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a b s t r a c t

Computationally efficient algorithms are critical in making Model Predictive Control (MPC) applicable
to broader classes of systems with fast dynamics and limited computational resources. In this paper,
we propose an integrated formulation of Perturbation Analysis and Sequential Quadratic Programming
(InPA-SQP) to address the constrained optimal control problems. The proposed algorithm combines the
complementary features of perturbation analysis and SQP in a single unified framework, thereby leading
to improved computational efficiency and convergence property. A numerical example is reported to
illustrate the proposed method and its computational effectiveness.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Model Predictive Control (MPC) is a promising control tech-
nique with conspicuous advantages, such as the capability to deal
with constraints (Mayne, Rawlings, & Scokaert, 2000) and hybrid
systems. It has foundwide acceptance in industry, especially in the
chemical and process industry (Qin & Badgwell, 1997). Since a con-
strained optimization problem has to be solved repeatedly on-line
for each control update, the feasibility and effectiveness of theMPC
is often limited to systemswith slow dynamics and adequate com-
putational resources. Improvements in computational algorithms
of MPC can expand the range of applicability of MPC to systems
with fast dynamics and limited computing power.
Several methodologies and algorithms have been proposed

in the literature to reduce the on-line computational effort.
For example, computational time reduction can be achieved via
model reduction techniques (Dufour, Toure, Blanc, & Laurent,
2003; Hovd, Lee, & Morari, 1993), or by using regional linear
approximation of nonlinear models (Garcia, 1984; Zheng, 1997)
and exploiting off-line polyhedral partitioning of the state space

I This work is supported in part by NSF ECS-0501284 and ONR N00014-05-1-
0537. The material in this paper was partially presented at Conference on Decision
Control, NewOrleans, 2007. This paperwas recommended for publication in revised
form by Associate Editor Torkel Glad under the direction of Editor Andréw R. Teel.
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E-mail addresses: ghaemi@umich.edu (R. Ghaemi), jingsun@umich.edu (J. Sun),

ikolmano@ford.com (I.V. Kolmanovsky).

and storing the obtained solution for piecewise affine linear
systems (Bemporad, Morari, Dua, & Pistikopoulos, 2002; Johansen,
Petersen, & Slupphaug, 2002). In addition, the computational time
can be lowered by reducing the number of constraints through
approximation of constraints by the well-known geometric object
like an ellipsoid or a polytope (VanAntwerp & Braatz, 2000). An
alternative approach is to construct a functional approximation of
the MPC law off-line (Canale, Fagiano, & Milanese, 2009).
On the other hand, approximating the solution of the MPC op-

timization problem using a pre-computed nominal optimal solu-
tion can also reduce the on-line MPC computational requirements.
If the current state is sufficiently close to the initial condition as-
sociated with the nominal solution, the optimal solution corre-
sponding to the current state can be represented as the perturbed
solution using neighboring extremal approximation. The nomi-
nal solution can be pre-computed off-line for different regions, or
it can be computed on-line between two sample instances, us-
ing state predictions (Gholami, Gordon, & Rabbath, 2005; Milam,
Franz, Hauser, & Murray, 2005). The real-time approximation of
the perturbed solution for continuous-time systems has been con-
sidered in several papers (Kugelmann & Pesch, 1990; Malanowski
& Maurer, 1996). For discrete-time systems, the neighboring ex-
tremal method (Bryson & Ho, 1975) can be used to calculate the
closed-form perturbed solution for the cases with no constraints.
However, the authors of this paper are not aware of analogous re-
sults for discrete-time systems in the presence of constraints, ex-
cept for (Büskens & Maurer, 2001), which converts the optimal
control problem into a nonlinear programming problem.
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In this paper, we introduce amethod, and thereafter we refer to
as the Integrated Perturbation Analysis and Sequential Quadratic
Programming (InPA-SQP) approach, for the MPC implementation.
It synergistically combines the solutions derived using perturba-
tion analysis and SQP to solve the optimization problemwith initial
state perturbation and input/state constraints. The development of
this InPA-SQP method is accomplished in three steps.
First, we consider the problem of solving the perturbed optimal

control problem for small perturbations that do not change the
active constraints set. For cases involving large perturbations in
the initial condition, an algorithm similar to active set method is
proposed, which calculates intermediate initial states and their
corresponding approximations of optimal perturbed solution to
handle the change in the activity status of the constraints.
The intermediate initial states are considered as new ‘‘nominal

solutions’’ at each successive application of the perturbation
analysis. Since the error can accumulate in the iterative process, in
the third step a special formulation of SQP with active set method
being used to modify the solution to compensate the error and
achieve optimality. We thus integrate the perturbation analysis
and SQP into a single unified framework which provides accurate
and fast calculation of the optimal solution. This unification
is dependent on a special formulation of the SQP algorithm
(presented in Section 4) that allows us to represent the solution
of the SQP problem by a formula similar to that of the perturbation
analysis, thereby facilitating their seamless integration.
The proposed method adopts a different approach than those

of Borbow, Park, and Sideris (2006), Ferreau, Bock, and Diehl
(2006) and Zavala, Laird, and Biegler (2006) in the sense that
it is based on indirect (variational) approach using first-order
necessary conditions for optimality, rather than direct approaches
(Allgöwer, Findeisen, & Biegler, 2007). Introducing a suitable
switching structure, active inequality constraints can be handled
and the perturbed solution is calculated using the closed form
formulation in our proposed algorithm.
To illustrate the application of InPA-SQP in solving the

optimal control problem associated with the Model Predictive
Control (MPC), a ship steering problem with control constraints
is considered. A reduction in computing time, as compared to
the SQP, is demonstrated for this example without any loss in
performance.

2. Perturbation analysis for discrete-time optimal control
problem subject to constraints

In this section, we develop the perturbation analysis for a
discrete-time optimal control problemwith fixed ending time and
no terminal constraint. Consider the problem of minimizing a cost
function,

J[u] =
N−1∑
k=0

L(x(k), u(k))+ Φ(x(N)), (1)

over all control sequences u : [0,N−1] → Rm and all state vector
sequences x : [0,N] → Rn subject to the following constraints:

x(k+ 1) = f (x(k), u(k)), f : Rn+m → Rn; (2)

x(0) = x0, x0 ∈ Rn; (3)

C(x(k), u(k)) ≤ 0, C : Rn+m → Rl. (4)

It is assumed that functions L : Rn+m → R, Φ : Rn → R, f (x(·),
u(·)), C(x(·), u(·)) are twice continuously differentiable with
respect to x and u.Cu(k) is the partial derivative of C(x(k), u(k))
with respect to u at the time instant k. Ca(x(k), u(k)) is a
vector consisting of those elements of the vector C(x(k), u(k))
whose corresponding inequality constraints are active. That is,

Ca(x(k), u(k)) = empty vector if no inequality constraint is active
at the time instant k and Ca(x(k), u(k)) ∈ Rl

′

, if l′ (out of l)
constraints are active.Moreover, it is assumed that if the constraint
is active, Cau (x(k), u(k)) 6= 0.

Remark 1. If Cau (x(k), u(k)) = 0 or approaches zero, the algorithm
described in the sequel can be modified as shown in Ghaemi, Sun,
and Kolmanovsky (2008), which replaces Cau by a full row rank
matrix derived using the constraint back-propagation approach.

For simplicity, we treat the case l = 1 in this paper. The results
can be generalized to the case l > 1 without much difficulty but
the notations become more cumbersome.
The augmented cost, obtained by adjoining the constraints

(2)–(4), is:

J̄[u] = Φ(x(N))+
N−1∑
k=0

(H(k)− λ(k+ 1)x(k+ 1)) (5)

where:

H(k) = L(x(k), u(k))+ λ(k+ 1)Tf (x(k), u(k))

+µ(k)TC(x(k), u(k)), (6)

µ(k), λ(k+1) are the Lagrangemultipliers associatedwith (4) and
(2) at the time instant k respectively.
Let x(k), u(k), k ∈ [0,N] be the state and control corresponding

to the optimal solution with the initial condition x(0), hereafter
referred to as the nominal solution. If there is a perturbation δx(0)
in the initial state x(0), which does not change the set and the
time instants at which constraints are active, then the following
theorem gives the neighboring extremal solution to the optimal
control problem. By neighboring extremal solution, we refer to the
state and control sequences which satisfy the first order necessary
conditions for optimality when the initial state is perturbed. In
what follows, the subscripts u and x stand for the partial derivatives
of a function with respect to u and x, respectively.

Theorem 2. The neighboring extremal approximation of the solution
to the optimization problem, defined by the cost function (1) and
constraints (2), (4) and initial state x(0) = x0+δx(0), is x(k)+δx(k)
and u(k)+ δu(k), k ∈ [0,N], provided

Zuu(k) � 0 for k ∈ [0,N] (7)

for the nominal solution. Where1:

δu(k) = K ∗(k)δx(k), (8)

K ∗(k) = −[I 0]K0(k)
[
Zux(k)
Cax (k)

]
, (9)

and

K0(k) =
[
Zuu(k) Cau

T
(k)

Cau (k) 0

]−1
(10)

Zuu(k) = Huu(k)+ f Tu (k)S(k+ 1)fu(k),
Zux(k) = Zxu(k)T = Hux(k)+ f Tu (k)S(k+ 1)fx(k),
Zxx(k) = Hxx(k)+ f Tx (k)S(k+ 1)fx(k),

(11)

and Ca(k) = C(x(k), u(k)) if the constraint is active and it is empty
if the constraint is not active at the time instant k. Moreover, the zero
matrix appearing in Eqs. (9) and (10) is empty if the constraint is not

1 Following the notation used in Bryson and Ho (1975), Huu , Hux , Hxx , Φxx , etc.,
denote the partial derivative with respect to x and/or u. Namely, Huu = ∂2H

∂u2
,

Hux = ∂
∂x (

∂H
∂u
T
), etc. The variables Zuu , Zux , Zxx are the exception, and they are defined

by (11).
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active at the time instant k. S(k) in Eq. (11) is given by:

S(k) = Zxx(k)− [Zxu(k) Cax
T
(i)]K0(k)

[
Zux(k)
Cax (k)

]
,

k = 0, . . . ,N − 1
S(N) = Φxx(N).

(12)

Remark 3. Theorem 2 allows one to calculate a first-order
approximation to the optimal solution in the form of x(k) + δx(k)
and u(k) + δu(k), without solving an optimization problem. δx(k)
and δu(k) are calculated using the above recursive updates.

Proof. Given space limitations, we only provide a sketch of the
proof. Consider the second order expansion of the augmented cost
function J̄ around the nominal solution. Note that the first order
variation satisfies δ J̄ = 0. The neighboring extremal solution
minimizes the following cost:

δ2 J̄ = 1/2δx(N)TΦxx(N)δx(N)

+ 1/2
N−1∑
k=0

[
δx(k)
δu(k)

]T [
Hxx(k) Hxu(k)
Hux(k) Huu(k)

] [
δx(k)
δu(k)

]
, (13)

subject to the linearized constraints:

δx(k+ 1) = fx(k)δx(k)+ fu(k)δu(k), (14)
δx(0) = δx0, (15)

Cax (k)δx(k)+ C
a
u (k)δu(k) = 0 . (16)

The Karush–Kuhn–Tucker (KKT) conditions lead to:

δλ(k) = H̃δx(k)(k), k ∈ [1 N − 1], (17)

H̃δu(k)(k) = 0, k ∈ [0 N − 1], (18)

δλT(N) = δx(N)TΦxx(N). (19)

where H̃ is the Hamiltonian function corresponding to the
optimization problem (13) subject to constraints (14)–(16). These
conditions, after algebraic manipulations, result in[
δu(k)
δµ(k)

]
= −K0(k)

[
Zux(k)
Cax (k)

]
. (20)

Moreover, it can be proved that if Zuu(k) is positive definite, the
optimizationproblem (13)–(16) is convex and there exists a unique
perturbed solution. �

Remark 4. When the algorithm is used in the MPC context, as
will be elaborated on later, repeated feasibility of the optimization
problem (1)–(4) has to be assumed. This feasibility issue is in no
way unique to our approach and method. If feasibility becomes
an issue, any method to guarantee feasibility, including treating
constraints as soft, extending the horizon or appropriately defining
the terminal set, can be used to assure feasibility.

3. Augmented perturbation analysis for handling large pertur-
bations

Theorem2 is derived under the assumption that the set of active
and inactive constraints remain unchanged after perturbation.
To deal with the initial state variation that is large enough to
change activity status of constraints, we can analyze the perturbed
Lagrange multipliers associated with the inequality constraints
and the perturbed value of C(x(k), u(k)) to determine the status
of constraint activity after perturbation. The following proposition
provides the relation between the initial condition perturbation
and the Lagrange multipliers that will allow us to predict the
constraint activity change.

Proposition 5. If the initial condition x(0) is perturbed by δx(0), the
optimal Lagrange multiplier perturbation δµ(k) at the time instant k
when the constraint is active can be approximated as follows:

δµ(k) = −[0 I]K0(k)
[
Zux(k)
Cax (k)

]
Υ (k)δx(0),

Υ (k) =
k−1∏
i=0

M(i),

M(i) := fx(i)+ fu(i)K ∗(i), i = 0, . . . , k− 1.

(21)

In addition, if the constraint is not active, then the constraint
perturbation can be expressed as

δC(x(k), u(k)) = (Cx(k)+ Cu(k)K ∗(k))Υ (k)δx(0), (22)

with K0(·) and K ∗(·) being defined as in Theorem 2.

Proof. By combining Eqs. (20), (8) and (14), the expression (21)
can be derived. (22) follows directly by taking partial derivatives
of C(·, ·) and noting that δx(k) = Υ (k)δx(0). �

Note that the perturbed optimal Lagrange multiplier µ1(k) is:

µ(1)(k) = µ(k)+ δµ(k), k ∈ Ka (23)

where µ(·) is the nominal Lagrange multiplier and δµ(·) is
calculated from (21). If µ(1)(k) ≥ 0, one can conclude that
the constraint will remain active at the time k for the perturbed
solution. Otherwise, it may become inactive because the Lagrange
multiplier must always be greater than or equal to zero. Similarly,
using Eq. (22), the value of the constraint function corresponding
to the perturbed optimal solution is:

C(x(1)(k), u(1)(k)) = C(x(k), u(k))+ δC(x(k), u(k)), (24)

where x(1)(k) and u(1)(k) are the following linear approximations
of the optimal solution

x(1)(k) = x(k)+ δx(k), u(1)(k) = u(k)+ δu(k). (25)

If C(x(1)(k), u(1)(k)) < 0, the constraint remains inactive. Other-
wise, it will become active.
Using Proposition 5, we propose the following algorithm to

approximate the optimal solution when initial state perturbations
change the status of the constraints activity:
1- Set i = 0, δx(0)(0) = δx(0) and x0(0) = x(0);
2- If constraint is active at the time instant k, compute αik as:

αik =
µ(i)(k)
δµ(i)(k)

. (26)

If it is inactive at k, compute αik as

αik = −
C(x(i)(k), u(i)(k))
δC(x(i)(k), u(i)(k))

, (27)

where δC(x(i), u(i)) is calculated by (22), all the matrices used in
(26) should be evaluated at x(i)(k) and u(i)(k), using (21) and (23)
at the ith iteration. Then find the smallest αik ∈ [0, 1] such that
the perturbation αikδx(i)(0) changes the status of the constraint at
least at one instant, namely:

αi = min
k
{αik, k = 0, . . . ,N − 1, 0 ≤ αik ≤ 1}.

If, for all k ∈ [0 : N], αik < 0 or αik > 1, set αi = 1.
3- Compute an approximation to the perturbed optimal solu-

tion δx(i)(·), δu(i)(·) for the intermediate perturbation min{αi, 1}
δx(i)(0) and initial condition x(i)(0) using the perturbation analysis
developed in Section 2.
4- If αi = 1, terminate. Otherwise:
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X2

X1

x0(0) = x(0)

x0(0) + α0δ x0(0)

x1(0) + α1δ x1(0)

x(0) + δ x(0)

Fig. 1. Intermediate initial states which handle the large perturbation.

• If αi = 0, change the activity status of the corresponding
constraint accordingly. That is, if αi corresponds an active
(inactive) constraint, set the constraint inactive (active). Go to
step 2.
• If αi < 1 set

δx(i+1)(0) = (1− αi)δx(i)(0),
x(i+1)(0) = x(i)(0)+ αiδx(i)(0),
i = i+ 1.

Go to step 2.

Fig. 1 illustrates the procedure, where the intermediate points
are highlighted. Note that the intermediate perturbed initial
states lie on the line connecting x(0) to x(0) + δx(0). These
intermediate states are nominal states at which Theorem 2
can be repeatedly applied to derive approximations to the
optimal solution. Therefore the perturbed optimal control solution
corresponding to a large perturbation δx(0) can be approximated
by augmenting the nominal solution as:

u(k)+
∑
i

δui(k).

4. Sequential quadratic optimal control based on active set
method

In this section, we formulate the Sequential Quadratic Program-
ming (SQP) method for the optimization problem (1) as a pre-
lude to introducing the InPA-SQP approach in the next section.
This formulation is different from the one of Glad and Johnson
(1984) in the sense that it reduces to a recursive Riccati equation
instead of solving a system of recursive linear equations. When
there is no constraint, this formulation becomes the one proposed
in McRaynolds and Bryson (1965). Therefore the SQP method pre-
sented in this section can be considered as an extended version
of McRaynolds and Bryson (1965) to the cases with input-state
constraints.
We start with a feasible initial guess of u(k), x(k), λ(k), andµ(k)

such that they satisfy Eqs. (2)–(4) and the following equations

λ(k) = Hx(k)(k), k = 1, . . . ,N − 1,
λ(N) = Φx(N).

(28)

Note that since the initial guess is not an optimal solution, it may
not satisfy the optimality condition

Hu(k)(k) = 0. (29)

The inequality constraints, when active, are treated as the
equality constraints during the active set iteration. The corrections

δu(k) and δx(k) are obtained as the solution of the following
equality constrained quadratic programming problem (QP) for the
linearized system

min
δu(·),δx(·)

∆J̄

subject to: δx(k+ 1) = fx(k)δx(k)+ fu(k)δu(k),
δx(0) = 0,
Cax (k)δx(k)+ C

a
u (k)δu(k) = 0,

(30)

where

∆J̄ =
N−1∑
k=0

HTu(k)(k)δu(k)+ 1/2δx(N)
TΦxx(N)δx(N)

+ 1/2
N−1∑
k=0

[
δx(k)
δu(k)

]T [
Hxx(k) Hxu(k)
Hux(k) Huu(k)

] [
δx(k)
δu(k)

]
. (31)

Theorem 6. Let u(k), x(k) and λ(k) be the control, state and co-
state, respectively, that satisfy (2)–(4) and (28) and µ(k) be the
Lagrange multiplier associated with the inequality constraint. In
addition, assume that Zuu(k), defined in (11), is positive definite. Then
the solution of the QP with equality constraint (30) is given by

δu(k) = −[I 0]K0(k)
[
Zux(k)δx(k)+ f Tu (k)T (k+ 1)+ Hu(k)

Cax (k)δx(k)

]
δx(k+ 1) = fx(k)δx(k)+ fu(k)δu(k)
δx(0) = 0

(32)

where K0(k), Zuu(k), Zux(k) and Zxx(k) are defined in (10) and (11).
Moreover, thematrices S(·) and T (·) are calculated using the following
backward recursive equations

S(N) = Φxx(N),

S(k) = Zxx(k)− [Zxu(k) Cax
T
(k)]K0(k)

[
Zux(k)
Cax (k)

]
,

T (N) = 0,

T (k) = f Tx (k)T (k+ 1)

− [Zxu(k) Cax
T
(k)]K0(k)

[
f Tu (k)T (k+ 1)+ Hu(k)

0

]
.

(33)

Using Theorem 6, the active set method, which is introduced
in Flecher (1981), may be implemented as follows:
First, we find the minimum value of 0 < α ≤ 1 such that there

exists a time instant k at which C(x(k), u(k)) < 0 and

C(x(k)+ αδx(k), u(k)+ αδu(k)) = 0 (34)

where δu(k) and δx(k) are calculated using Eq. (32). If there exists
such α that satisfies the above condition, then the corresponding
time instant at which the inactive constraint becomes active is
added to active constraints and the equality constraint problem
(30) is solved at the next iteration with the initial solution x(k) +
αδx(k) and u(k)+ αδu(k).
Otherwise the sign of Lagrange multipliers µ(k), calculated

using Eq. (20), is examined. If all the Lagrange multipliers µ(k)
are nonnegative, then the necessary optimality conditions are
satisfied. If, in addition, Zuu(k) � 0 then we have reached a local
optimal solution. In the other case, one inequality constraint with
negative multiplier is deleted from the set of active constraints.

5. InPA-SQP approach

In this section we introduce a method that unifies the
perturbation analysis and SQP to achieve fast and accuratemethod
for calculation of the perturbed optimal solution, when the
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Table 1
Constant parameters of ship model.

Parameter Value Unit

a 1.084 1/min
b 0.62 min/rad2

c 3.553 1/min2
r1 −0.0375 nm/rad
r3 0 Nmmin2/rad3
f 0.86 1/min
W 0.067 nm/rad2

nominal optimal solution is given. This algorithm combines the
computational advantages of the perturbation analysis approach
and the capability of the SQP to enforce the condition Hu(k) = 0.
Let x(·), u(·) be the nominal solution for x(0) = x0. As the first

step to calculate the optimal solution corresponding to the first
intermediate initial state x1(0) = x0 + δx1(0), we assume that the
perturbation δx1(0) is small enough so that the activity status of
the constraints does not change over the time interval [0,N − 1].
In this case, because x(·) and u(·) satisfy an approximation to
the optimality conditions, we can use Theorem 2 to calculate the
optimal solution corresponding to x(0)+ δx1(0).
When moving to the next intermediate state, the neighboring

optimal solution for x(1)(·) can be taken as initial estimate for
nominal optimal solution and one can perform SQP iterations
using the algorithm described in Section 4. Therefore, for the
intermediate point, one can first solve the optimization problem
(30) using the SQP solution (32), then approximate the solution for
the next intermediate state based on the perturbation analysis.
Instead of applying the above two-step method, we introduce

the unifying approach which exploits the SQP formulation to
modify the large perturbation analysis. Comparing the two
optimization problems (13) and (30), we note that the solution to
the problem (30) is identical to that of (13) if we set Hu(k) = 0
and δx(0) = δx0 in (32) and (33). Based on the above observation,
we propose the following formulation which merges the two
optimization steps into one:

δu(k) = −[I 0]K0(k)
[
Zux(k)δx(k)+ f Tu (k)T (k+ 1)+ Hu(k)

Cax (k)δx(k)

]
.

δx(k+ 1) = fx(k)δx(k)+ fu(k)δu(k),
δx(0) = δx0.

(35)

The δu(·) calculated using (35) will not only correct for the initial
state perturbation, but also move x(·) and u(·) in the direction
suggested by SQP to enforce Hu(k) = 0 condition. With the
perturbation analysis approach of Section 3, modified using (35),
a more computationally efficient InPA-SQP algorithm is obtained
as compared to solving SQP for initial condition x(0) from scratch.

Remark 7. If we consider the equality x(0)−x0 = 0 as an equality
constraint with λ(0) being the associated Lagrange variable
calculated using (28), thenwe can reformulate the augmented cost
function by adding the term λ(0)(x(0) − x0). If the SQP method
is applied to the reformulated problem, the equality constraint
δx(0) = x0 − x(0) appears in the Eq. (32) and forms the Eq.
(35). Therefore, the InPA-SQP is the result of applying SQP on
the reformulated problem and consequently benefits from the
convergence properties that SQP provides.

6. InPA-SQP for MPC implementation: An example

The InPA-SQP approach can be employed to reduce the com-
putational time of solving the optimal control problem associated
with MPC, compared to the conventional SQP-based approach.
According to the MPC strategy, at the time instant k, the state

of the system, x(k), is observed, the optimization problem (1)–(4)

is solved, and the first element of the optimal control sequence is
implemented as the control signal. At the time instant k + 1, the
state x(k+ 1) is observed and the same optimal control problem is
solved. Note that by the time instant k+1, the solution to the MPC
optimization problemwith initial state x(k) is available, which can
be exploited to improve the efficiency of optimization. Defining
dx(k) := x(k+ 1)− x(k) (36)
the solution of theMPC optimization problem for initial state x(k+
1) can be approximated using the solution for initial state x(k) and
the InPA-SQP method, dx(k).
As an example to illustrate the application of the proposed

algorithm, we consider a problem of steering a ship from an initial
position to a desired target position. The following ship model,
taken out from Casado, Fernandez, and Iglesis (2001), is used for
numerical simulation:

ẋ1 = x5 cos(x3)− (r1x4 + r3x34) sin(x3),

ẋ2 = x5 sin(x3)+ (r1x4 + r3x34) cos(x3),
ẋ3 = x4,

ẋ4 = −ax4 − bx34 + cur ,

ẋ5 = −fx5 −Wx24 + ut ,

(37)

where x1 and x2 are the ship position (in nauticalmiles (nm)) in the
X1−X2 plane, x3 is the heading angle (in radians (rad)), x4 is the yaw
rate (rad/min), and x5 is the forward velocity (nm/min). The two
control inputs are: the rudder angle ur (rad), and the propeller’s
thrust ut (nm/min2).
The model parameters are summarized in Table 1. With these

parameters, the ship has a maximum speed of 0.25 nm/min =
15 knots for a maximum thrust of 0.215 nm/min2. For maximal
rudder angle of 35◦, the stationary rate of turn is 1◦/s.
The discrete-timemodel of ship dynamics is derived using Euler

approximationwith sampling period T = 0.1 s. The target position
is described by a circle with a radius 0.1 (nm) around the origin.
To minimize the energy consumption during the maneuvering, we
define
L(x(k), u(k)) = 0.1ur(k)2 + 10ut(k)3/2

Φ(x) = 2000(x21 + x
2
2)

(38)

and with N = 140 as the length of horizon. The resulting MPC
optimization problem is

min
u(·),x(·)

139∑
k=0

(0.1ur(k)2 + 10ut(k)3/2)

+ 2000(x1(140)2 + x2(140)2) (39)
subject to constraints:

0.02 ≤ ur(k) ≤ 0.61 rad

−0.215 ≤ ut(k) ≤ 0.215 nm/min2.
(40)

The total number of optimization variables, including states
and inputs, for the length of horizon N = 140, is 978, which is
substantial from computational point of view. The initial optimal
solution for k = 0 is calculated off-line using SQP algorithm.
For a fair comparison, the formulation proposed in Section 4 is

implemented for SQP, which is equivalent to the InPA-SQP in the
absence of initial state perturbation. Simulations are performed on
a computer with Intel(R) CPU @ 1.83 GHz and computation time is
measured using CPU time and controller code is implemented in
Matlab.
Fig. 2 shows the ship trajectory in the X1 − X2 plane and the

propeller’s thrust using both SQP and InPA-SQP for initial condition
of x(0) = [3, 0, π/3, 0, 0.25]. The two solutions overlap in Fig. 2
as they are nearly identical. The computational time of the two
methods are compared in Fig. 3. The InPA-SQP results in almost
280% reduction in the average computational timewhen compared
with the SQP.
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Fig. 2. Implementing MPC using SQP with active set method and InPA-SQP
approach on ship.
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Fig. 3. Computational time of SQP with active set method and InPA-SQP approach
for ship steering problem.

7. Conclusion

In this paper we proposed a numerical optimization algo-
rithm, referred to as Integrated Perturbation Analysis and Sequen-
tial Quadratic Programming (InPA-SQP), for treating discrete-time
optimal control problems for nonlinear systems with pointwise-
in-time constraints. This method, based on combining com-
plementary features of Perturbation Analysis and Sequential
Quadratic Programming, is primarily intended for MPC applica-
tions, where the requirements to compute the optimal solution in
real-time can present a very tight constraint. A numerical exam-
ple has been reported which confirmed the improvements in the
computing speed of InPA-SQP versus SQP.
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