes from the process of solving the LP problem, SVPI using least
squares method for identification saves a significant amount of
time compared to LP-SVR and is very promising for on-line appli-
cations. In the case of battery #7, the total processing times of LP-
SVR and SVPI are 187 s and 64 s respectively.1 SVPI reduces 66%
computational time compared to LP-SVR.
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4.3. Development of SOH monitoring framework using ICA results

With the established quantitative correlation between the bat-
tery capacities and the IC peak values, an on-board SOH (mainly on
battery capacity fading) monitoring framework is developed
(Fig.19). Compared to conventionalmethodwhichmonitors battery
capacity loss based on fully charging data, our ICA based SOH
monitoring framework utilizes partially charging data (about 60%e
85% SOC range), that are frequently available during real-life oper-
ations, to estimate the faded battery capacity on-board. Fully
charging data is only needed for calibration after a long operation
period. By using SVPI, the advantages of our framework in robust-
ness and computational efficiency have both been demonstrated.

5. Conclusions

In this paper, we consider the battery SOH monitoring problem
with a specific emphasis onusing partially charging data for on-board
implementation. ICA is used to correlate capacity fading with the IC
curve peaks, thereby rendering the latter as the robust signature for
SOH monitoring. Several algorithms are developed to extract this
signature from normal vehicle charging data. Using SVR, an SOH
monitoring framework is developed to provide a definite and quan-
titative correlation between IC peaks and faded battery capacity. The
capacity loss can thereby be estimated/predicted through normal
charging data during real-life operation. For data collected on 8
LiFePO4 cells, the model developed with the SVR approach using one
cell data is able to predict the capacity fading of other cells with less
than 1% absolute error except a few outliers. As the IC peak degra-
dation shown in the charging data may be more related to the loss of
activematerial at theanode, further studiesbasedondischargingdata
(during driving) are needed to verify the applicability as well as the
robustness of the ICAmethodology to other agingmechanism. Future
researchwill also investigate the sensitivityof themethod todifferent
charging patterns and operating conditions (such as temperatures),
and develop adaptive control strategies that can incorporate the SVR
SOHmonitoring for battery energy management.
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