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Abstract—For a complex industrial system, its multivariable
and nonlinear nature generally make it very difficult, if not
impossible, to obtain an accurate model, especially when the
model structure is unknown. The control of this class of complex
systems is difficult to handle by the traditional controller designs
around their operating points. This paper, however, explores
the concepts of controller-driven model and virtual unmodeled
dynamics to propose a new design framework. The design consists
of two controllers with distinct functions. First, using input and
output data, a self-tuning controller is constructed based on a
linear controller-driven model. Then the output signals of the
controller-driven model are compared with the true outputs of
the system to produce so-called virtual unmodeled dynamics.
Based on the compensator of the virtual unmodeled dynamics,
the second controller based on a nonlinear controller-driven
model is proposed. Those two controllers are integrated by
an adaptive switching control algorithm to take advantage of
their complementary features: one offers stabilization function
and another provides improved performance. The conditions
on the stability and convergence of the closed-loop system are
analyzed. Both simulation and experimental tests on a heavily
coupled nonlinear twin-tank system are carried out to confirm
the effectiveness of the proposed method.

Index Terms— Adaptive control, controller-driven model, mul-
tivariable and nonlinear systems, switching control, virtual
unmodeled dynamics.

I. INTRODUCTION

UE to the complexity and high cost involved in modeling
of industrial plants, it is generally difficult to obtain
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accurate control-oriented mathematical models. At present,
most controller designs for complex industrial plants are
carried out with a crude model to start with, and use adaptive
control and data-driven control to mitigate model uncertainties
and modeling errors.

For linear multivariable systems with unknown parameters,
a multivariable adaptive decoupling control algorithm has
been proposed in [1]-[4] by combining normal decoupling
control with self-tuning control. For a class of nonlinear
multivariable systems with unknown parameters, an adaptive
decoupling control that combines a generalized predictive
control with neural network compensation has been developed
in [5], where global convergence analysis was not discussed.
Using the method in [6], a stable and convergent multivariable
adaptive control method was established in [7] for a class
of unknown multivariable nonlinear system with stable zero
dynamics, where the system was expressed by a combination
of unknown linear subsystem and high order nonlinear terms.
For a class of unknown multivariable nonlinear systems with
unstable zero dynamics, a neural network and multiple-model
based dynamic decoupling control algorithm was proposed in
[8], where it is shown that the resulting control algorithm is
stable and convergent when the k-difference for the high order
nonlinear term is globally bounded. Furthermore, for a class
of industrial processes where the system dynamics are linked
with varying production boundary conditions, multiple-model
and neural network-based intelligent decoupling control
algorithm has been established in [9]. The proposed method
in [9] has also been applied to a ball mill coal-pulverizing
system of a power plant in China to obtain desired control
performance.

However, the methods in [5]-[9] used back-propagation
(BP) neural network to approximate the unmodeled dynamics.
Since the structure of the BP network is obtained using either
experience or trial and error approach [10], the convergence
speed of the neural network is slow and it can easily be
trapped at a local minimum. This leads to low accuracy of
the estimation for unmodeled dynamics and thus affects the
control performance.

Besides the adaptive control results mentioned earlier,
another important method is data-based controller design, that
uses the system input and output data to directly design
the controller without requiring a mathematical model of
the underlying physical plant. Recently proposed data-driven
controller designs include controller falsification [11], [12],
simultaneous perturbation stochastic approximation control-
based control design [13], iterative feedback tuning technique
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CHAI et al.: VIRTUAL UNMODELED DYNAMICS DRIVEN MULTIVARIABLE NONLINEAR ADAPTIVE SWITCHING CONTROL

[14], virtual reference feedback tuning method [15], and data-
driven simulation and control [16].

A number of results of data-driven controller design can
also be found in literature for multiple-input multiple-output
(MIMO) systems. For example, an ellipsoidal unfalsified con-
trol method is proposed in [17], where a number of candidate
controllers that contain proper unfalsified controllers were first
obtained. A performance index was then defined and a desired
unfalsified control was selected using the virtual reference
output of the pseudo inverse of these controllers. The key
issue of this method is the selection of the initial candidate
controllers and their pseudo inverses. In [18], a data-driven
controller design using correlation analysis has been extended
to MIMO cases, where decoupling effect has been realized.
However, this method requires that the plant to be control is
multivariable time-invariant.

The aforementioned two control design methods (namely
the adaptive control and data-driven control), while they differ
in many aspects, both assume that the structure of the plant is
known a priori while the plant parameters can be unknown.
Although the knowledge of the plant structure have not been
assumed explicitly in some existing data-driven controller
design methods, the knowledge is implicitly assumed in order
to select the controller structure. Without this knowledge, it
is difficult to obtain a proper control signal to facilitate the
tuning of the control parameters, let alone to guarantee good
performance and system stability.

Most industrial systems are difficult to model, as they
involve multivariable dynamics with complicated nonlineari-
ties, strong couplings, and unknown structure. Moreover, they
are subjected to unpredictable disturbances that can drive their
dynamical characteristics well-beyond the scope for which
the above two types of controllers can cope with. Therefore,
it is generally difficult to perform adaptive and data-driven
controller design for such plants. It is therefore of significant
importance to develop novel control structure and design
method using both the knowledge of the plant and controller
together with the input and output data of the system. The goal
of this paper is to present such a novel design and demonstrate
its effectiveness.

The key contributions of the work presented in this paper are
briefly stated as follows. This paper mainly focuses on a class
of complex multiple-variable industrial systems with unknown
structure, for which the mathematical models are very difficult,
if not impossible, to establish. To control such systems in
industrial setting, a linear model is generally adopted around
the operating points and a corresponding linear controller
is used. However, owing to the complexities of the system,
such a linear controller may not always work. In this case,
the unmodeled dynamics have to be taken into consideration.
To obtain the unmodeled dynamics, a new controller-driven
model is defined first in this paper. Then, the output signals
of the controller-driven model are compared with the true
outputs of the system to get so-called virtual unmodeled
dynamics. An adaptive-network-based fuzzy inference system
(ANFIS) is used to estimate and compensate the unmodeled
dynamics. Based on the performance indices (11) and (21), a
switching function (47) is introduced to switch between the
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Fig. 1. Structure of the controller and the controller-driven model.

linear controller and the controller with compensator of the
unmodeled dynamics to make sure the industrial systems work
properly. Furthermore, stability and convergence analyses for
this control scheme have been conducted and the correspond-
ing conditions are established. Both simulations and tests on
a heavily coupled twin-tank level control system are carried
out to verify the effectiveness of the proposed algorithm.

This paper is organized as follows. First, a controller-
driven model and virtual unmodeled dynamics are defined
in Section II for general systems. This is then followed by
Section III, where the controller-driven model and virtual
unmodeled dynamics are proposed for multivariable nonlinear
plant whose model are difficult to establish. In Section 1V,
the development of a linear controller-driven model with
self-tuning parameters, an ANFIS-based estimator for virtual
unmodeled dynamics and a nonlinear controller-driven model
with self-tuning parameters are described. Section V presents
the design of the adaptive switching control method. The
stability and convergence conditions are derived in Section VI.
Finally both simulation and test results on a twin-tank level
control system are given in Section VIIL.

II. CONCEPTS ON CONTROLLER-DRIVEN MODEL AND
VIRTUAL UNMODELED DYNAMICS

To clearly present the concept on controller-driven model
and virtual unmodeled dynamics, we consider the following
linear time-invariant system:

A Dy +1) = A Dyt +1) = Bz Huk) (1)

where y (k) and u(k) are the system output and input at sample
time k, the time delay is 7 = 1. Also, A(z™!) and B(z™") are
polynomials in terms of the unit time delay operator z~! with
the following expressions:

AG Y =14aiz '+ +ay,z "

Bz ) =bo+biz '+ by

where n, and n;, are the structure order of the system and b
is a non-zero coefficient. No matter what method the control
design is to be used, the control system can be represented
as shown in Fig. 1, where the equation of the controller is
given by

HE Yuk) + Gz yk) = wk + 1) )

where w(k + 1) is the desired closed-loop output, H (z~') and

G(z~") are polynomials in terms of 7!
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To design H(z~') and G(z ), one can apply the controller
(2) to (1). This leads to the following closed-loop system
equation:

[Hz DAY +z7'BEHGE HIyk+1)
= Bz Hw(k + 1). ©)

In this context, the purpose of selecting H (z~!) and G(z™1)
is to guarantee the closed-loop stability and to make y(k + 1)
to follow w(k 4 1) as close as possible. This means that

klim e(k+1)= klim [yk+1)—wk+1D]=0. @)

From the controller equation in (2), it can be seen that
the controller consists of two parts. The left-hand side of the
controller equation consists of the system input and output data
sequences {u(k), ..., u(k —ny), y(k), ..., y(k —ng)} and the
polynomial operators {H(z~ '), G(z~")} that represent both
the controller structure and the parameters. Such a structure
and parameters are determined by the designers of the con-
troller. Therefore in this paper, the left-hand side of (2) is
defined as the controller-driven model as shown in Fig. 1.
Such a controller-driven model can be expressed as

Yk +1) = HEZ Hutk) + G yk) )

with y*(k+1) being the output of the controller-driven model.
It can be seen that once {H(z"!),G(z"!)} are obtained,
y*(k+ 1) can be calculated using the system input and output
data from (5).

Since the right-hand side of (2) is the pre-specified desired
output, this means that any controller can be represented by
two parts, namely the controller-driven model and the desired
output. This indicates that when the system is accurately
described by (1), we should have y*(k + 1) = w(k + 1).

From the above analysis it can be concluded that the purpose
of the selection for H(z~') and G(z~!) is to ensure that when
the controller is applied to (1), the closed-loop system is stable
and y(k + 1) is made as close as possible to y*(k + 1).

However, if there are a mismatches between the dynamics of
the system to be controlled and the structure and parameters of
the controller, there will be a tracking error between the output
of the resulting closed-loop system and the desired output of
the controller-driven model. This tracking error is expressed
as follows:

vk)y =y(k+1)—y*"(k+1) (6)

where v (k) is in fact the dynamical tracking error between
the closed-loop system output and the controller-driven model
output. This term is defined as virtual unmodeled dynamics.
Using this concept, a compensator for the virtual unmodeled
dynamics can be designed so as to improve the tracking error
between the closed-loop output and the desired output caused
by the improper selection of the structure and parameters
of the controller. Along with this solution route and based
upon the fact that complex industrial systems often work near
an operating point, a controller-driven model will be first
designed using the low order linear model of the system.
Then the tracking error between the closed-loop output and
the controller-driven model output will be used to obtain a
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compensator for the virtual unmodeled dynamics. This will
form a nonlinear controller with a compensator. A switching
mechanism will be established so as to realize a proper
switching between linear and nonlinear controllers so that the
output of the closed-loop system can follow the desired output
as close as possible. Moreover, since the structure and the
parameters of the system are unknown, an adaptive switching
controller will be formulated using the input and output data
together with the tracking error between the output of the
closed-loop system and that of the controller-driven model.

III. MULTIVARIABLE CONTROLLER-DRIVEN MODEL AND
VIRTUAL UNMODELED DYNAMICS

Complex industrial plants that cannot be described by accu-
rate mathematical models can be expressed as the following
multivariable nonlinear form:

yk+1) = flyk),...,yk —ns + 1), u(k),
ulk—1), ..., uk —mg)] +dk) )

where w(k) = [ui(k),...,u,(OI", y(k) = [yi(k),...,
v (k)]T are the n-dimensional system input and output vectors
at sample time k, respectively. It is assumed that the structure
orders (ng, my) are unknown and f(-) is an n-dimensional
unknown vector function and limited to a class of systems,
which can be expressed as a linear system and an unmodeled
dynamics near the operating points. d (k) is an n-dimensional
bounded unknown disturbance. It is assumed that the complex
industrial systems described by (7) are controllable.

Since the plant of the form (7) often works near an operating
point, the following low order linear model can be used for
controller design around the corresponding operating point:

yik+1) =—-A1yk)—-— Ay, ylk —ng + 1)
+Bou(k) + - - - + B, u(k —np) ®)
where y*(k + 1) = [yj(k + 1), yik + 1),..., yi(k + DT
are the n-dimensional output vector of this model. A(z™")
and B(z~!) are polynomial matrices in terms of z~!' with
structures orders being given by n, and np which are pre-
specified by designers. In this context, A(z"!) and B(z™")
are denoted as
A Y =T+Az7 + -+ A, 27"
Bz )=Bo+Biz "+ 4+ B,z
where By is non-singular.
For a selected linear model (8), the virtual unmodeled

dynamics between the output of the model for controller
design and that of the plant is then defined as

v(k) = f()+dk) -y (k+1) )
where v(k) = [v1(k),...,0.(k)]T is an unknown n-
dimensional nonlinear vector that includes various distur-
bances and unmodeled dynamics.

From (7)—(9), it can be obtained that
yk+1) = y*(k+ 1) + v(k)
=-A1yk)—-- — Anay(k —nq + 1) + Bou(k)
+---+ B, u(k — np) + v(k).
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Therefore we have
A Hytk +1) = Bz Huk) + v(k). (10)

To design the required controller, the following performance
index is used:

2

7=yt -wee+n- e huw][ an

where Q(z!) are an n x n weighting polynomial matrix in

terms of z ! and is selected as follows:
0:zH=0"-(1-z"
qi1 qi12 di(n—-1) qin
q21 q22 q2(n—1) q2n
0" = : : ) : : (12)
din—-11 9(n—12 *** 4(n—1)(n—1) 9(n—1)n
dnl qn2 dn(n—1) dnn
where g;;(i,] = 1,2,...,n) are constants chosen off-line via

a trial and error method so that they satisfy the following
inequality:

det[B(z_1)+A(z_1)Q*(l—z_l)]7&0, > 1. (13)

At this stage, a generalized desired output vector ¢*(k + 1)

can be defined to read
P+ =wk+1)— @ Huk). (14)

Moreover, one can select G(z~!) so that the following Dio-
phantine equality holds:

I=ACH+z7'6E™ (15)
where the order of G(z™!) is ng = n, — 1.
From (10) and (15), it can be obtained that
yk+1) =G Hyk) + Hz Huk) +vk) (16

where H(z~') is an npth order polynomial matrix in terms of
e, Hz ) =Bl

It can be seen that the optimal prediction of y(k+ 1) should
be expressed as

¢*(k+11k) = Gz Hyk) + Hz Hu(k). a7)

Using (14) and (17), the linear controller equation that
optimizes (11) can be formulated to read

Gz y(k) + Hz Huk) = wk + 1) — Q*(1 — 2 Hu(k).

(18)
Meanwhile, the linear multivariable controller-driven model,
in the form of (5), should be given by

Yk +1) =Gz Hyk) + HEz Huk). (19)

Therefore, from (16) and (19), the virtual unmodeled dynamics
can be obtained as follows:

yk+1) =y (k+1)
= yk+ 1D =[G y®) + HE Hu)]

= v(k). (20)
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To design a compensator for wv(k) in the form
of K(z "w(k), the following performance index is selected

[9]:

2
7= |y + 1)~k - 0EHul) - Ko

21
where
K@ H=K"-(1-z7)
K* = diagfky, ko, ..., kn} (22)
with k(I = 1,2, ..., n) being constants to be specified.

In this case, the generalized output becomes

P*k+1) =wk+1)— Q*(1 —z Huk) — K*(1 —z~ Hok).

(23)

In a similar way, the nonlinear multivariable controller
equation that optimizes (21) can be formulated to give

Gz Hyk) + Hz Huk) + v(k)
—wk+1)— [Q*(l — 2 Yulk) + K1 — z*l)v(k)] .
(24)

Therefore, the multivariable nonlinear controller-driven model
is given by

Vitk+1) =G Hyk) + Hz Huk) +vk). (25

Since the parameters of G(z~') and H(z~') are unknown,
v(k) is also unknown. Therefore, the input and output data
should be used to estimate the virtual unmodeled dynamics
v(k) and the parameter of the controller-driven model (19)
and (25).

IV. CONTROLLER-DRIVEN MODELS WITH SELF-TUNING
PARAMETERS AND THE ESTIMATION OF VIRTUAL
UNMODELED DYNAMICS

A. Linear Controller-Driven Model with Self-Tuning Parame-
ters

It can be seen that (16) can be turned into the parameter
estimation equation for the linear controller-driven model in
the form of

yk+1) = Gz Hy(k)+HE Huk)+vk) = OTx (k)+v(k)

(26)
where
Gz ) :=Go+Giz7 "+ + Gz
Hz Y =Ho+ Hiz '+ 4+ Hyz ™,
® =(Go,...,Gn, 1, Ho, ..., Hy, 1",
x (k) = [x1(k), x2(k), - - - s Xnx (ng-tmy1) ()T
=®", .. yk—na+ DT,

u()T, .. uk —np) 7. (27)

With (26), the following algorithm can be used to estimate ©:

O1(k) = O1(k — 1) + h(k)e1 (k)" (28)



7777777 ST | Tk A=) ]

: 3 (k)" x(k)
yk+1)

k
) i

Error adjustment

_ [Hybrid tuning|_ 25, Y
W|P | algorithm _%?

~n

L
10100A BIR(]

=

=

pad
=

Y
Jurdew auo 0) oauQ

Y
[

Ko x g+ my+ 1) (&

Data processi

ANFIS n
ANFIS estimator

<

=
aq

Fig. 2. Structure of the estimation for the virtual unmodeled dynamic v(k).

where h(k) can be selected to be in either the least square
estimation or parameter projection format, and @ (k) is the
estimate of ©. The estimation error e (k) is defined as

ei(k) = y(k) — y(k)

where §(k) = ©1(k — DT x(k — 1).
This means that the linear controller-driven model with self-
tuning parameters can be expressed by

Fk+1) = O1() x (k)
where (:Dl(k) is given by (28) and (29).

(29)

(30)

B. Estimation of Virtual Unmodeled Dynamics

From (28)—(30), the output of the controller-driven model
with self-tuning parameters can be obtained. Therefore, the
difference between the output of the closed-loop system and
that of the controller-driven model can be expressed as

3(k) = y(k + 1) — ©1() x (k).

Using the input and output data together with v(k), the vir-
tual unmodeled dynamics can be estimated using an estimator
as shown in Fig. 2, which consists of data processing, ANFIS
[19] based estimation, the error adjustment, and the estimation
for v(k).

1) Data Processing: At first, a normalization of v(k) can
produce ¢ (k), its Ith(l = 1,...,n) component should satisfy
|ci(k)| < 1. Therefore, the following can be obtained:

v (k)
erllx (K| + &2
where ||x(k)|| = {(xT(k)x(k)}!/>,0 <& <1, and &2 > 0 are
constants.

Moreover, to ensure the boundedness of the input vector
x (k) for the ANFIS estimator, the one-to-one mapping «

in [20] can be applied to x(k) to obtain X(k), whose ith
component is denoted as x;(k) which can be calculated from

1
1 4+ exp[—x;]

(€19

si(k) = (32)

Xi(k)y =alx;] = (33)
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wherei = 1,2,...,nx (ng+np—+1). It can be seen that after
(33), x(k) is a uniformly bounded vector that are defined in a
compact set.

2) ANFIS-Based Estimator: In order to construct the
ANFIS-based estimator, x (k) is first fuzzified, where the ith
component X; (k) is divided into m; fuzzy set. The jth fuzzy
set of X;(k) is represented by A;;(j = 1,2,...,m1) with the
following membership function:

@ik - Cij)2i|
2(0ij)?

where ¢;; and o;; are the centers and width of the membership
function, respectively, and are tuned based on the estimation
error.

Using the above fuzzification, a number of m = m| X n x
(ng+np—+1) fuzzy rules can be obtained, where any ruler (r =
1,...,m) denoted by R", can be expressed as [21] and [22].

R7: IR0 (K) is AL 52(k) is A, Busntmy+n) (k) s
.

nx(na+np+1),j°
Then

pij (Xi(k)) = exp [

nx(ng+np=+1)

>

i=0

¢y () = Py (k)

where the jth fuzzy set of the x;(k) division for the rth rule
is denoted as A7, whose membership function is denoted by
pl.rj (xi(k)). In the above equation p;. are the linking weights.
When i =0, pl.rj = p(’)j, Xo(k) =1, and pl.rj is tuned using the
estimation error. Therefore, the estimation for ¢;(k) is given by

m
G0 = 0 00p (), 1=1,2,....n (34

r=1
where w,(k) = (w,(k)/2 L wr (k). wk) =
H;’:Xl(””"”l)ﬂfj(fi(k)) with parameters ¢/, and o/

L

~

being tuned again using the estimation error.
3) Tuning of the Estimation Error: From the above formu-
lation, it can be seen that the estimation error is given by

Aci(k) = ci(k) — Sik) (1 =1,2,...,n).
Therefore, the tuning of p! ; can be obtained to read

m nx(ng+np+1)

Aatky=atk)y =D o, >

r=1 i=0

Pk . G35)

For a fixed w,, the recursive least square estimation in [19]
can be used to evaluate the tuned value pfj (k) for pl’j Using
the tuned value of p;j (k), ci’j, and o/ can also be adjusted

online. For this purpose, the following performance index is
defined:

1
ZAc?
Pl

E

nx(ng+np+1) _
m wy (k) p;j (k)x; (k)

i=
5 gl(k) a z m nx(ng+np+1) AN RV (36)
=1 Z (%i (k) C;/)
e T g
r 2

i=1

where “|*|” denotes the absolute value of the elements of “x.”
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Using the gradient descent rules in [19] to minimize (36),
the adjusted value for ¢} . can be obtained to give ¢} ; (k).

Using both p! g (k) and cl.’j (k) and the following equation:

nx(ng+np+1) 2

m wy (k) Z(:) p;j (k)x; (k)

1 i=
E = 5 ci(k) — ; m nx(ng+np+1) (k) (k)2
= Il exp [—W}
r i=1 ij

the adjusted value for g;; can be readily obtained by mini-
mizing the above performance index using again the gradient
rule [19].

4) Estimation of Virtual Unmodeled Dynamics: From (32)
it can be obtained that

o1(k) = ci(k)(erllx (k)[| + &2).
As such, the following equality can be formulated from (33):
1
(k) = a (& (k) = —1 —1).
xi(k) = a”" (xi(k)) n(i,-(k) )
Therefore v;(k)(I = 1,2, ...,n) can be calculated from

010 = 610 [e1]]a™ W) + 2

(37)
where
o 'E®)] = [a ' F(K), ..., Fik),...,a"!
(Xnx (ng+mp+1) (K))].

Remark 1: When using the proposed method to estimate
the virtual unmodeled dynamics, for any x; (k) € (—oo, +00),
(33) indicates that x;(k) € (0,1) C [0, 1]. This means that
Xi(k) belongs to a compact set. Therefore the input to the
ANFIS also belongs to a compact set. Using the well-known
universal approximation properties of the fuzzy systems [23],
it can be concluded that for any continuous function v(k) [i.e.,
v(k) stands for v(x(k))] and any & > 0, there exists a desired
fuzzy system so that

(k) — vl < ¢

where ¢ is a pre-specified and arbitrarily small positive
number.

Remark 2: In the proposed method, the major computa-
tional complexity is the implementation of the ANFIS that
is used to estimate the virtual-unmodeled dynamic of the
system. In fact, some functions in the ANFIS, such as genfisl,
genfis2, and other standard modules, can be trained in advance
using MATLAB Fuzzy Logic Toolbox, making the ANFIS
implementation in real time straightforward. In this case, the
computational complexity for implementation of the ANFIS
is alleviated.

(38)

C. Nonlinear Controller-Driven Model with Self-Tuning Para-
meters

By subtracting both sides of (26) with 9(k), it can be
obtained that

yk +1) —d(k) = OTx (k) + Av(k)
where Av(k) = v(k) — v (k).

(39)

2159

Then the following estimation algorithm can be used to
estimate @T:

62(k) = @2k — 1) + h(k)e2 (k)" (40)
where term h(k) can be either of the least square or project
format. Therefore, ®;(k) can be seen as the estimated value
of © for the nonlinear controller-driven model at sample time
k with the following estimation error:

erx(k) = y(k) — ok — 1) — @2k — )T x(k —1).  (41)
The nonlinear controller-driven model with self-tuning para-
meters can be expressed as follows:

Flk+1) = Or(k) x (k) + (k) (42)

where @z(k) is tuned using (40) and (41).

V. ADAPTIVELY SWITCHING CONTROL ALGORITHM

A. Controller Equation with Self-Tuning Parameters
From (18), (19), and (26), it can be seen that the linear
controller (18) can be expressed as

OTx(k)=wk+1)— 0" —z Huk) (43)

where the left-hand side constitutes the controller-driven
model while the right-hand side is the generalized desired
output as given in (14).

By using the identification algorithm (28) and (29) to
estimate parameter @ of the conty\oller—driven model, its
output can be obtained to read O;(k)” x(k) which can
be made to be equal to the generalized desired output in
(14) so as to obtain the following linear adaptive controller
equation:

O xk)=wk+1)— Q" (1 -z Huk). (44
Therefore, the nonlinear controller equation can be formulated
from (24) and (26) as follows:

O x(k) +v(k) = wk + 1) — Q*(1 —z” Hu(k)
—K*(1 =z H(k). (45)
It can be seen that the left-hand side of (23) and (25)
constitutes the nonlinear controller-driven model while the
right-hand side is the generalized desired output.
_Since the nonlinear controller-driven model parameter
©®;,(k) can be estimated using the identification algorithm
in (40) and (41), the estimate of the virtual unmodeled
dynamics 0(k) can be readily obtained using (31)—(37).
By making the nonlinear controller-driven model with self-
tuning parameter (42) equal to the generalized desired output
in (23), the following nonlinear adaptive controller can be
obtained:

(k) Tx (k) + B(k) = w(k + 1) — Q*(1 — 2~ Hu(k)

—K*(1 — z7Hd(k). (46)
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Fig. 3. Structure of adaptive switching control.

B. Adaptive Switching Control

From (29), (30), (41), and (42), it can be seen that the
estimation errors e(k) and e;(k) of model parameters rep-
resent the tracking errors between the output of the closed-
loop system and that of the linear controller-driven model
with self-tuning parameter, and the error between the output
of the closed-loop system and that of the nonlinear controller-
driven model, respectively. The smaller these estimation errors
are, the better the tracking performance for the closed-loop
system. Therefore, e{(k) and e>(k) can be embedded into a
switching mechanism, where the active controller (and the
corresponding controller-driven-model) can be selected from
the one that produces the smallest tracking error between the
output of the closed-loop system. In this paper, a switching
mechanism is designed as shown in Fig. 3 that consists of a
switching function together with C; and C», where C; stands
for the linear adaptive controller based on controller-driven
model while C; represents the nonlinear adaptive controller
based on nonlinear controller-driven model.

The idea here is to use linear adaptive controller C; to
ensure the uniform boundedness of the input and output
signals in the closed-loop system while use nonlinear adaptive
controller C> to improve the system performance whenever we
can. In doing so, the switching mechanism performs a proper
selection of these two adaptive controllers so that both the
uniform boundedness of input and output and the dynamical
performance of the closed-loop can be guaranteed at the same
time.

The switching function is selected using the method in [7]
to evaluate

S wOlle 12 — M2 |
I =2 At x - D)Tx 1y O]

t=1

x|le;(0)]* (47)
L el > M,
pjk) = IO, otherwise 7 1,2 (48)

where j = 1,2. When j = 1, e (k) represents the estimation
error for the linear adaptive controller C; based on linear
controller-driven model. When j = 2, ey(k) stands for the
estimation error of the nonlinear adaptive controller C» based
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on nonlinear controller-driven model. In the above equation,
¢ >0, M will be defined. e (k) and e (k) are calculated from
(29) and (41), respectively.

In this paper, for any sample time k, the switching mech-
anism would select the controller that corresponds to the
minimum switching function for the system. This is illustrated
as follows:

Jmin (k) = Min[Jy (k), J2(k)]

when Jpin (k) = J1(k), w1 (k) is selected for the system, when
Jmin(k) = Jo(k), ua (k) is applied to the system.

C. Adaptive Switching Algorithm
To summarize, the following algorithm is obtained.

Step 1: Use the measured input and output data
{yk), ..., ytk —ng+ D,utk —1),...,ulk —np)}
and (27) to construct data vector x (k).

Use identification algorithm (28) and (29) to obtain
the estimation @ (k) of the controller-driven model
with self-tuning parameters, and then to produce
u1 (k) using controller (44).

Obtain (k) which is the estimation of the virtual
unmodeled dynamics v(k) by using the data-driven
estimation algorithm (31)—(37).

Calculate the estimated value @,(k) for the para-
meters of the self-tuning nonlinear controller-driven
model using the identification algorithm in (40) and
(41), and then obtain u> (k) from the controller (46).
Calculate the estimation errors e (k) and e (k) using
(29) and (41), respectively, and then use switching
functions (47) and (48) to evaluate Ji(k) and J»(k)
so as to obtain J iy (k).

Select the control signal wu(k) that corresponds to
Jmin (k) for the system (1) so as to generate the new
system output y(k + 1).

Step 7: Let k = k + 1, and then go back to Step 1.

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

VI. STABILITY AND CONVERGENCE ANALYSIS

In this section, the stability and convergence of the closed-
loop system with the proposed controller will be analyzed.
First, we should clarify that the proposed algorithm is
designed to deal with a class of multivariable complex indus-
trial systems described by (7) with unknown model structure
orders and parameters. Basically, we assume that such systems
work near their operating points and can be expressed by a
low-order linear system and unmodeled dynamics.
Second, the stability and convergence analysis presented in
this paper are carried out under the following conditions.
Condition 1: The virtual unmodeled dynamics v(k) satis-
fies the following inequality:
&)l =y k), Yk (49)
where
y (k) = erllx(K)|| + &2

0 <&y <1 and g > 0 are constants, which are the same as
in (32).

(50)
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Condition 2: The parameter estimation for the linear
controller-driven model wuses the following projection
algorithm:

6/ (k), det[Ho(k)]#0

[..., ﬁo(k —1),...17, otherwise

A (51)
where O (k) is calculated form (28) and (29), therein h(k) is
calculated as follows:

O (k) = proj{ @ (k)) [

w1 (k)x (k — 1)

h(k) = 52
) I+xtk—DTx(k—-1) (52)
_ L llei®)I > 2y (k= 1)
k) = {0, otherwise (53)
where y (k — 1) and e (k) are obtained using (50) and (29),
respectively.

For the nonlinear controller-driven model, its parameter
estimation is obtained as follows:

5(k), det[Hy(k)] # 0
[..., ﬁo(k —1),...17, otherwise
) (54)
where @ (k) is obtained in (41) and (42), therein (k) is again
calculated from

O, (k) = proj{©}(k)} = [

 aoxk—1)
o) = - Dlx(k—1) (55)
_ L llea®)]| > 2¢
a(k) = {O, otherwise (56)

where ¢ > 0 is a pre-specified upper bound of the estimation
error for the virtual unmodeled dynamics. e;(k) is obtained
from (41).

Condition 3: For the switching mechanism, we have M =
2y (k—1).

To prove the stability and convergence, the following lem-
mas will be first established.

Lemma 1: The identification algorithm (28), (29) has the
following properties.

iy ||®1(k1\)]— 0 <1©1(0) — O]|.

. 11 (R)[le1 () ]1>—4y (k—1)2
2) lim k; /lg[)l[lxl((lczll)Tx(yk(—l)]) :

Oller P-4y k=1 _
2[4+x(k—D)Tx(k—1)] — °

As for the identification algorithm (31)—(41), the following
properties hold.
D 1©2(k) — O] < [|©2(0) — O]|.

L a®lle®| P-4t _
2) lm o D Txa-D] — 0

Proof: Let @(k) = é(k) — 0, i =1, 2. One can then select
the following Lyapunov function:

< OQ.

3) lim &
k— 00

V(k) = Ok Ok).

Using the similar formulation to those in [7] the above results
can be proved. This is omitted here.

Since (7) is equivalent to (10), in the following we will use
(10) to analyze the system performance.

Lemma 2: When the linear adaptive control algorithm (28),
(29) is applied to (7), the input and output dynamical equation
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of the system is given by

B + 0*(1 =z HAGC HIy(k+ 1) = B Hei(k+1)
+ B Hwk 4+ 1)+ 0" (1 -z Huk) (57)
(B H+AGCHE (1 -z Huk)
= A Hwk+ 1)+ A Der(k+ 1) —v(k). (58)
Moreover, when the estimation algorithm for the virtual
unmodeled dynamics (31)—(37) and the nonlinear adaptive

control algorithm (40), (41) are applied to (10), the system
input and output satisfy the following dynamics:

Bz ")+ 0*(1 —z HAG DIy + 1)
=BGz Hertk+ 1)+ Bz Hwk + 1)
+0* (1 =z Yuk) — BEHK*(1 —z7H)dk) (59)
Bz H+AGCHQ* (1 -z Huk)
= A Hwk+ 1)+ Az Deak + 1)
—v(k) — A HK*(1 —z7Hdk) (60)

where B(z™') and Q*(1 — z!) will be determined by the
following equations:

B he' -z =0"1-z"HBE) (©D
det Bz™") = det B(z™). (62)
Proof: From (29), (30), and (44), it can be obtained that

ek +1) = yk+1)— O1(k) x (k)
=yk+1) —whk+1)+ 0*1 —z Hu(k) (63)

by selecting matrices E(z’l) and Q*(l —z71) to satisfy (61)
and (62). .

By left-multiplying (10) with @*(1 — z~') and (63) with
Bz, combining the resulting equations, and using (61) to
replace the relevant terms associated with u (k), one can readily
obtain (57).

Moreover, by left-multiplying (63) with A(z~!) and using
(10) to eliminate y(k + 1), one can obtain (58).

Therefore, using (41) and (46), it can be obtained that

ex(k +1) = y(k+ 1) — ©2(k) x (k) — B (k)
=yk+1)—wk+1)+ 0*(1 —z Huk)
+K*(1 — z7Hd(k). (64)

Using the similar formulation, (59) and (60) can also be
proved.

In terms of the stability and convergence analysis, minimum
the state space realization of (7) will be used in order to
simplify the analysis.

Lemma 3: Consider the following time-invariant nonlinear
system:

A Dyt +1) = B Hu(k) + v k)

where {u(k)}, {y(k)} are the input and output of the system,
respectively, and A(z™") =1 +ajz7 ' + -+ ay,z7"

(65)

Bz Y =bo+biz7 4+ 4 by

Assuming that A(z~!) is an asymptotically stable polynomial
and v (k) satisfies the following condition:

o) <y k), Vk (66)
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where y (k) is an upper bounded function of v(k), which is
defined as y (k) = &3]|x(k)|| 4+ &4 for some constant &3 and &4
(with 0 < &3 < 1 and &4 > 0) and

k)= [yk), ..., vtk —ng+ 1), ulk), ..., utk —np)]".

Then, if &3 satisfies the condition that 0 < g3 < 1 — ||A]],
(A is a matrix whose definition will be given in the sequel),
there exist constants C; and C, that are independent of &, so
that for all 1 <k < 00,0 < C; <00, and 0 < Ca < 00, we
have

ly(k)| < C1 + C2 Jmax Ju(7)].
Proof: Without loss of generality, let
T
) = [F10) B0 67)

where

X1(k) = [F1,1(5), .., F1n, T =[y(), ..., y(k — ng + DY,
%o(k) = [%2.1(k), ..., %oy 11 ()T =[u(k), ..., utk — np)]T.

Then, (65) can be expressed into the state space equation as
a minimum realization of input—output form as follows:

x1(k+ 1) = Axi(k) + M (k)u(k) + Zv(k) (68)
where
[ —a1 —ay - —an,—1 —a,
1 0 .- 0 0
A == ... b
o o0 .- 0 0
L 0 0 - 1 e
1 1
0
= Ji(k) = Bz u(k), E =
—O (ng+1)x1 (ng+1)x1
From (67) and (65), it can be obtained that
(k)| < e3llx(k)I| + &4
< &3llxi ()] + esllx2(k) || + 4. (69)

Therefore, it can be shown that
np
T (k) + Eo ()] < (ZO |bi|)0r§3;k (@) + o (®)]
1=

max, lu(T)| + e3l1x1 (k)] + &4

0<r<

s(Zw +e3v/(np + 1))

i=0
(70)

From (68), we have
k .
Filk+1) = AE0) + D Al[Tuk — i) + Zo(k — i)].

i=0
(71)
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Therefore, it can be shown that

k
[1€1(k + DI < IASIEO)+ D AT - fuk = i)
i=0
HIEI - otk = )]

k np
< ||Ak+1||||fl(0)||+Z||A’||[(Z|bi|
i=0 i=0

+e3v/(np + 1)) max, |u(7)]

0<t

+e3llxi(k — )]l +84] (72)

Note that A(z~!) is an asymptotically stable polynomial and
the conclusion that
det(Al — A) = A"A(LH (73)

where (0 < A < 1) is a root of A(z™1).
Thus, there exist that 0 < 7 < 1 and K(0 < K < 00), so
that for all, the following inequality holds [24]:

IAM < K -
Therefore, it can be readily shown from (72) that

%1k + DI < K - 71171 0)]]

k np
+§K ¥ [(g |bi| + &3/ (np + 1)) onax, lu(z)]
+e3||x1(k — )] +84}- (74)

On the other hand, from (70) we can obtain that

()1 = (1Al + e3)llx(k — DI

+(Z il + &3/ (n, + 1))

max |u(7)| + &a.
o <k
=

0<rt

(75)

By recursively using the above inequality for x(k — 1), it can
be obtained that

e ()N = (Al + e3)llx1(k — 1|

+(Z il + &3/ (n, + 1))

max |u(7)| + 4.
<k

i=0 O=r=
(76)
It can be further shown that
_ _ L= (1Al +e3)
X1 (k)| < (||A||n+ e3)! 151 0)]] + FENETS)
: [(Z 1bil + 83M)O@3§k Ju(o)] + 34} :
- (77)

For the above inequality, when &3 satisfies the following
condition:
0<e3<1-1All
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there exist 51 >0 and C:'2>O such that the following inequality
holds:

1— (A k
QIAN + 21610y + —— AN 22

L= (Al + &3)
np _
[Z |bi] +84} =G
i=0
1—(IIA k =
(1Al +3) D) <G

€3
1 — ([IA]l + &3)
Therefore it can be seen that

ll€1(k)|| < Cy + Co max |u(t)]. (78)
0<t<k
Similarly, there exist C:'3>O and C:'4>O so that
€1k —i)|| < C3+C4 max |u()
0<t<k—i
< C3 4 C4 max |u(z)|. (79)
0<t<k

From (74) and (79), it can be finally obtained that
[1x1(k + DI

k
< K BN+ DK o (6383 + e34)

i=0
k - np
+> K- [Zw +e3y/(p + 1)
i=0 i=0
—}—836_'4] max |u(z)|.
0<t<k

Let

k -
K NE O]+ DK - (83Cs + eaea) = €1,

i=0

k . b = —
DKo [Z |bil + &3+ (np + 1) + 83C4} < Cy.
i=0 i=0

Then, we can obtain that
ly(k)| < [|¥1(k)]| < C1 + C> max |u(7)].
0<t<k

Using the above three lemmas, the following theorem can be
proved.

Theorem 1: Assuming that (7) satisfies Conditions
1)-3) and the parameter matrices in polynomial matrices
A(z™Y), B(z7') are inside a compact set Q, then when the
proposed adaptive control algorithm [i.e., the linear adaptive
control algorithms (28), (29), the estimation algorithm for
virtual unmodeled dynamics (31)—(37), the nonlinear adaptive
control algorithm (40), (41) together with the switching
mechanism (47) and (48)] is applied to (7), the closed-loop
system is bounded-input-bounded-output (BIBO) stable.
Moreover, when k& — oo, the generalized tracking error
converges to a small neighborhood of the origin, that is

lleg(k + 1)|| <0
where

e+ 1):=yk+1) —[wk+1)— Q*(1 —z Hu(k)
—K*(1 =z Ho(k)]
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and 0 = 4||K*||¢ is a arbitrarily small positive number, ¢ is
a pre-specified upper error bound of the compact set.

Proof: First we need to prove that the closed-loop switch-
ing can ensure the uniform boundedness of the input and
output signals. For this purpose, two polynomial matrices

{fi(z‘l), E(z‘l)} can selected so that the following equalities
hold:

AGTHBGET) = BEHAGT (80)
det Bz™") = det B(z™). 81)

From (63) and (81) it can be seen that
detls(zfl) =det Bz™") =det B(z™). (82)

Therefore using (62) and (80)—(82) together with the following
equalities:

det MN = det M det N,

detM~!' = 1/detM

where M and N are any matrices of appropriate dimensions,
it can be shown that

det[B(z™) + 0*(1 -z HAE ™M
=det{B HI +B ') 0 (1 -z HAE O]
=det{Bz HI +B ' HBz"Ho* (1 -zhH
B 'z HAazhHy
= det{B HII + Q*(1 -z HB 'z HAaEH])
=det{Bz O+ Q*(1 -z HB 'z HB(E™
b3 z—1
A HB @ H
- = ~—1
= det{B(z HII + Q*(1 - z’l)A(z’l)B @ H
=det[Bz ")+ Q*(1 -z HAGE ]
=det{[A"'HBE Y+ Q"1 -z HAE))
=det{B(z " H)+ A" HOo* (1 -z

From (13) it can then be concluded that the matrix B(z’l) +
Az 0*(1 — z71) is stable. Because w(k + 1) is bounded
and v(k) is the nonlinear disturbance satisfying Condition 1,
using Lemma 3 together with (83) and (13), one can show
that there exist positive constants C, C2 so that

(83)

[ly(®)|| < C1 + C2 max [lei(7)]].
0<t<k

Similarly, again using Condition 1 and Lemma 3, together with
(83) and (13) as well as (58) of Lemma 3, it can be seen that
there exist positive constants C3, C4 so that

llu(k — 1)|| < C3+ C4 max [lei(7)]].
0<t<k

From the structure of x(k — 1) it can be seen that there exist
positive constants Cs, Cg so that

[lx(k — || < Cs + Co max |lei(7)]]. (34)
0<t<k

Also, using (59), (60) of Lemma 2 and (83), (13) of Lemma 3
and following similar steps, it can be seen that there exist
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positive constants C7, Cg so that the following inequality is
satisfied:

llx(k — DIl < C7 + Cg max [[ea(7)]]. (85)
0<t<k
In the following, we will prove that x (k — 1) is bounded for
the switching system.
Case 1: 1If |le1(k)|| > 2y (k — 1) and ||e2(k)|| > 2y (k — 1),

then .
o Llei O =4y (0 = 1)%]
Jj k) = Z 2014+ x( — DTx (@ — 1]’

t=1

(86)

In this case, if the linear controller based on linear controller-
driven model is applied to the plant, from 3) of Lemma 1 it
can seen that

(llet®)1> =4y k=1 _
im =0
k—o0 2(1 +x(k — DTx(k — 1))
Therefore, if {e1(k)} is bounded, from (84) it can be concluded
that x (k — 1) is bounded. However, if {e(k)} is not bounded,

there would be a sub-set of the sequence with index as {k;}
so that

(87)

lim [lei(kn)|| = o0 (88)
ky—00

and ||ej(k)|| < |le1(ky)|| for k < k,. Along the index {k,},
we have
[lle1(kn)l|* — 4y (kn — 1)%]
2(1 + x(ky — DT x(kp — 1))
_ Lller®)IP* = 4y (kn — 1)1
= 2(1+ (Cs + Clle1(kn)[1)?)
[ller(kn)ll — 2y (ky — 1)1?
= 2(1+ (Cs + Clle1(kn)[1)?)
[le1(kn)ll — 2y (ky — 1)]
T 1231 + (Cs + Celler(kn) D)2
[”el(kn)H - 27’ (kn - 1)]
[(v/2)% + [V2(Cs + Celler (kn)|)12]2
[ler(kn)l| — 2y (ky — 1)]
T V2 4+ [V2(Cs + Coller (k) ])]
. 1 =2y (kn — 1)/lle1(kn)]| .
= V2/lle1(kn)l| + v/2Cs/lle1 (k)| + v2Cs

Also, since the following inequality holds:
y(kn — 1) = enllx(kp — DI + &2

< &1[Cs + Cglle1(kn)|I] + &2
= £1Cs5 + &2 + €1C¢lle1 (kn)|[]

(89)

(90)
it can be seen that

[ller (kn)l1> — 4y (k, — 1)%]
2(1 +x(ky, — DTx(k, — 1))
o 1 =261Co = 2[e1Cs + eal/ller(kn)l
= V2/ller(ka)ll + v2Cs/lle1 (kn)l| + v/2C6
Therefore, there exists &1 so that the following holds:
e (el = 4y (b — D?)
kn—oo 2(1 +x(ky — DTx(k, — 1)) —

oD

1 —261Cq
V2Cs

£0. (92)
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This contradicts (87) and indicates that the assumption that
{ei(k)} is unbounded is not correct. Therefore, {e(k)} is
bounded and x(k — 1) is also bounded. As a result, the input
and output signals of the closed-loop system are bounded.

When the nonlinear controller based on nonlinear controller-
driven model is applied to the system, using 2) of Lemma 1,
it can be seen that

[lle2(k)[]> — 4&2]
m =
k—o0 2[1 + x(k — DTx(k — 1]

0. (93)

Assuming again that {e>(k)} is an unbounded sequence, we
can use the similar formulation to the above to obtain the
following result:

i lexGen)I? —4¢?) 1
ko0 2[1 +x(ky — DTx(ky — D] 2Cg

This has shown a contradiction to 2). Therefore {e,(k)} should
be bounded. This means that x(k — 1) is bounded and the
input and output signals of the system are uniformly bounded.
This indicates that the closed-loop switching system is BIBO
stable.

Case 2: 1f |le1(k)|| < 2y (k — 1) or [le2(k)|| < 2y (k — 1),
then

0. (94)

Jj(k) = c[l — wj(O)]1lle; (D). (95)

In this case, we need to analyze the estimation errors e (k+1)
and ex(k 4+ 1).

For this purpose, from (26), (29), (30), (43), and (44), it can
be seen that

er(k+1) = yk +1) — 010 x (k)
=yk+1) —[wk+1)— Q" (1 —z Hu(k)].
(96)

Therefore, when k — oo, from the identification algorithm
given by (51)—(53) and (96) it can be seen that e;(k+1) should
satisfy

v(k) < llei(k + DI = 2y (k). 97

From (39), (41), (42), (45), and (46), we have

ex(k+1) = ylk+1) — (k) — (k) x (k)
=yk+1D)—[wk+1)— Q*1 —z Hu(k)
—K*(1 —z7Hd(k)]
= y(k + 1) — [Ox(k) + v(k)
+EK* (1 =z o))+ K*(1 — 27 Hd(k)
= K*(1 -z Y9%k) — K*(1 — z7 Hv(k)
= K*(1 -z Hlvk) — v(k)]
+K*(1 — 27 HHk) — B(k)).

Therefore it can be seen that

lleak + DI < [[K*(1 — 2z~ HI[I[3(k) — v()|
+IKH [0k — ()| + [|K*[[[D(k — 1)
—v(k — D). (98)
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Since when k — oo, ||[v(k) — v(k)|| is bounded by a small
constant, it can be concluded that
llea(k + D[] < [|[K*|[||0(k) — v(k)|]
HIK* N5 — 1) = 5k = D]

< 2|IK"[<. (99)

At this stage, from (97) and (47), (48), (49) as well as (99),
we have

cller(t)]?
cllo(k)|*

LK) = cllex )]
2¢||K*|I€.

Ji(k)

v

IA

(100)

This indicates that there exists a sample time K so that
when k > K, we have

hk) < (k). (101)

This means that after a finite period of time the nonlinear
controller based on nonlinear controller-driven model will
drive the system. Using (85) and (99) it can be again concluded
that x (k — 1) is bounded and the closed-loop system is BIBO
stable.

From the above analyses, it can be concluded that the input
and output signals for the closed-loop system are uniformly
bounded no matter which adaptive controller is applied to the
system. In the following, we will analyze the convergence of
the proposed algorithm. From (64), it can be seen that

gk +1) = ea(k + 1) + K*(1 — 27 H{w(k) — 9(K)]
=er(k+ 1)+ K*(1 —z Y {[wk) — 5(k)]
+Ho k) — v(k)]}
=er(k+ 1)+ K*(1 — 27 Y[wk) — v(k)]
+K*(1 — 27 H[o(k) — d(k)].
When k — oo, from (98) and (99) it can be shown that

(102)

lleg(k + 1)I| < 4||K*|I¢ =0 (103)

where 0 = 4||K*||£. From (38) it can be concluded that there
exists a desired fuzzy system so that £ can be made arbitrarily
small. Therefore, the number 0 can also be made very small.
This indicates that the generalized tracking error of the closed-
loop system converges to a small neighborhood of the origin.

Remark 3: Note that the results of Theorem 1 are cer-
tainly not global. However, since complex industrial systems
often work near their operating points, local results are often
expected and most useful.

VII. SIMULATION AND TEST ON A TWIN-TANK LEVEL
CONTROL SYSTEM

A. Simulation Study

In this section, we will demonstrate the ability of the
proposed method for the effective control of three classes of
two-inputs and two-outputs nonlinear discrete time systems
with unstable zero dynamics. The systems are assumed to
have either known or unknown model structure and unknown
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parameters, and are subject to either random bounded distur-
bances or unknown bounded disturbance. The following three
simulation tests are carried out.
1) Nonlinear System Model Z 1: We consider the following
system:
yitk +1) = 0.3y1(k) + 0.7u; (k) + 0.6u (k — 1)
+0.5uz (k) + 0.3uz(k — 1)
+0.2y2(k = Dy1(K)/[1+ Y3k = 1) + y{ (k)]
+0.3uy (k) sin[u) (k — Dua(k)]
v2(k +1) = =0.1yz(k) + 0.7uy (k) + 0.4u(k — 1)
4+ 0.8us (k) + us(k — 1)
+0.2y2(0)ur ()11 + ui (k) + y3 ()]
+0.1ua (k) sin(u3 (k — 1)) — 0.1sin[0.5y5(k — 1)]

where the nonlinearity is given by

0.2y2(k — D)y (k) /[1 + y3(k — 1) + yi (k)]
40.3u; (k) sin[ug(k — Duz (k)]

and

0.2y2(k)ur ()11 + ui(k) + y3 (k)]
+0.1u (k) sin(u3 (k — 1)) — 0.1sin[0.5y3 (k — 1)]

which are not globally bounded.
From system X1 it can be seen that

B =07 +0.6z710.54 0327
)= 107404770 08477

Since the roots of det B(z~') = 0.21 +0.77z "1 +0.48z 72 are
—2.8703 and —0.7963, respectively, the zero dynamics of the
above nonlinear system are unstable.

In this case, the structure orders of the linear controller-
driven model are selected to be the same as those of the
plant, leading to n;, = np =1, ng = n, — 1 = 1. Therefore,
the parameters of controller-driven model have the following
parameter matrices:

G = [ggl gH
RO +hlz7t B, + izt
Ry +hlz7V RS, + Rl |
The data vector can therefore be expressed as
x(k) = [x1(k), x2(k), ..., x6(k)]"
= [y1(k), y2(k), w1 (k), uz(k), wy(k — 1), uz(k — D17
In this case, the h(k) in the identification algorithm (28)

becomes ho) = w1 (k)x(k — 1)
= Thxl— DTxk—1)

Hiz ) = [

where
x(k—1)=[xitk =1, x2k = 1), ..., x¢(k — D]T
= [yitk — 1), ya(k — 1), u1(k — 1),
ur(k — 1), ui(k —2), us(k —2)1"

_ L ller®)|| > 2y (k—1)
k) = IO, otherwise.
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Fig. 4. Responses of system output y(k) and the desired output w(k) when
the switching control is used.
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0.5
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step

Fig. 5. Control input responses u1 (k) and u> (k) when the switching control
is used.

By selecting ¢; and &7 as 0.0001 and 0.1, respectively, we
have
y (k—1) = 0.0001||x(k — 1)]| +O.1.

Using (13), the weighting matrix Q*(1 — z~') can be
selected, where Q* = [}39].
Moreover, by selecting

K*(z™") = diag{0.3, 0.5}

the eigenvalues of the closed-loop system are given by
0.7372, —0.1362, and 0.2788 4 0.3003; which are all inside
the unit circle. From (44), u(k) can be readily calculated.

From (31), we have v(k) and can then normalize v (k) using
(32). Algorithm (31)—(37) can then be used to calculate the
estimated value for v(k) to give 9(k), where the membership
functions of ANFIS are of the Gaussian type with two fuzzy
sets for each input. Then identification algorithm (40) and (41)
can be used to estimate the parameters of the controller-driven
model to obtain @;(k), where in (41), & = 104, This will
lead to u;(k) from the controller (46).

In the normalization of v(k), &1 and ¢, are selected as
0.0001 and 0.1, respectively.

For the switching function, the parameters are selected
as ¢ = 1. Also, the initial states of the system are set to
¥1(0) =0, y2(0) = 0, u1(0) = 0, and u>(0) = 0.
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Fig. 7. Virtual unmodeled dynamics v(k) and its estimation by ANFIS.

In the simulations, the set-points for each sub-system are
given as follows:

wl(k) =1.1
wy (k) = 0.3sign[sin(x k/100)].

Using the proposed adaptive switching control for the simu-
lation tests for X 1, the results shown in Figs. 4-6 are obtained,
where Fig. 4 displays the output of the closed-loop system
and the desired output. Fig. 5 gives the control inputs u (k)
and uy (k) while Fig. 6 shows the switching sequence for the
adaptive controller based on linear and nonlinear controller-
driven model.

From Figs. 4 and 5 it can be seen that since the initial
states are zero, the identification does not produce accurate
parameter estimation, the tracking performance of the closed-
loop system are not good. However, along with the improve-
ment of the parameter estimation, the tracking performance of
the closed-loop can be significantly improved through active
compensation of the virtual unmodeled dynamics.

From the switching sequence in Fig. 6, it can be seen that
initially the estimation error is big and accordingly the linear
controller has been selected to stabilize the system. When
k =5, the nonlinear control action is selected so as to improve
the closed-loop performance.

Fig. 7 shows the estimation to the virtual unmodeled dynam-
ics, where it can be seen that desired approximation results
have been obtained when the estimation algorithm for the
virtual unmodeled dynamics of this paper is used.

To illustrate the effectiveness of the proposed method in
light of the results [5]-[9] as well as to show that ANFIS
is better than BP neural networks for this application, the
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Fig. 8. Responses of system output y(k) and the desired output w(k) when
BP neural network is used.
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Fig. 9. Control input responses u{(k) and up(k) when BP neural network
is used.
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Fig. 10. Switching sequence.

results of the proposed method are compared with the results
of [5]-[9]. ANFIS used in the proposed scheme is also
compared with that with a BP neural network. The simulation
results demonstrate the superior performance of the proposed
approach over the results in [5]-[9]. However, due to the space
limitation, in the following, we only show the comparison
results with [7], which is the benchmark in this research area.
In simulations, the two layer BP neural networks have been
used to approach v(k). The node number of hidden layer in the
network is selected as 18, where the activation function is of
the S-transfer function and the activation function of output
layer is the linear transfer function. The learning rate is set
to Ir = 1 and momentum factor is selected as mc = 0.9.
The performance of the switching system using the BP neural
networks and multiple models is shown in Figs. 8—11.
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Fig. 11.
network.

Virtual unmodeled dynamics v(k) and its estimation by BP neural

By comparing Figs. 4-7 with Figs. 8-11, it can be con-
cluded that the method proposed in this paper improves the
control effects.

2) Nonlinear System Model X2: In this case, we use the
following nonlinear system to carry out the simulation test:

yitk+1) = 0.3y1(k) + 0.7u1 (k) + 0.6u;(k — 1)
+0.5uz (k) + 0.3u2(k — 1)
+0.2y2(k — Dy1(k)/[1 + y3(k — 1) + y7 (k)]
+0.3u; (k) sin[u; (k — Duy (k)] + dy (k)

yalk + 1) = —0.1y2(k) 4+ 0.7u (k) + 0.4u; (k — 1)
4+ 0.8up (k) +ur(k — 1)
+0.2y2(k)ur (k) /11 + ui (k) + y3 ()]
+0.1ua (k) sin(u3 (k — 1))
—0.1sin[0.5y3 (k — 1)] + da (k)

where di(k) and d»(k) are unknown but bounded random
disturbances with their upper bounds being given by 0.1.

The model structure (orders ng and ny) of the controller-
driven model, the data vectors x (k) and h(k) in the iden-
tification algorithm (28), the parameters ¢; and & for the
virtual unmodeled dynamics are the same as those in the
first simulation example. Furthermore, y (k — 1) in the esti-
mation algorithm (29), the parameter {c} in the switching
function and the weighting matrices {Q(z~!), K(z™")} in
the equation of the controller are the same as those in the
first simulation example. The simulation results are shown
in Figs. 12-14, where Fig. 12 shows the output of the
closed-loop system and the desired output, Fig. 13 displays
the responses of uj(k) and up(k) and Fig. 14 gives the
switching sequence for the linear and nonlinear adaptive
controllers.

From Figs. 12 and 13 it can be seen that the proposed
adaptive control algorithm can produce desired tracking per-
formance for the closed-loop system even if the system is
subjected to unknown and bounded random disturbances.

Fig. 15 shows the estimation results of the virtual
unmodeled dynamics, where it can be seen that although the
system is affected by the random disturbances that leads to
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Fig. 14. Switching sequence.

certain errors in the approximation, the output of the closed-
loop system can still track the desired output reasonably well.
3) Nonlinear System Model ¥3: To further our simulation
studies, we consider the following nonlinear system:
yitk+1) = 03y1(k) + 0.2y (k — 1) + 0.7u; (k)
+0.6u1(k — 1) + 0.5u2(k) + 0.3uz(k — 1)
+0.22(k — Dy1(k)/[1 + y3(k — 1) + y7 (k)]
4+ 0.3u; (k) sin[u; (k — Dua (k)] + di (k)
v2(k +1) = =0.1y2(k) +0.3y2(k — 1) + 0.7u; (k)
+0.4u1(k — 1) 4+ 0.8uz(k) + uz(k — 1)
+0.2y2(k)uy (k)11 + ut (k) + y3 (k)]
+0.1ua (k) sin(u3 (k — 1))
—0.15in[0.5y3(k — 1)] + da (k)
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Fig. 16. Responses of system output y(k) and the desired output w(k) when
the switching controller is used.

where di(k) = 1 and d>(k) = 1.5 are unknown yet bounded
constant disturbances.

It can be seen that the actual system orders are ng = 2
and my = 1. However, we deliberately select the structure
orders of the controller-driven model as ny =n, —1 =0 and
np = 1. This means that the structure order of the model for
the controller design is set to n, = 1, which is lower than that
the actual value. In simulations, other parameters are selected
to be the same as those in the first two simulation examples,
and the results are shown in Figs. 16—19.

Even though the order of the controller design model is
chosen to be lower than that of the system and the system is
also subjected to unknown external disturbances, from Figs. 16
and 19 it can be seen that the closed-loop system exhibits
large initial tracking error since the linear adaptive controller
does not compensate the virtual unmodeled dynamics at the
beginning. However, at k = 6, the nonlinear controller is
switched on which compensates the virtual unmodeled dynam-
ics, leading to a better tracking performance for the output of
the closed-loop system.

In addition, despite the low order controller design model
and unknown external disturbances, from Fig. 19 it can be
seen that the virtual unmodeled dynamics of the system can
be reasonably well estimated using the proposed estimation
algorithm.
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Fig. 19. Virtual unmodeled dynamics v(k) and its estimation.

B. Experimental Results with a Twin-Tank Level Control
System

In this section, we will describe the application results of
the proposed method to a twin-level tank control system with
two inputs and two outputs as shown in Fig. 20. The actual
system consists of nos. 1 and 2 tanks, actuators, a pump, and
a valve together with flow-rate and level sensors. The control
algorithm is realized using embedded controller as shown
in Fig. 21.

In the experiment, the discharging valves 1 and 2 and the
inlet valve for the no. 2 tank are kept open. The control inputs
for this twin-tank level control system are the valve opening
u1 (k) and the pulse width modulating ratio us (k)of the voltage
applied to the pump. The outputs are the levels of the no. 1
tank and no. 2 tank denoted by yj (k) and y»(k), respectively.
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Fig. 21.  Structure of the twin-tank level process control system.

Control signal us (k) is applied to realize the pumping of the
water from the sump first to the no. 1 tank then further flow
to the no. 2 tank so as to control y, (k). Control input u{ (k) is
applied to the valve that adjusts the input water flow to the no.
1 tank so as to control its level yj(k). Apparently both level
control systems are subjected to strong nonlinearities which
cannot be easily modeled mathematically.

To apply the proposed method, first the structure orders of
the controller design model are selected to be n, =2, np = 1
and the model is taken as linear. This leads to the self-tuning
parameter matrix for the linear controller-driven model as
follows:

G-l - | Hehz! g e
@) =% 1.1 .0 171

821 1t 817 8t 8xn2
A Sl
hy +hy 277 hyy +hyyz
where the data vector is defined as

x (k) = [y1(k), y2(k), y1(k — 1), y2(k — 1), u1(k), uz(k),
ui(k — 1), ur(k — 117,

Hz Y = [

In real-time control, the projection algorithm is used for the
estimation of the parameters of the controller-driven model
as in (49)—(56). The normalization parameters &1 and g, for
the virtual unmodeled dynamics v(k) are selected as 0.001
and 0.1, respectively. For the switching function, we have M
given by

2y (k—1) = 0.002||x(k — 1)|] + 0.2,
c=1.
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Fig. 23. Response of the no. 2 tank level using the proposed control method
(wp and y»).

The weighting matrices Q(z~!) and K(z~') are given as
follows:

A e A
L Ry (et

The desired outputs for this twin-tank level control system
are selected as w; = 6 cm and wy = 8 cm, respectively, with
the sampling period being 0.1 second.

The adaptive switching control algorithm in this paper was
first programmed using advanced embedded control system
toolbox. The codes are then downloaded to the real-time
controller so as to execute the required adaptive control. The
experimental results are shown in Figs. 22-26.

In Figs. 22 and 23, the actual output responses of the two
tank levels are displayed when the proposed adaptive control
is applied to the system. Figs. 24 and 25 show the responses of
the control inputs, while Fig. 26 gives the switching sequence
of the controller. From these figures, it can be seen that a
significant improvement has been achieved for the response
speed and tracking when the proposed nonlinear adaptive
control is applied.

From Figs. 24 and 25 it can be seen that since the nonlinear
adaptive control offers dynamical compensation for the virtual
unmodeled dynamics, the system has smaller control input
magnitudes yet smoother responses as compared to those when
the linear adaptive controller is applied. It also shows that less
energy would be required for the proposed control method,
thereby causing less wearing and reducing the chance of
component damage to the actuators.
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switching sequence
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Fig. 26. Switching sequence of the controller.

Fig. 26 displays the switching sequence of the controller,
where it can be seen that initially the linear adaptive controller
is effective so as to stabilize the closed-loop system. When the
system 1is stabilized, for the most period of time the nonlinear
adaptive controller is in action so as to improve the closed-
loop performance.

VIII. CONCLUSION

In this paper, with the introduction of novel concepts on
controller-driven model and virtual unmodeled dynamics, a
control design framework was proposed which consists of
two controllers, one based on a linear controller-driven model
and the other based on a nonlinear controller-driven model.
Both models were updated with a proper estimation schemes.
The primary objective of the first design based on linear
controller-driven model is to stabilize the system, while the
main focus of the second one based on nonlinear controller-
driven model is to improve performance. A compensator for
the virtual unmodeled dynamics was incorporated with the
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nonlinear controller-driven model with self-tuning parameters.
Using a switching mechanism, the two adaptive controllers
were integrated to leverage their complementary features.
Analysis on stability and convergence has been performed and
presented. The proposed adaptive control method has been
successfully applied to a twin-tank level control system, in
addition to three test examples. Indeed, it can be seen that
the proposed adaptive switching control can be applied to a
class of multivariable nonlinear systems with unknown model
structure and parameters.
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