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Modeling, Control Design, and Experimental
Validation of an Overactuated Thermal Management

System for Engine Dynamometer Applications
Chris Vermillion, Jing Sun, Fellow, IEEE, and Ken Butts

Abstract—Effective engine mapping and calibration are contin-
gent upon tight control of the environment in which the mapping
and calibration are performed. Among the most important vari-
ables to be controlled are the temperatures of coolant and oil that
circulate through the engine block. Because of the large time con-
stants associated with thermodynamic systems, controlling these
variables often represents a bottleneck in the engine mapping and
calibration processes. In this paper, we examine a particular layout
for a thermal management unit, which is currently being used in
practice. By developing and analyzing a thermodynamic model of
the system, we are able to gain insight into the system dynamics
and explore special features to optimize the temperature response.
In particular, we will show how the overactuation in the system
may be leveraged in the presence of hard saturation constraints
and different dynamic actuator authorities. We present design and
validation results (both simulation and experimental) for the pro-
posed controller, and compare the performance to the baseline con-
troller in order to quantify improvements.

Index Terms—Automotive control, calibration, optimal control,
overactuated systems, powetrain control.

I. INTRODUCTION

E NGINE mapping refers to the process where models
characterizing the relations between the engine inputs

(e.g., spark timing, air charge, fuel, valve timing, etc., for gaso-
line engines) and outputs (e.g., torque, exhaust temperature,
emissions, etc.) are developed and validated. A controlled
environment such as an engine test cell with a dynamometer
has been used for mapping to ensure that these models are
accurate. One key control system that facilitates this process is
the thermal management system, which controls the tempera-
ture of the coolant and oil that pass through the engine block.
For effective engine mapping and calibration, it is generally
agreed that these fluid temperatures at the engine outlet should
be maintained to within 2 C of the desired setpoint, and tighter
temperature control is always desirable. For this application,
the main focus is on temperature regulation, while other poten-
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Fig. 1. System diagram.

tial performance indices, such as actuator power consumption
(which is very small compared to the power used in running the
entire test cell), are neglected. Therefore, the performance of a
thermal management system studied in this paper will be mea-
sured by two performance metrics: the percent of testing time
spent within 2 degrees of setpoint and the root mean squared
error (RMSE) between setpoint and actual temperature.

A hardware configuration of the thermal management system
that supports engine testing is illustrated in Fig. 1. The system
consists of a coolant loop and an oil loop, each of which has
a heat exchanger, a heater, and a mixing valve. The heat ex-
changer cools the fluid by exchanging heat between the working
fluid (either coolant or oil) and cooling water that is supplied
by the building water system. In order to provide supplemental
heating to the fluid, which is necessary when the engine is run-
ning at low speed and load, a heater is incorporated. The heat
exchanger and heater are arranged in parallel, and these two
flows are mixed together in a proportion specified by the mixing
valve, as illustrated in Fig. 1. For each loop (coolant and oil), the
hardware, which includes the mixing valve, heat exchanger, and
heater, is housed inside a box of dimension approximately 2 m

1 m 1 m. The mixing valve and heater are the two actua-
tors, whereas the coolant and oil flow rates are dictated by the
engine coolant and oil pumps and vary proportionally with en-
gine speed, and the flow rate of cooling water is governed by an
external building water pump, which is not under the control of
the test cell.

Several other systems similar to Fig. 1 have been studied in
the literature, with models developed and control strategies pro-
posed. For example, [1]–[4] consider systems without a supple-
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mental heater in parallel with the heat exchanger. In [5], Setlur et
al. propose a nonlinear control strategy for an actual in-vehicle
system, which includes an auxiliary heater in the main loop, im-
mediately before the engine. Temperature dynamics of the en-
gine block and heater coil are treated as sources of unmeasur-
able disturbances. In [6], Zou et al. present a model similar to the
one presented in this paper, but place emphasis on simulating the
cooling system performance in the presence of a thermostat that
exhibits hysteresis. In [7] and [8], the authors assess the theo-
retical performance of cooling systems with electronically actu-
ated mixing valves. This paper adds to existing models by taking
into consideration the temperature dynamics of the solid heater
coil and engine block, rather than just considering the fluids
and assuming immediate heat transfer through these solid ele-
ments. This consideration yields important dynamic properties,
detailed in [9], that will be leveraged in this work to optimally
control the system, especially in the presence of actuator satu-
ration limits and different dynamic authorities. As a benchmark
reference, the baseline control strategy that was previously used
will be included in this paper. This control strategy, which is
detailed in Section V, consists of an “all-purpose,” off-the-shelf
proportional-integral-differential (PID) controller, which typi-
cally uses only one of the two actuators at a given time. The
mixing valve is used to cool the fluid while the heater is used
when the temperature is below the setpoint and heating is re-
quired. This controller structure greatly limits the performance
of the system, especially when the heater is the only active con-
trol input, due to the large thermal inertia and consequent poor
dynamic control authority. The result is a temperature response
that is often slow and exhibits poor tracking around the desired
temperature. This leads to an inefficient engine mapping and
calibration process, wherein a large amount of time is spent
waiting for temperatures to settle rather than collecting useful
data. The controller proposed in this paper overcomes the draw-
backs of the baseline controller with a model-based feedfor-
ward/feedback combination. The novelty of the proposed de-
sign is in the feedforward control, where the feedforward control
inputs, referred to as actuator settings in this work, are deter-
mined by evaluating and optimizing the transient tracking and
disturbance rejection capabilities of the system over all feasible
candidate settings, under saturation constraints. Simulation and
experimental results show that this design yields a significant
performance advantage over the baseline design.

This paper is organized as follows. In Section II, a dynamic
model for the system is developed, the system identification
process is discussed, and model validation results are presented.
Dynamic analysis results are given in Section III, which lead
to the control design process of Section IV, where the over-
actuation of the system is exploited for optimal performance.
A novel feedforward control strategy is used in order to max-
imize transient control authority, thereby facilitating an effec-
tive feedback control design. Additionally, an implementation
strategy, using support vector classification, is proposed in order
to practically execute the proposed feedforward algorithm. To
illustrate the effectiveness of the proposed controller, simula-
tion and experimental validation results are included and com-
pared to the baseline control performance in Section V. Finally,
in Section VI, system uncertainties due to varying engine char-

Fig. 2. Input/output system diagram.

acteristics are considered, and a recalibration procedure is out-
lined for mitigating performance degradation in the presence of
these uncertainties.

Throughout the paper, the following nomenclature will be
used to represent key variables, and whenever applicable, they
will be used with proper subscript and superscript to denote the
variable in a particular component and loop (for example, the

and superscripts distinguish states belonging to the coolant
and oil loops, respectively).

Mass (kg).

Rate of heat generation (kW).

Mass flow rate (kg/s).

Temperature ( or ).

Specific heat (kJ/kg-K).

Convective heat transfer coefficient times interaction
surface area [(kW/K)(s/kg) ].

Conductive heat transfer coefficient times interaction
surface area (kW/K).

It should be noted that while the hardware configuration and
results of this paper are specific to an engine dynamometer
application within a test cell, many of the component models
presented in this paper may be used for modeling of in-ve-
hicle cooling systems as well, with proper modifications (e.g.,
replacing the fluid-to-fluid heat exchanger used here with a
fluid-to-air radiator present in a vehicle). Furthermore, the
design methodology presented for this application has broad
implications, particularly for overactuated systems with satu-
rating actuators.

II. MODEL DEVELOPMENT AND VALIDATION

Fig. 2 shows the block diagram of the system represented in
Fig. 1, where the states for each block are shown. The state-
space model for each of these blocks is given in Section II-A.
The shadowing on the mixing valve, heat exchanger, and heater
blocks conveys the fact that two loops for coolant and oil exist in
parallel, but pass through one (unshadowed) engine block. Note
that each of these loops may be viewed as a subsystem con-
sisting of two control inputs (mixing valve command, , and
heater command, ), four disturbance inputs (engine speed

, engine load , cooling water temperature , and flow rate
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TABLE I
MODEL PARAMETERS AND STATES

TABLE II
CONTROL AND DISTURBANCE INPUTS

), and one performance output (temperature at engine outlet
). The nominal values of , , , and for that

simulation or experiment will be referred to as the operating
condition. The parameters, states, and inputs to the system are
summarized in Tables I and II.

From the mixing valve command , we are able to con-
trol what we will refer to as the bypass ratio , where

is defined as the ratio of the flow through the heater
to the total flow rate ( ). This bypass ratio, in conjunction with
the system flow rate , determines the flow rates through the
heater and heat exchanger; therefore, appears as an input to
both the heater and heat exchanger blocks in Fig. 2. From the
pulse-width-modulated (PWM) heater command , we may
uniquely determine the power supplied by the heater by a
linear relationship. Finally, the heat inputs to the engine block

are determined by engine speed and load.

A. Dynamic Model and Characterizing Equations

For each loop, we consider the mixing valve, heater, and heat
exchanger as subsystems. The engine, through which both loops
circulate, is modeled as a heat source driven by engine speed
and load, and the thermal inertia of the engine block is taken
into account by the model. Without significant compromise of
model accuracy, the following assumptions are made.

A1) both coolant and oil have constant density and specific
heat;

A2) heaters and heat exchangers assume lumped parameters,
with no energy storage in the heat exchanger “core”;

A3) heater model assumes a single temperature state for the
heater coil, allowing for energy storage in the coil;

A4) engine model assumes two states for engine block tem-
perature, reflecting different temperature distribution,
and heat rejection dynamics across the engine block;

A5) mixing valve assumes adiabatic and immediate mixing,
resulting in a static relationship between the two inlet
temperatures and the outlet temperature;

A6) heat losses in pipes are neglected.

1) Remark II.1: Assumption (A1) is valid throughout the op-
erating window of the system, where the temperatures of the
fluids are significantly less than their boiling points. Other as-
sumptions have been shown to have negligible impact on the
modeling results, except for (A5) and (A6), which will be elab-
orated on later, in Section II-C.

By conservation of energy, the inlet and outlet temperatures
for the mixing valve are related by

(1)

The heat exchanger model contains temperature states for both
the hot and cold flows. Heat is transferred across the heat ex-
changer “core” according to a logarithmic mean temperature
difference law [12], yielding the following equations:

(2)

(3)

where
• is the overall heat transfer coefficient times the contact

area—it is dependent on flow rate and may be expressed as

(4)

where and are parameters to be
identified and ;1

• is the logarithmic mean temperature difference be-
tween the hot and cold sides [12]. For a counterflow con-
figuration, used in this system, it is defined as

(5)

The heater model consists of a fluid temperature state and a
coil temperature state, where

(6)

(7)

(8)

In order to arrive at a representative engine model, two states
are used to represent engine block temperatures, reflecting the
different temperatures in the neighborhood of the coolant and

1The power of 0.8 in the expression for convective heat transfer arises from
established empirical results [11].
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Fig. 3. Diagram for the engine subsystem model.

oil loops circulating through the engine block, as shown graphi-
cally in Fig. 3. This results in the fourth order engine subsystem
model:

(9)

(10)

(11)

(12)

where represent temperatures of the engine block states
and represents the heat transfer within the engine itself,
due to the temperature difference between the different regions
of the engine block.

The heat rejection laws to the two portions of the engine block
are modeled as functions of engine speed and load

(13)

where are parameters that reflect heat rejection characteris-
tics for a given engine. The last term in (13) reflects heat rejec-
tion rate as a fraction of engine power . Other terms help
to account for parasitic heat losses (through the first term) and

for different efficiencies for different speed and load (through
the second and third terms).

B. Model Parameter Identification

Parameters in the dynamic model (1)–(13) are identified ex-
perimentally. Temperature and flow rate measurements avail-
able for identification purposes are shown in Fig. 1. It should
be noted that the fraction of flow passing through the heater and
heat exchanger and the temperature of the heater coil or engine
block were not measured. In order to identify the model parame-
ters with available measurements, we manipulate the state equa-
tions for each component to derive a parametric model in order
to use limited measurements. Here, we elaborate on the identi-
fication approach that was applied to each component.

1) Heat Exchanger Parameter Identification: For the heat
exchanger, the availability of both and as mea-
sured variables leads to a simple two-step identification process
in which we use steady-state data to identify the specific heats

, convection coefficients , and conduction
coefficients , then use transient data to identify the
fluid masses . Even though the parameters do not ap-
pear linearly in the steady-state model [obtained by setting the
right hand sides of (2) and (3) to 0], constrained optimization can
be used to identify the parameters by minimizing steady-state
modeling error. For this application, this constrained optimiza-
tion was cast as a minimization of the cost function

(14)

where

(15)

(16)

and

(17)
Once is identified, we proceed with the identification of

the mass parameters and by substituting for
in (2) and (3) to obtain

(18)

(19)

where the unknown parameters, and appear
linearly. Therefore, a standard least squares algorithm can be
used from this point forward to identify the unknown masses.
To avoid using signal derivatives and reduce noise sensitivities,
we apply a first-order filter to both sides of (18) and (19) before
deriving the linear parametric model for identification, a proce-
dure that is widely used and elaborated on in [10].
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2) Heater Parameter Identification: For a given flow rate,
the heater subsystem, with inputs and and output

, may be modeled as a second-order linear system, taking
as a parameter. This leads to a 2 1 transfer function matrix,

which has the following properties.
1) The heater subsystem is linear and second order with re-

spect to the inputs, and .
2) The transfer functions from and to

have relative degrees 2 and 1, respectively.
3) The dc gain from the input to the heater outlet

temperature is 1.
Therefore, the heater can be represented by the input/output

(I/O) relation

(20)

where is the outlet temperature, , and and rep-
resent and , respectively. Well-established methods
[10] can be applied to identify , , , and .

The four transfer function coefficients are related to the phys-
ical heater model parameters by

(21)

(22)

(23)

(24)

In the linear heater model (21), the flow rate through the
heater is treated as a parameter that affects the transfer
function coefficients. In order to use the linear model to iden-
tify heater parameters, identification was performed at various
constant (requiring a constant and ), while engine load

was varied in order to excite , thereby providing the
needed excitation for parameter identification. By relying on
data collected at different values of , it was possible to dis-
tinguish and (note that these parameters are indis-
tinguishable through data collected at a single flow rate).

3) Engine Parameter Identification: The engine model rep-
resents the largest parameter identification challenge, since nei-
ther the engine block temperature states nor the heat input to
the engine are known. However, the engine block temperature
states may be written in terms of the fluid tempera-

ture states and heat rejection inputs, for steady-state
data. This leads to a nonlinear parametric steady-state model
from which the heat rejection coefficients, convection, and con-
duction coefficients,

(25)

may be identified. Having identified these values, the engine
subsystem, like the heater, may be expressed as a linear system,
and a standard parameter identification algorithm may be used
to determine

(26)

Fig. 4. Full system model validation results.

For a detailed treatment of this process, the reader is referred
to the appendix.

C. Model Validation

The model validation results are shown in Fig. 4, where the
predicted coolant and oil temperatures are compared with the
measured data for a range of engine speeds and loads. The val-
idation results in a root mean squared error (RMSE) of 2.4 C
and 4.4 C for the coolant and oil loops, respectively.

In general, most model assumptions are valid based on the
validation results. Validation traces do show that the model tends
to overpredict the fluid temperatures, a result of neglecting heat
losses through the piping in the system (A6). The error here is
slightly more pronounced in the oil loop than in the coolant, due
to the fact that the oil is flowing at a slower rate, and therefore
losses to the ambient are a larger factor. Additionally, there is a
very slight lag between the model prediction and the data, which
is largely due to neglecting mixing valve dynamics (A5).

III. DYNAMIC ANALYSIS

Analysis of the validated model provides insights into the
system dynamics that have led to an improved control design.
Specifically, we will show, based on the model, that:

1) the coolant and oil loops have negligible interaction at typ-
ical operating conditions, and subsequent design and anal-
ysis will consider one loop at a time, with held at
setpoint for the other loop;

2) the two actuators possess very different dynamic control
authorities in influencing . The mixing valve is
much faster to affect the outlet temperature than the heater,
and control must take this into consideration.

The coupling of the two loops is shown in Fig. 5, where the
Bode plots are presented for the transfer functions relating the
engine inlet and outlet temperatures (a linear subsystem at con-
stant flow rates), at typical flow rates of 5 kg/s for coolant and
0.5 kg/s for oil

(27)
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Fig. 5. Extent of loop decoupling.

Fig. 6. Comparison of transfer functions between actuator inputs and outlet
temperature at various actuator settings ��� �� � ���� �� � 0 kW, � � 	�
;
���� �� � 4.5 kW, � � 	�
; ���� �� � 0 kW, � � 	�
.

The relative magnitudes of the transfer functions on the di-
agonal are at least 5 times as large as the off-diagonal entries,
indicating that one fluid has little thermodynamic influence on
the other. Also, noteworthy is the fact that the oil temperature
has less effect on the coolant than vice versa. This is because
the coolant loop is the dominant loop in the system, occupying
a much larger volume in the engine block than the oil loop. Sim-
ilar results are obtained for different operating conditions.

With regard to the second analysis result, Fig. 6 shows, for
the coolant loop, that the transfer function between the mixing
valve input and engine outlet temperature has higher gain at
high frequencies than that from the heater for all the actuator
settings considered, suggesting that the valve possesses more
transient control capability. The control inputs are normalized
for the Bode plot in order to be comparable. The result for the
oil loop exhibits the same trend. Therefore, to reserve sufficient
transient control authority, it is critical to avoid operating the
mixing valve near its saturation limit, and proper setting of the
heater input may help to accomplish this goal. It is also note-
worthy that the system linearizations vary widely depending on
the actuator settings, and this variation should be taken into ac-
count when choosing where to operate the mixing valve.

Fig. 7. Diagram of the complete control strategy.

IV. CONTROL DESIGN

The problem of manipulating the engine outlet temperature
has the following three important features which will be ex-
ploited in the control design:

1) overactuation, namely, two control inputs and for
one performance variable;

2) different dynamic control authority for different actuators,
as revealed by model analysis results presented in Fig. 6;

3) hard saturation limits on both actuators.
With overactuation, multiple combinations of control inputs

will lead to the same steady-state output. Yet certain control in-
puts require the mixing valve (the “fast” control input) to be
near its saturation limits, which reduces its effectiveness in in-
fluencing transient performance. Due to the nonlinearity in the
system, choosing optimal control inputs does not amount to
simply placing the valve in the middle of its operating range to
avoid saturation. In this section, we propose a novel feedforward
control strategy in which the dynamic authority of the system
is evaluated about candidate control input combinations, based
on the dynamic system model, and the combination that results
in the greatest dynamic authority is selected as the feedforward
control input ( and ). A relatively simple linear feed-
back control strategy is built on top of this (with outputs
and ), with the overall control strategy depicted in Fig. 7.

A. Feedforward Control Design

Given that infinitely many different actuator settings can lead
to the same steady-state engine outlet temperature, the objective
of the static feedforward control design is to determine the op-
timal actuator setting for a given operating condition.2

A number of papers have considered the topic of overactua-
tion in the presence of saturation constraints. In [13] and [14],
control allocation methods are proposed for redundant robotic
manipulators. In [15] and [16], different control allocation
methods are compared for flight control applications. The
common theme in all of these papers is that each of the actua-
tors in the system affects the output in a similar way (i.e., all the
actuators are dc motors for robots and control surfaces for flight
control). To leverage transient authority of the different actu-
ators, we extend the study of optimal control of overactuated
systems by proposing a feedforward control methodology to
deal simultaneously with saturation constraints, nonlinearities,
and different dynamic authorities of the actuators.

2Actuator setting refers to any set of control inputs which achieve the desired
setpoint at steady-state. Operating condition refers to the set of nominal values
of the disturbance inputs to the system.
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In this work, the optimal actuator settings are determined by
evaluating a single fitness function for each candidate actuator
setting. Given that the objective of this controller is to track set-
points and reject disturbances, the total fitness is determined
from setpoint tracking fitness and disturbance rejection fit-
ness

(28)

where reflects the relative importance of setpoint tracking
versus disturbance rejection. Here, we use a multiplicative,
rather than additive, combination of and to avoid the
potential problem of assigning a high total fitness to an actuator
setting having high setpoint tracking fitness but essentially zero
disturbance rejection fitness, or vice versa.

Our formulation for determining fitnesses assumes the
following:

1) monotonic steady-state relationship between each input
(control and disturbance) and output, i.e., no gain reversal;

2) system is bounded input, bounded output (BIBO) stable for
each operating condition to be considered;

3) system is multi-input, single output (MISO).
Given that these assumptions are satisfied for the thermal

management system, we define and as follows.
1) Definition IV.1 (Setpoint Tracking Fitness): Given an ac-

tuator setting , operating condition , and its corresponding
steady-state output , let and be the vector of
maximum and minimum allowable control inputs, respectively.
We then define

(29)

(30)

where and are the open-loop responses to step
inputs from to and , respectively. The setpoint tracking
fitness is defined by

(31)

where is a weighting function.
The fitness function defined in (31) represents the capability

of the system, around a particular actuator setting and operating
condition, to influence the output (and therefore track setpoints)
under the saturation constraints of the actuators. The weighting
function is used to place emphasis on the transient re-
sponse. In this paper, we use

(32)

which reflects the importance of a fast initial response.
For disturbance rejection fitness recognizing the fact that

the capability of disturbance rejection is favorable when the ac-
tuators have high authority in influencing the output and the dis-
turbances have low authority in influencing the output, we give
the following definition for disturbance rejection fitness.

2) Definition IV.2 (Disturbance Rejection Fitness): Given
, , and the corresponding steady-state output ,

Fig. 8. Comparison of feasible and optimal (diamonds) actuator settings for
various operating conditions.

let and be the vector of unit step disturbances to the
system, in the direction of increasing and decreasing output, re-
spectively. We then define

(33)

(34)

where and are the open-loop responses to step
inputs from to and , respectively. The disturbance re-
jection fitness is defined by

(35)

where is a weighting function, and and are defined
in Definition 4.1.

Qualitatively, the numerator in captures the same system
properties as , namely the ability of the actuators to impart
changes to the system output, whereas the denominator captures
the ability of the disturbances to impart changes to the output.

Using the proposed fitness function, the resulting optimal ac-
tuator settings are highlighted in Fig. 8 (optimal actuator settings
are denoted by diamonds) for various speed and load conditions
of the coolant loop, when the temperature setpoint is 90 C, with
the cooling water at a temperature of 20 C and flow rate of
0.4 kg/s. In this case, we choose and 30 s in (28)
and (32). Consistent with intuition, the proposed fitness func-
tion suggests that it is advantageous to have the heater on at
low power, off at high power, and at an intermediate PWM state
somewhere in between. The proposed fitness function provides
a metric to quantify the optimal transition point from having the
heater fully on to having it fully off. This results in a strategy
where the mixing valve (the fast actuator) is kept away from its
saturation limits ( and ). However, note that
in all three cases, the optimal mixing valve position is not pre-
cisely at the middle of its operating range. Instead,
the optimization takes the system nonlinearity into account by
evaluating the proposed fitness function.
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B. Implementation of the Feedforward Control Design Via
Support Vector Classification

The optimization described in the previous section must
be carried out offline, since the requirement of simulating
the system far exceeds our online computational capability.
Therefore, an efficient and accurate means of storing and
retrieving optimal actuator settings is required for the online
determination of the feedforward control input, . This could
be done with a four-dimensional lookup table with inputs of

, , , and (and an additional dimension for if
setpoint variations are large enough) and outputs of and

. With this method, a very coarse lookup table with only
three values for each variable amounts to 81 actuator settings
that need to be maintained.

However, note that there exists a large set of operating condi-
tions in which the heater is optimally either fully on or fully off,
and a relatively small range in which the optimal actuator setting
is somewhere in between. We propose a support vector machine
(SVM) classification to improve the efficiency of the feedfor-
ward control implementation while preserving the accuracy.

In order to perform the classification, we cast each operating
condition as a four-dimensional vector , where

(36)

A set of ( in our case) training operating condi-
tions , , is generated, and the corresponding op-
timal actuator settings are calculated (using the dynamic system
model to calculate fitnesses) and assigned to one of the fol-
lowing three sets:

heater is optimally off;

heater is optimally on;

remaining operating conditions.

To derive an SVM classification that effectively sorts op-
erating conditions into these sets, we use the following RBF
kernel:

(37)

and classifier function

(38)

Here, is a tuning parameter, and represent weights ap-
plied to the points selected as support vectors, as determined
by the SVM algorithm. For this application, DTREG software
[18] (which includes software for decision trees, support vector
machines, and logistic regression) is used to compute the sup-
port vectors and corresponding . All of the training data be-
longing to or were used as inputs, and the software se-
lected 40 of these training points as support vectors, leading to
40 non-zero whose signs depend on which set ( or ) the
corresponding training data point belongs to.

TABLE III
SUMMARY OF BENEFITS OF SUPPORT VECTOR CLASSIFICATION

Once this classification is performed, the feedforward control
law for the heater is implemented as

(39)

where and are thresholds that minimize the number of
misclassified training points.

Once the heater input has been set, a unique bypass ratio
can be determined that will achieve the desired setpoint at steady
state.

The support vector algorithm used here provides a better com-
bination of accuracy and computational simplicity than a lookup
table does, as summarized in Table III. Here, we compare the use
of the SVM method with the alternative method of gridding the
space of , then basing actuator settings on whichever cell in
the grid happens to belong to. Note that we are counting the
number of stored scalar variables in the middle column (for ex-
ample, an actuator setting, having both a heater and valve com-
ponent, counts as two). Accuracy is computed as the percent
of random validation points that are classified correctly. A val-
idation point is said to be correctly classified if the computed
actuator setting (based on whichever method is being consid-
ered) falls into the same class ( , , or ) as the optimal
actuator setting. As with the training data, the optimal actuator
settings for all of the validation data points are computed using
the model.

C. Feedback Control Design

Having shown the procedure for designing and implementing
and , we now turn to and . Because the mixing

valve possesses significantly greater dynamic authority than the
heater, it serves as the primary mechanism for feedback. In fact,
the role of the heater in feedback is so minimal, as we shall later
justify in simulations, that with the appropriate value of , we
can take . A simple, but effective, feedback law for the
mixing valve was designed in the following manner:

1) initially, a full-order, LQG control design was performed,
resulting in a full-order compensator , following
[17];

2) examination of showed that could be ap-
proximated reasonably closely using a simple PI controller,
yielding a simple and manageable feedback control law for
implementation in the test cell;

3) filter was augmented to this resulting PI controller in order
to reduce the gain of the controller at high frequencies
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Fig. 9. Closed-loop simulation results for a 10 C setpoint change (from 90 C to 100 C) with only the mixing valve for feedback.

(making the closed-loop system more robust to delays
and unmodeled dynamics), while maintaining high gain at
middle and low frequencies.

The final feedback controller for this system is a simple PI
controller + lag filter of the form

(40)

1) Remark IV.1: Since the proposed control strategy will,
in general, use both actuators simultaneously, it is theoretically
possible to encounter a situation in which (routing all
flow through the heat exchanger) and . For this system,
since none of the optimal actuator settings are at or near ,
this scenario is not likely to happen for a sustained period of
time. However, a safeguard strategy can be put in place to deal
with transient events in which this failure scenario is detected.
In our case, a lower bound of is imposed. In addition,
a flow switch exists in the hardware, which shuts the heater off
when minimal flow through the heater circuit is detected.

V. SIMULATION AND EXPERIMENTAL VALIDATION

With a combined feedforward/feedback controller in place,
the performance of the system is evaluated using both model-
based simulation and experimental validation. This new control
strategy is compared to the baseline control strategy, which
utilizes only one actuator at a time, using the mixing valve
for decreasing and the heater for increasing .
Since the baseline controller is a proprietary product based on
an off-the-shelf PI control scheme, not all of its features can

be replicated in simulation. However, its basic structure is as
follows:

(41)

(42)

(43)

This controller will be used in our simulation study to provide
a benchmark.

Fig. 9 shows the numerical simulation results of the closed-
loop system with different feedforward actuator settings. Here,
the impact of the proper choice of feedforward actuator set-
ting on transient system performance is illustrated in a medium
power setting, where it is optimal to have the heater fully on
(4.5 kW). In Fig. 9, we see that actuator setting can greatly af-
fect the ability to track changing setpoints. With the new control
strategy and the optimal actuator setting, the 10 degree tempera-
ture rise occurs faster than with the baseline strategy. Addition-
ally, because the new strategy relies on the mixing valve as the
primary feedback mechanism, it results in faster settling of tran-
sients after the setpoint is reached, whereas the baseline strategy
switches between using the heater (with large thermal inertia)
and the valve, and results in significant transients.

Because our implemented control strategy relies on the valve
alone for feedback control , which has proven effec-
tive for appropriate actuator setting selection, it is worth com-
paring responses when the heater is used in the feedback loop as
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Fig. 10. Closed-loop simulation results for a 10 C setpoint change (from
90 C to 100 C) with both the valve and heater active in the feedback loop.

Fig. 11. Engine test cell setup.

well. Fig. 10 shows that use of the heater for feedback does im-
prove the response for suboptimal feedforward actuator settings
but not significantly when the feedforward is selected optimally
according to the proposed fitness function of Section IV. Plots
presented in this section all refer to the coolant loop, but the
trends in oil loop performance are the same.

The control strategy was also tested experimentally. The
experimental setup consisted of both the oil and coolant loops
set up in an engine test cell, along with the engine and dy-
namometer. The control algorithm was implemented as a
MATLAB function that was called by the test cell’s data acqui-
sition system (Atlas), which handles the inputs (thermocouple
voltage inputs) and outputs (current supplied to the heater and
valve). A photograph of this experimental setup is shown in
Fig. 11.

Experimental results show a significant advantage in using
the new control design over the baseline, off-the-shelf con-
troller. Fig. 12 shows the RMS error between the temperature
and setpoint as well as the percentage of time spent outside
control specifications for both the new control design and the
baseline, over a wide range of testing conditions.

1) Remark V.1: For this application, RMSE and time spent
outside control specifications are our only two performance
metrics, which the new control methodology succeeds in im-
proving upon. However, the new control methodology does
result in a larger amount of power expended by the heater,
which represents a tradeoff that may need to be made in other

Fig. 12. Performance comparison of new and baseline controllers, as measured
by RMSE and percent of time spent outside of control specifications (two orig-
inal metrics for assessing control quality).

Fig. 13. Dynamometer results for a sweep of step inputs at medium
power—new controller.

thermal management applications where energy conservation
is paramount.

Fig. 13 shows the time traces for a sequence of step inputs
at a 3000 rpm, 100 N m operating condition for the new con-
trol system and baseline control system, respectively, demon-
strating that the new controller produces better results over a
wide range of testing conditions. Additionally, the model pre-
diction in Fig. 13 matches the actual response closely for the
new control strategy, illustrating the fidelity of the model for
use in control design and analysis.

VI. PERFORMANCE SENSITIVITY AND RECALIBRATION

PROCEDURE

In order for the thermal management system to be effective
in a testing environment in which many different engines may
be tested on the same dynamometer, the controller design must
either be robust to variations in engine parameters or be easily
recalibrated when a change is made.

In this section, we consider the following three main sets of
engine parameters:

1) heat rejection coefficients;
2) heat transfer coefficients;
3) engine block and fluid masses.
Consider the case when an existing engine is replaced with

a less efficient one, which rejects more heat to coolant and oil.
If the variation in engines is large enough, there will exist oper-
ating conditions where the optimal actuator settings for the new
engine will be exactly the opposite of the optimal settings for
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Fig. 14. Optimal versus nominal control for a -10 degree setpoint change with
higher than expected heat rejection.

the original engine. The consequences of this parameter vari-
ation are shown in Fig. 14, where “nominal actuator settings”
and “optimal actuator settings” refer to the controller designed
using the original heat rejection coefficients and the adjusted co-
efficients, respectively. The need to recalibrate the feedforward
control is demonstrated in Fig. 14, where reoptimizing yields a
favorable tradeoff between temperature decrease and tempera-
ture increase capability.

On the other hand, with 20% variation in heat transfer co-
efficients or masses (engine block and fluid), the closed-loop
performance is essentially unchanged with recalibration. In all
cases, the feedforward commands, remain exactly the same,
whereas the feedback gains vary by less than 5%.

1) Remark VI.1: Through simulation, we have demonstrated
the benefits of recalibrating the feedforward control when an
engine change is made. However, recalibrating the full feedfor-
ward map for a different engine could result in a tedious data
collection and optimization task. To simplify this task, we note
that the system model with and as inputs is dependent on
the heat rejection coefficients , the model with and
as inputs is not. This fact allows us to recast the feedforward
control as a function of and , which is independent of the
engine, after which the recalibration can be performed by iden-
tifying the heat rejection coefficients .

To recalibrate the heat rejection model, we treat the closed-
loop system, with and as inputs, as invariant for a given

and . In this case, for small perturbations in speed and
load, the closed-loop system may be represented as a linear para-
metric model for , , and

(44)

(45)

The model facilitates the identification of , , and using
a recursive least squares algorithm. For this recalibration, it is
assumed that the change in under a change in engines is
minimal.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed and validated a dynamic
model for a thermal management system that has guided a
model-based control design. This design has proven to yield
significant performance advantages over the baseline. In partic-
ular, we have explored the area of overactuated systems in the
presence of hard saturation limits and different dynamic actu-
ator authorities, and have proposed a novel method to design
the feedforward controller. Further research and development
will focus on optimal control of overactuated systems, as well
as extending the proposed design framework to more general
cases.

APPENDIX

A two-step engine parameter identification procedure will be
described in this appendix, to complement the discussion in
Section II. First, steady-state data is used to identify heat transfer
parameters and the coefficients for the laws governing heat re-
jection from the engine . Then transient data is used to iden-
tify mass parameters.

Recalling the notation in Section II, we cast the steady-state
and transient parameters in vectors and

(46)

and

(47)

At steady-state, the equations associated with the engine sub-
system become

(48)

(49)

(50)

(51)

Using (50) and (51), we may express the engine states
and in terms of the measured states and as

(52)

where

(53)

(54)

(55)

Substituting (52) into (48) and (49), we have 2 steady-state
equations that relate , , and to through
13 parameters (5 heat transfer parameters and 8 heat rejection
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parameters). The steady-state equations do not lead to a linear
parametric model. As we did for the heat exchanger validation,
offline optimization was used to identify unknown parameters.

Having identified the coefficients to the heat rejection law, we
were able to estimate in terms of engine speed and load. The
availability of this input and the knowledge of system flow rates
( ) allows us to treat the engine subsystem as a linear system,
with taken as parameters, where the transient parameters
contained in may be identified.

This linear engine subsystem model may be represented in
the form of a 4x2 transfer function matrix, partitioned as

(56)

where and represent the coolant and oil engine outlet
temperatures, respectively, is a 4 transfer function matrix,

and represent the coolant and oil engine inlet temper-
atures, and and represent , calculated according to
(13), using . The transfer function matrix contains a
total of 24 coefficients which may be identified using a standard
least squares technique. We cast these coefficients into a vector
. Each element in is related to the original physical parameters

in by known but nonlinear relations. Note that has
dimension of 24 while has a dimension of 4. There-
fore, there is no one-to-one mapping between and
from which can be determined. For our application,

is determined by minimizing

(57)

where is the vector resulting from applying standard least
squares identification to (56).
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