
2704 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 12, DECEMBER 2009

Implicit Model Predictive Control of a Full Bridge
DC–DC Converter

Yanhui Xie, Senior Member, IEEE, Reza Ghaemi, Jing Sun, Fellow, IEEE,
and James S. Freudenberg, Fellow, IEEE

Abstract—This paper presents a model predictive control
(MPC)-based approach for a full bridge dc–dc converter of a fuel
cell power system. The objective of the proposed control algorithm
is to regulate the output voltage without violating the peak cur-
rent constraint. We first develop a large signal dynamic model for
the full bridge dc–dc converter. The peak current protection re-
quirement is then formulated as a mixed input and state constraint
for the MPC scheme. We next introduce the integrated perturba-
tion analysis and sequential quadratic programming (InPA-SQP)
method to solve the constrained optimal control problem with sub-
millisecond level sampling time. The InPA-SQP solver can meet
the computational efficiency demand, thereby enabling implemen-
tation of an implicit MPC for power electronics system with fast
dynamics. The effectiveness of the proposed control algorithm in
the peak current protection and the output voltage regulation has
been verified with experimental results.

Index Terms—Full bridge dc–dc converter, InPA-SQP, model
predictive control, nonlinear constraint, peak current protection.

I. INTRODUCTION

FUEL cells have shown great potential for various ap-
plications as a low emission and high-efficiency power

source [1]. They are characterized as a low-voltage high-current
power source whose output voltage varies for different loads,
thereby necessitating a dedicated power conditioning system to
regulate the dc output voltage. To investigate the voltage reg-
ulation of a fuel cell power system, an experimental testbed
was developed at the University of Michigan to support model
development and to facilitate a model based control design ap-
proach. Fig. 1 depicts the configuration of the power stage of
the testbed, which is composed of a full bridge dc–dc converter
and a polymer electrolyte membrane (PEM) fuel cell emulator,
where D1 − D4 are the corresponding anti-parallel diodes of
the power switches Q1 − Q4 while D5 − D8 form the output
rectifier, L is the leakage inductance of the transformer with
turn ratio n, C1 and Co are the input and output capacitor, re-
spectively, R is the load, and V1 and Vo are the input voltage and
the output voltage, respectively. The ac side of each bridge is
connected to the transformer with corresponding primary volt-
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Fig. 1. Full bridge dc–dc converter-based fuel cell power system.

TABLE I
PARAMETERS OF THE TESTBED PROTOTYPE

age Vac1 and secondary voltage Vac2 , respectively. Parameters
of the full bridge dc–dc converter are shown in Table I.

The full bridge topology was initially proposed in previ-
ous papers [2] and [3] for both high power density and high
power applications. It is very attractive because of its zero volt-
age switching, low component stresses, and high power den-
sity features. Moreover, its high frequency transformer prevents
fault propagation and enables a high output–input voltage ratio.
Therefore, with a full bridge dc–dc converter as the power con-
ditioning system, the fuel cell power system can be applied to
high dc voltage applications, such as the dc zonal electrical dis-
tribution system of an all-electric ship [4]. As a power converter
with 10 kHz switching frequency, its time constant is at the
millisecond level. Given that the time constant for a PEM fuel
cell is about several seconds [5], there is a significant time scale
separation between the dynamics of the fuel cell and the power
converter. This fact suggests that we can design controllers for
the fuel cell and the power converter separately without substan-
tial performance degradation. The control design for a PEM fuel
cell system has been extensively addressed, see, (e.g., [6]–[8]).
The main goal of this paper is to design a controller for the full
bridge dc–dc converter.

Several challenges arise for the dc–dc converter control de-
sign. First, the power devices of the dc–dc converters have
very complicated time-varying switching behavior, which de-
fines the shape of the inductor current, making the dynamic
model development of power converters a challenge. Second,
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dc–dc converters for fuel cell power systems have a wide range
of operating conditions, further complicating the control design.
Furthermore, the control input is bounded due to physical limi-
tations of power converters. Finally, safe operation requirements
such as peak current limitation may impose additional nonlinear
constraints.

Traditionally, there are two classes of algorithms for dc–dc
converter control, namely the voltage mode control and current
mode control [9]–[12]. Voltage mode control achieves voltage
regulation through a single-loop voltage control scheme. To
limit the current during transient operation within safe opera-
tion range, the feedback control gain must be carefully chosen,
otherwise an additional protection circuit has to be incorporated.
Current mode control includes two subclasses, namely the av-
erage current control and peak current control. In addition to a
voltage feedback loop, current mode control employs an inner
inductor current feedback loop to improve performance. Perfor-
mance enhancements, including superb line regulation and in-
herent over-current protection, can be achieved for current mode
control. However, current mode control has a subharmonic os-
cillation problem when the duty ratio is greater than 0.5 [13].
Besides, this method requires inductor current sensing, which
increases system cost and tends to have noise sensitivity prob-
lems. The development of advanced control algorithms, together
with the increased computational power of microprocessors, en-
ables us to deal with the control problem from a new perspective.
For example, one step predictive control based algorithms are
applied to power electronics system, (see, e.g., [14] and [15])
while model predictive control (MPC) has been implemented in
an electric drive system for direct torque control [16] and [17]
and in a flying capacitor converter [18]. For the full bridge dc–dc
converter under investigation, the peak current protection prob-
lem can be formulated as a constraint for an optimal control
problem, which can be effectively dealt with using MPC.

MPC, also known as receding horizon control, combines op-
timization with feedback control for systems subject to input
and state constraints [19]–[21]. In classical MPC, the control
action at each time step is obtained by solving an online opti-
mization problem with a given cost function. However, solving
an optimization problem is often computationally demanding,
which contributes to the fact that most of successful applications
have been found for systems with slow dynamics and abundant
computational power. For systems with fast dynamics, explicit
MPC [22] and [23] has been proposed that precomputes the
optimal solutions and stores them for online lookup. Explicit
MPC has been implemented for fast dynamic applications with
a millisecond level time constant [24]. The major challenge of
implementing explicit MPC is that the number of entries in the
lookup table could be very large, thereby limiting its application
to small problems with low dimensions [25].

To extend the applicability of MPC to broader classes of
systems with fast dynamics, a novel numerical optimization al-
gorithm is developed to improve computational efficiency. This
algorithm is referred to as the integrated perturbation analy-
sis and sequential quadratic programming (InPA-SQP) solver
[26], [27]. It combines the computational advantages of pertur-
bation analysis and optimality of the SQP solution by treating

the optimization problem at time k as a perturbed problem at
time k − 1. This combination can significantly improve com-
putational efficiency and is particularly useful for MPC, where
an optimal control problem must be solved repeatedly over the
receding horizon. It is worthwhile to point out that the InPA-
SQP algorithm can be applied to solve the MPC optimal control
problem for nonlinear systems with mixed state and control
input constraints.

This paper is concerned with the dc–dc converter control
using the MPC scheme. We first analyze the operation of the
full bridge dc–dc converter shown in Fig. 1. A large signal
dynamic model is then developed for the full bridge dc–dc con-
verter, based on which a nonlinear observer is designed. The
observer provides the feedback of the inductor current without
using a current sensor, leaving the output voltage Vo to be the
only measured state. We next formulate the voltage regulation
problem as an MPC problem with a nonlinear constraint that
captures the peak current protection requirement. To achieve
the sub-millisecond level sampling time and handle the non-
linear constraint, the InPA-SQP method is introduced to solve
the constrained optimal control problem. The InPA-SQP solver
can significantly improve computational efficiency while effec-
tively handling the nonlinear constraints, making the implicit
MPC feasible for a power electronics system with very fast
dynamics. The effectiveness of the proposed control algorithm
in achieving the peak current protection has been verified with
experimental results.

The rest of this paper is organized as follows. In Section II,
the operation analysis of the full bridge dc–dc converter will
be presented. Section III is devoted to the development of a
large signal dynamic model and a nonlinear observer for the full
bridge dc–dc converter. Section IV focuses on MPC problem
formulation while Section V will be devoted to the InPA-SQP
solver interpretation. Experimental results will be presented in
Section VI, followed by conclusions in Section VII.

II. OPERATION ANALYSIS OF THE DC–DC CONVERTER

To understand the characteristics of the full bridge dc–dc
converter, we start with an analysis of its operation using tech-
niques similar to those presented in [28]–[30]. The full bridge
dc–dc converter is typically modulated by the phase shift mod-
ulation signals VQ 1 ∼ VQ 4 shown in Figs. 2(a) and 3(a), where
β ∈ [0, 1] is the normalized phase shift between the two half
bridges composed of Q1/Q2 and Q3/Q4 , respectively. Note
that since the parallel resistance and inductance are much greater
than the series resistance and inductance, the equivalent circuit
model of a high frequency transformer can be simplified as an
ideal transformer with a primary series inductor (leakage in-
ductor). Therefore, the electrical connection between Vac1 and
Vac2 shown in Fig. 1 can be expressed by the simplified diagram
shown in Fig. 4, where L is the leakage inductance. By shifting
the phase between the two half bridges, different combinations
of Vac1 and Vac2 can be applied to shape the current iL and
consequently to manipulate the power flow. Based on the shape
of iL , there are two operation modes for the full bridge con-
verter, namely the discontinuous-conduction-mode (DCM) and
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Fig. 2. Modulation sequence and ideal waveforms of the full bridge dc–dc
converter for DCM.

the continuous-conduction-mode (CCM). DCM refers to the
case that the inductor current iL stays at zero for a certain pe-
riod of time for each half switching cycle as shown in Fig. 2(d).
CCM means that the inductor current iL only crosses zero but
never stays at zero for each half switching period as shown in
Fig. 3(d). For each operating mode, the half switching cycle
[t0 , t0 + (T/2)] can be divided into three segments according
to the evolution of iL . The three segments have corresponding
time intervals τa , τb , and τc , respectively, as illustrated in Figs.
2(d) and 3(d). The goal of this analysis is to determine the oper-
ation boundary between DCM and CCM, and obtain the current
and power characteristics for each operating mode.

A. DCM Operation

For a full bridge dc–dc converter operating with DCM,
the ideal voltage waveforms of Vac1 and Vac2 are shown in
Fig. 2(b) and (c). The voltage across the inductor is VL =
(Vac1 − Vac2)/n, leading to the ideal inductor current iL slope
at each segment shown in Fig. 2(d).

Since we know the inductor current slopes and τa = βT/2,
the following relationship can be easily obtained:

τb =
(nV1 − Vo)

Vo
τa =

(nV1 − Vo)βT

2Vo
(1)

τc =
T

2
− τa − τb . (2)

The peak current equals iL (t0 + (βT/2)) and can be calcu-
lated as

iL

(
t0 +

βT

2

)
=

(nV1 − Vo)βT

2nL
. (3)

Fig. 3. Modulation sequence and ideal waveforms of the full bridge dc–dc
converter for CCM.

The average inductor current and average input power over
the half switching cycle are

iL =
2
T

∫ t0 +T /2

t0

iL dt =
β2TV1(nV1 − Vo)

4LVo
(4)

P =
2
T

∫ t0 +T /2

t0

Vac1iL dt =
β2TV1(nV1 − Vo)

4nL
. (5)

B. CCM Operation

For a full bridge dc–dc converter operating with CCM, the
voltage waveforms of Vac1 and Vac2 are shown in Fig. 3(b) and
(c). The voltage across the inductor is VL = (Vac1 − Vac2)/n,
leading to the inductor current iL slope at each segment shown
in Fig. 3(d).

Given the inductor current slopes, one can easily obtain

(nV1 + Vo)τa

nL
+

Voτc

nL
=

(nV1 − Vo)τb

nL
(6)

τb =
βT

2
− τa . (7)

Since τc = (1 − β)T/2, solving (6) and (7) yields

τa =
(nV1β − Vo)T

4nV1
(8)

τb =
(nV1β + Vo)T

4nV1
. (9)
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Fig. 4. Simplified dc–dc converter scheme.

The peak current equals iL (t0 + (βT/2)) and can be calcu-
lated as

iL

(
t0 +

βT

2

)
=

(nV1 − Vo)(Vo + nV1β)T
8nLV1

. (10)

The average input power over the half switching cycle is

P=
2
T

∫ t0 +T /2

t0

Vac1iL dt=
TVo(2n2V 2

1 β − n2V 2
1 β2 − V 2

o )
8n3LV1

.

(11)

The operation mode of the dc–dc converter is determined by
V1 , Vo , and β. For different combinations of V1 and Vo , the
phase shift boundary line Lβb between the CCM and DCM can
be calculated as follows, if we set τc = 0 for DCM

Lβb =
{

(β, V1 , Vo)|β =
Vo

nV1

}
. (12)

Moreover, let ipeak denotes the maximum tolerable peak cur-
rent of the converter. Using (3) and (10), one can determine
the limits on the phase shift to avoid over-peak-current. If the
converter operates with CCM, the phase shift constraint curve
Lβc can be calculated from (10) as follows:

Lβc =
{

(β, V1 , Vo)|β =
8Lipeak

T (nV1 − Vo)
− Vo

nV1

}
. (13)

Similarly, if the converter operates with DCM, the phase shift
constraint curve Lβd can be calculated from (3) as follows:

Lβd =
{

(β, V1 , Vo)|β =
2nLipeak

T (nV1 − Vo)

}
. (14)

Fig. 5 shows the phase shift boundary line Lβb and the
peak current constraint curves Lβd and Lβc for V1 = 60 V
and Vo = 0V ∼ 90V . Note that: 1) the full bridge dc–dc con-
verter operates with the CCM if the phase shift is larger than
the corresponding boundary value, and 2) the peak current con-
straint curves Lβd and Lβc are calculated using (13) and (14)
for ipeak = 75A. Fig. 6 shows the power curve of the full bridge
dc–dc converter for V1 = 60 V and Vo = 80 V. For our sys-
tem with a nominal output power of 1000 W, the phase shift at
the nominal operating point is 0.62, which is smaller than the
boundary value 0.67. Therefore, the converter operates with the
DCM at steady state for the nominal output power. From Fig. 5,
the DCM peak current constraint curve Lβd is always above the
boundary line Lβb , so, the peak current constraint will not be
violated if the power converter operates with DCM at steady
state. However, for the cases of starting process and overload,
the power converter operates at CCM, where the CCM peak cur-
rent constraint may be violated. Therefore, an active constraint

Fig. 5. DCM–CCM boundary line Lβ b and peak current constraint curves
Lβ d and Lβ c for V1 = 60 V and ip eak =75 A.

Fig. 6. Power curve of the full bridge dc–dc converter for V1 = 60 V and
Vo = 80 V.

enforcement mechanism needs to be incorporated to protect the
converter.

III. DYNAMIC MODEL DEVELOPMENT AND OBSERVER DESIGN

Given the challenges imposed by the control of power con-
verters, it is desirable to employ a model based control design ap-
proach to achieve satisfactory closed loop system performance.
Since the full bridge dc–dc converter has a wide operating range,
it is necessary to derive a large signal dynamic model for the
system to facilitate the model based control design. For this
work, an averaged dynamic model as developed for other power
converters [31]–[33] is needed for control design. Using the
analysis results presented in the previous section and following
the same technique in [32], the dynamic model of the full bridge
dc–dc converter can be derived as

dīL
dt

=
βV1

L
− 4̄iL V̄o

βT (nV1 − V̄o)
(15)

dV̄o

dt
=

īL
nCo

− V̄o

RCo
(16)

y = V̄o . (17)
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Fig. 7. Comparison of estimated and measured states.

Note that īL and V̄o represent the average current and the average
output voltage over a switching period.

For the dynamic system represented by (15)–(17), the im-
plementation of advanced control strategies requires a current
sensor to obtain the average current īL for state feedback. On
one hand, the current sensor must have high bandwidth to ac-
curately reconstruct the current signal. On the other hand, due
to electromagnetic interference, it is often necessary to use a
low-pass filter to remove noise. However, a low-pass filter typi-
cally introduces additional phase lag for the closed loop system.
To overcome these drawbacks, we propose to use a nonlinear
observer to estimate the average current īL while keeping the
voltage V̄o as the only measured variable. The nonlinear ob-
server is expressed as follows:

dˆ̄iL
dt

=
βV1

L
− 4̂̄iL

ˆ̄Vo

βT (nV1 − ˆ̄Vo)
+ H1(y − ŷ) (18)

dˆ̄Vo

dt
=

ˆ̄iL
nCo

−
ˆ̄Vo

RCo
+ H2(y − ŷ) (19)

ŷ = ˆ̄V o. (20)

To properly select the gains H1 and H2 for the nonlinear ob-
server, we linearize the plant at the desired operating point. The
faster eigenvalue of the linearized model is around −800. We
chose H1 = 2759 and H2 = 2859 to place the eigenvalues of the
observer at −2000 to achieve fast convergence of the observer.

Fig. 7 compares the estimated states with the actual measured
states. The observed states closely track the real states for dif-
ferent operating points. This figure also confirms the accuracy
of the nonlinear model.

IV. MPC FORMULATION

This section presents the formulation of the MPC controller
for the voltage regulation problem of the full bridge dc–dc con-

verter. The dynamic system represented by (15)–(17) can be eas-
ily linearized with nominal value xo = [25, 80]T and uo = 0.62.
Let x1 = īL − 25, x2 = V̄o − 80 and u = β − 0.62, the system
can be transformed into its discrete-time version for a specific
sampling time

x(k + 1) = f(x(k), u(k)) := Ax(k) + Bu(k) (21)

y(k) = Fx(k) (22)

where A ∈ R
n×n , B ∈ R

n×m , F ∈ R
m×n . Note that n = 2 and

m = 1 for the system under investigation.
For a given ipeak , the CCM peak current (10) must satisfy

(nV1 − Vo)(Vo + nV1a)T
8nLV1

≤ ipeak . (23)

Equation (23) can be rewritten in terms the state variables as

E1(x(k), u(k)) ≤ 0. (24)

where

E1(x(k), u(k)) =
(nV1 − (xo

2 + x2(k)))((xo
2 + x2(k)))

V1

+
(nV1 − (xo

2 + x2(k)))(nV1(uo + u(k)))
V1

− 8nLipeak

T
. (25)

Then the MPC online optimization problem can be formulated
as follows: at the time instant k, the state of the system x(k) is
observed and the following optimal control problem PN (x(k))
is solved

PN (x(k)) : V ∗
N (x(k)) = min

u
{VN (x(k),u)} (26)

VN (x(k),u) =
k+N −1∑

j=k

G(x(j), u(j)) + Φ(x(N)) (27)

subject to

x(j + 1) = f(x(j), u(j)), f : R
n+m → R

n (28)

x(0) = x(k) ∈ R
n (29)

E(x(·), u(·)) ≤ 0, E : R
n+m → R

l (30)

where

u = {u(k), u(k + 1), . . . , u(k + N − 1)} (31)

is the control sequence

x(j) := xu(j;x(k)), j = k, k + 1, . . . , k + N − 1 (32)

is the state trajectory at time instant j resulting from an initial
state x(k) and the control sequence u

G(x(j), u(j)) = x(j)T Qx(j) + u(j)T Wu(j),

j = k, k + 1, . . . , k + N − 1 (33)

and Φ(x(N)) is the penalty for the final states. Q ∈ R
n×n and

W ∈ R
m×m are the corresponding weighting matrices which

are used to penalize the deviation of the output and the control
input to their corresponding desired value, N is the prediction
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horizon, and E(x(k), u(k)) is the constraint matrix and can be
written as follows with l = 3:




u(j) − (1 − uo)

−u(j) − uo

E1(x(j), u(j))


 . (34)

Note that the first two components are derived because of the
boundedness of the phase shift (β ∈ [0, 1]) and each component
in (34) is bounded above by zero.

Since the full bridge dc–dc converter has the millisecond
level time constant, a rational choice of the sampling time is
between 100 and 400µs [34]. The length of the prediction hori-
zon N is a basic tuning parameter for MPC controllers. Gen-
erally speaking, the closed loop system performance improves
as N increases. However, additional computational effort asso-
ciated with a long horizon could be troublesome for implicit
MPC of power electronics systems. We choose 150µs as the
sampling time for the controller and N = 10 as the prediction
horizon. The weighting matrices Q and W are the main tun-
ing parameters of the quadratic cost function (27) to shape the
closed-loop response for desired performance. The closed loop
performance criteria are defined as: 1) to achieve fast output
response with small output overshoot; and 2) to avoid high fre-
quency control input oscillation which might cause high slew
rate for the inductor current and high stress for switching com-
ponents. We evaluate the performance to different combina-
tions of weighting matrix using a virtual hardware for con-
troller tuning. The virtual hardware is developed using MAT-
LAB/Simulink/SimPowerSystems toolbox and has the same
parameters as the real hardware. The preliminary evaluation
results lead to the choice of Q = [0 0; 0 0.01] and W = 1. Fur-
thermore, we do not penalize the final states x(N), meaning
Φ(x(N)) = 0.

Given the fast dynamics of the converter, we have to apply
fast algorithms to solve the above optimization problem online
in real-time. This requirement motivates us to introduce the
InPA-SQP method in Section V.

V. INPA-SQP ALGORITHM

We now introduce a method, which we refer to as the
InPA-SQP approach [26] and [27], for the implicit MPC
implementation.

According to the MPC strategy, at the time instant k, the state
of the system x(k) is observed and the optimal control problem
PN (x(k)) defined by (26)−(30) is solved. The resulting optimal
control sequence is

u∗(x(k)) = {u∗(k;x(k)), u∗(k + 1;x(k)),

. . . , u∗(k + N − 1;x(k))} (35)

the optimal state trajectory is

x∗(x(k)) = {x∗(k;x(k)) := x(k), x∗(k + 1;x(k)),

. . . , x∗(k + N ;x(k))} (36)

Fig. 8. Intermediate initial conditions which handle the large perturbation.

and the model predictive control law at the time instant k is
defined as

h(x(k)) := u∗(k;x(k)). (37)

According to InPA-SQP approach, the optimal solution at each
time instant k for the observed state x(k) is calculated using
the optimal solution at the previous time instant, i.e., k − 1.
Given the optimal control sequence u∗(x(k − 1)), the updated
optimal control sequence u∗(x(k)) can be computed using
perturbation analysis where the initial state is perturbed by
δx(k) = x(k) − x(k − 1). If the variation δx(k) in the ini-
tial state causes changes in the activity status of constraints,
the variation is split into small variations, i.e., δx(i)(k), i =
1, 2, . . ., where for each incremental variation, only one con-
straint changes from active to inactive or vise versa. With
these small variations, some intermediate points are identi-
fied along the line connecting x(k − 1) and x(k). These inter-
mediate points are denoted x(0)(k), x(1)(k), . . . , x(ip )(k) with
x(0)(k) = x(k − 1) and x(ip )(k) = x(k), as shown in Fig. 8.
Then the corresponding approximation of the optimal control
sequence u∗(xi(k)), i = 1, . . . , ip are calculated using pertur-
bation analysis.

Note that the control sequence provided by perturbation anal-
ysis at each intermediate point xi(k), i.e., u∗(xi(k)) is an ap-
proximation to the optimal control sequence. Therefore, the
error can accumulate and optimality condition may be lost at
these intermediate steps. To compensate this error and maintain
the optimality of the approximate solution, we use a special for-
mulation of SQP with active set method to modify the perturbed
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analysis algorithm. This special formulation allows us to cast the
solution of the SQP into a formula which is similar to that of the
perturbation analysis, thereby, facilitating the seamless integra-
tion of perturbation analysis and SQP to speed up the calculation
of the optimal solution. The detailed algorithm is presented as
follows for the general nonlinear MPC implementation.

At the time instant k, we need to solve PN (x(k)), given
the solution of PN (x(k − 1)). We consider the general case
where functions G(x(·), u(·)), G : R

n+m → R, Φ(x(·)), Φ :
R

n+m → R, f(x(·), u(·)), E(x(·), u(·)) are twice continuously
differentiable with respect to x and u. Moreover, let us define
the Hamiltonian function H at prediction time instants k, k +
1, . . . , k + N − 1 as

H(j) := G(x(j), u(j)) + λ(j + 1)T f(x(j), u(j))

+ µ(j)T E(x(j), u(j)), j = k, . . . , k + N − 1

(38)

where, µ(j) is the Lagrange multiplier associated with the in-
equality constraint (30) and λ(j + 1) is the Lagrange multiplier
associated with equality constraint (28) at the prediction time
instant j, where j > k.

Since we know the solution of PN (x(k − 1)) at the time
instant k, by treating the initial state x(k) as x(k − 1) plus
its perturbation δx(k) = x(k) − x(k − 1), we go through the
following steps to calculate the optimal solution for the initial
state x(k).

1) Measure x(k) and assume u∗(x(k − 1)) and x(k − 1) are
given from previous time instant k − 1.

2) Set i = 0, δx(0)(k) = x(k) − x(k − 1), x(0)(j) =
x∗(j;x(k − 1)), and u(0)(j) = u∗(j;x(k − 1)), for
j = k, . . . , k + N − 1.

3) Calculate the state and control variation δx(i)(j + 1) and
δu(i)(j), j ∈ [k : k + N ], for the initial state perturbation
δx(i)(k), as follows:

δu(i)(j)=−[I 0]K0(j)

×
[

Zux(j)δx(i)(j)+fT
u (j)T (j + 1)+Hu (j)

Ea
x (j)δx(i)(j)

]

δx(i)(j + 1) = fx(j)δx(i)(j) + fu (j)δu(i)(j)

and δx(i)(k) given (39)

where Hu (j) is the partial derivative of the Hamiltonian
function with respect to control u at the prediction time
instant j, and

Zuu (j) = Huu (j) + fT
u (j)S(j + 1)fu (j)

Zux(j) = Zxu (j)T = Hux(j) + fT
u (j)S(j + 1)fx(j)

Zxx(j) = Hxx(j) + fT
x (j)S(j + 1)fx(j) (40)

with S(j) being calculated by the following backward
recursive equations

S(k + N) = Φxx(k + N), T (k + N) = 0

S(j) = Zxx(j) − [Zxu (j) Ea
x

T (j)]K0(j)
[

Zux(j)

Ea
x (j)

]

T (j)=fT
x (j)T (j +1) − [Zxu (j) Ea

x
T (j)]K0(j)

×
[

fT
u (j)T (j +1)+Hu(j)

0

]
(41)

and when the constraint is active, K0(·) is given by

K0(j) =
[

Zuu (j) Ea
u

T (j)

Ea
u (j) 0

]−1

(42)

where Ea(j) is a vector consisting of those elements of
the vector E(x(j), u(j)) whose corresponding inequal-
ity constraints are active. If no constraint is active at the
prediction time instant j

K0(j) = [Zuu (j)]−1 , j = k, . . . , k + N − 1. (43)

Moreover, when the constraint is active, calculate the op-
timal Lagrange multiplier variation [δµ(i)(k), δµ(i)(k +
1), . . . , δµ(i)(k + N − 1)] corresponding to initial state
variation δx(i)(k) as follows:

δµ(i)(j) = − [0 I]K0(j)

×
[

Zux(j)δx(i)(j)+fT
u (j)T (j+1)+Hu (j)

Ea
x (j)δx(i)(j)

]
.

(44)

All matrices are evaluated at x(i)(·) and u(i)(·).
4) Find the smallest αi among αik such that the perturbation

αiδx
(i)(k) changes the status of the constraint at least at

one instant, namely

αi = min
k

{αik , k = 0, . . . , N − 1, and 0 ≤ αik ≤ 1}.

If for all k ∈ [0 : N − 1], either αik < 0 or αik > 1, set
αi = 1.

5) If αi = 1, set

ui+1(·) = ui(·) + δu(i)(·)
xi+1(·) = xi(·) + δx(i)(·) (45)

and set the solution u∗(x(k)) = u(i+1)(·). Otherwise:
a) if αi = 0, change the activity status of the cor-

responding constraint accordingly. That is, if αi

corresponds an active (inactive) constraint, set the
constraint inactive (active). Go to step 2;

b) if αi < 1 set

ui+1(·) = ui(·) + αiδu
(i)(·)

xi+1(·) = xi(·) + αiδx
(i)(·) (46)

and

δx(i+1)(k) = (1 − αi)δx(i)(k)

xi+1(k) = xi(k) + αiδx
(i)(k)

i = i + 1.

Go to step 3.
Fig. 9 shows the flowchart of the InPA-SQP algorithm. The

perturbed optimal control solution corresponding to the large



XIE et al.: IMPLICIT MODEL PREDICTIVE CONTROL OF A FULL BRIDGE DC–DC CONVERTER 2711

Fig. 9. Flowchart of the InPA-SQP algorithm.

perturbation δx(k) can be approximated by augmenting the
nominal solution with the intermediate ones as

u∗(j;x(k)) +
∑

i

δu(i)(j), j = k, . . . , k + N − 1.

If at the point x(k) + δx(k),
∑k+N −1

j=k ‖Hu (j)‖ is not small
enough, the prescribed procedure goes on with zero initial
state perturbation δx(i)(k) = 0 until the optimal solution with∑N +k−1

j=k ‖Hu (j)‖ � 0 is achieved.
The InPA-SQP synergistically combines the solutions derived

using perturbation analysis and SQP to solve the optimization
problem with mixed input and state constraints. It is shown
in [26] that it can significantly improve the computational ef-
ficiency while effectively handling the nonlinear constraints,
making the MPC feasible for power electronics systems with
fast dynamics. With the introduction of the InPA-SQP solver,
we now proceed to implement the MPC on our hardware.

VI. EXPERIMENTAL VALIDATION

The goal of this section is to present the experimental results
to validate the effectiveness of the MPC controller using the
InPA-SQP as the optimization solver.

A. Experimental Setup

Fig. 10 demonstrates a dc hybrid power system testbed which
includes RT-LAB system, power converters, power sources and
electronic loads. Fig. 10 shows the full bridge dc–dc converter
(dc–dc1) under investigation, and it delivers power from power
source to load (marked as power source1 and load1, respectively,
in Fig. 10). The RT-LAB system is a PC cluster-based platform
that can perform real-time simulation, hardware in the loop test
and rapid control prototyping for large-scale systems. For this
work, the RT-LAB system serves the following three functions:
1) as the real-time simulator to control the programmable power
source1 such that it emulates the behavior of a PEM fuel cell;
2) as the rapid control prototyping unit to generate the 10 kHz
modulation signals for the full bridge dc–dc converter according
to MPC algorithm1 and feedback signals; and 3) as the data
acquisition device to acquire and store experimental data to
enable detailed offline analysis. Note that we only use one target
(Target1) in this application although our RT-LAB system has

1The algorithm was first compiled with a host PC, which is connected to the
RT-LAB target used to control the power converter. Then, the generated C code
is downloaded and executed in the target to control the power converter.

Fig. 10. Experimental setup. (a) DC hybrid power system testbed. (b) Full
bridge dc–dc converter.

Fig. 11. Simulation and experimental waveforms for a step-down change of
R from 12.8 to 6.4 Ω(iL (avg) = īL ).

four targets. Parameters of the full bridge dc–dc converter are
shown in Table I.

B. Experimental Results

First, we investigate the closed-loop performance in the pres-
ence of a large step change in the load resistance R. Fig. 11
compares the waveforms for a step-down change of R when
the algorithm is applied to control the nonlinear model repre-
sented by (15)–(17) and the full bridge dc–dc converter shown
in Fig. 10. Initial R is 12.8 Ω(500 W output power). A step-
down change of the load resistance R is then applied to deliver
1000 W output power, which is the rated output power of the
converter. The transient responses of the MPC applied to both
the large signal dynamic model and the actual dc–dc converter
are essentially the same. Moreover, at both load conditions, the
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Fig. 12. Experimental waveforms for starting process with R = 6.4 Ω
(nominal).

Fig. 13. Experimental waveforms for over load R = 1.6 Ω.

output voltage is regulated to the desired value, which confirms
the robustness of the control scheme.

Fig. 12 shows the experimental waveforms for the starting
process. The peak current is limited within the maximum toler-
able value 75 A while the output voltage is regulated to 80 V.
From the third plot, the phase shift (control input) first hits the
nonlinear constraint and then is constrained by the upper limit
during the starting process.

Finally, Fig. 13 shows the experimental waveforms for the
over load case. During the steady state, the peak current is
limited within the maximum tolerable value 75 A although the
peak current is slightly higher than 75 A for about 1 ms during
the transient. This is partially due to the fact that we do not use a

current sensor in the control scheme. The output voltage drops
from 80 to 32 V during the transient since iL is constrained.
From the third plot, the phase shift (control input) first hits the
upper limit and then is constrained to remain within the peak
current limit. No overrun is observed in any these tests.

The results reveal that the MPC controller successfully
achieves voltage regulation and peak current protection. The
successful implementation of MPC in real-time verifies that the
InPA-SQP can significantly improve computational efficiency
while gracefully handling the nonlinear constraint. Therefore,
it is feasible to apply implicit MPC for fast dynamic systems
such as the power electronics system, if the InPA-SQP solver is
applied.

VII. CONCLUSION

In this paper, we analyzed the operation of the full bridge
dc–dc converter. Based on the analysis, a large signal dynamic
model for the full bridge dc–dc converter was developed. We
formulated the voltage regulation problem of the converter in
the context of MPC, where the peak current protection require-
ment was considered as a mixed state and input constraint. To
achieve sub-millisecond level sampling time and simultaneously
handle the nonlinear constraint, the InPA-SQP method was in-
troduced to solve the constrained optimal control problem. The
InPA-SQP solver can meet the computational efficiency demand
while handling the nonlinear constraint. The effectiveness of the
proposed control algorithm, including the peak current protec-
tion capability, has been verified with experimental results.
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