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Abstract

In this paper, we present a stable model predictive control method for discrete-time nonlinear systems. The standard MPC scheme is modified
to incorporate (1) a block implementation scheme where a sub-string of the optimized input sequence is applied instead of a single value;
(2) an additional constraint which guarantees that a Lyapunov function will decrease over time; (3) a variable implementation window that
facilitates the stability constraint enforcement. Stability of the closed-loop system with the proposed algorithm is established. Examples are
given to illustrate the effectiveness of the control scheme. The impacts of several key design parameters on the overall performance are also

analyzed and discussed.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) (Maciejowski, 2002), de-
spite the computational intensity associated with its on-line im-
plementation, has found many successful industrial applications
(Qin & Badgwell, 1997). Its intuitively appealing and flexible
formulation, together with its capability for dealing with con-
straints, nonlinearities, and hybrid systems has been a major
advantage. The main challenges of MPC, which include how
to ease the computational requirements and how to guaran-
tee stability, have also attracted attention of many researchers
and control practitioners (Bemporad & Morari, 1999, Chen &
Allgower, 1998, Lee, Kouvaritakis, & Cannon, 2002, Mayne,
Rawlings, Rao, & Scokaert, 2000).
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In the standard MPC implementation, a finite horizon open-
loop optimization problem is solved at each sampling instant,
using the current state as the initial condition. The optimiza-
tion results in a control sequence, the first element of which
is selected and then applied as the control input to the plant.
In repeating the process, the state used in the optimization is
re-initialized at each sampling instant, thereby providing a
feedback mechanism for disturbance rejection and reference
tracking. The designer can choose different cost functions and
receding horizon length in the optimization problem formula-
tion in order to meet different design objectives. State and input
constraints, whether they are pointwise-in-time or accumula-
tive, can also be accommodated with an added computation
burden.

The two major challenges associated with MPC schemes
are the computational intensity and stability. For systems with
nonlinear constraints, the numerical difficulties in solving the
optimization problem often represent road blocks to the real-
time implementation of MPC. However, advances in computing
technology and efficiency improvements in optimization algo-
rithms are easing the computational burden, and the real-time
implementation of MPC schemes is becoming more affordable
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as the cost of computer hardware decreases. The issue of
stability, on the other hand, has been recognized as a more
fundamental problem. Algorithms and mechanisms that assure
stability for MPC schemes have been actively pursued by the
control engineering community (Mayne et al., 2000). Thus far,
the key mechanisms used to guarantee stability for MPC fall
into two main categories: one is to extend the prediction hori-
zon, and another is to incorporate a proper penalty and/or to
impose certain constraints on the final state at the end of the pre-
diction horizon. Other strategies have also been proposed, such
as the dual mode control, which uses the MPC to steer the tra-
jectory into a terminal set inside which the control is switched
to a local stabilizing controller (Michalska & Mayne, 1993).

In this paper, our attention is mainly focused on the stability
of MPC schemes. Our research was motivated by the all-electric
ship reconfiguration control problem, where the system has to
be moved from one (damaged) state to another (safe opera-
tion) with limited available energy resource and within a given
time constraint. The unpredictable and adversarial operational
scenarios that the naval ships have to face in their reconfigura-
tion stage often render the open-loop based optimal trajectory
planning strategy insufficient and inflexible. The MPC, on the
other hand, has the capability to incorporate the state feedback
to reject disturbances and to ensure performance. Its ability to
deal with nonlinear constraints also makes it an ideal candidate
for the reconfiguration problem. Given the survival critical na-
ture of the naval ship reconfiguration problem, the stability of
the control system is an overriding requirement and cannot be
compromised.

It is with the motivation to develop efficient and safe naval
ship reconfiguration algorithms that we investigate the perfor-
mance and stability of a novel MPC scheme, which we refer
to as block MPC (Sun, Chen, & Kolmanovsky, 2005). In the
proposed block MPC scheme, a string or a subsequence of the
control from each optimization run is applied to the system
instead of only the first element. An additional contractive
constraint, similar to that proposed in (de Oliveira Kothare &
Morari, 2000), is also enforced to guarantee that a Lyapunov-
like function is decreasing over time. The difference with
(de Oliveira Kothare & Morari, 2000) is that by allowing the
size of the string, referred to as the implementation window,
to vary in our approach, the enforceability of the constraints is
greatly enhanced. Stability of the closed-loop system with the
proposed MPC scheme is rigorously established in this paper,
and numerical simulation examples are provided to illustrate
the effectiveness of the proposed scheme. Another approach
to contractive NMPC has been proposed in a recent paper
(Alamir, 2006), which includes the horizon as an optimization
variable and, due to reformulation of the cost function, avoids
explicit use of a contraction stability constraint.

2. Block MPC scheme

Consider a class of nonlinear discrete-time systems described
by the following equation:

x(k+1) = fx(k), uk)), (D

where x is the state vector and u the input vector. Without loss
of generality, we also assume that x =0, u =0 is the equilibrium
of the system (1), and consequently f (0, 0) = 0. Suppose that
the standard MPC scheme is designed by solving the following
optimization problem at each time instant :

k+N,—1
minJ = min { Y L(x(i|k). u(i) + K (x(k + N, k)
ue) | &

subject to the dynamic equation (1)
and constraints x(i|k) € S, u(i) € U, 2)

where x(i|k) is the predicted state at i-step ahead using mea-
sured (or estimated) state x (k) and input u = {u(k), ..., u(k +
i —1)}).! % and % are admissible sets for the state and input,
respectively, and L(x, u) and K (x) are nonnegative functions
of (x, u) and x, respectively. In (2), N, is the prediction horizon
over which the performance of the control system is evaluated
and optimized, and the term K (x) reflects the penalty on the
terminal state. For the remainder of the presentation, we use
Z[k;.k,] to denote the string of variable z in the interval [k1, k2],
namely, z[k, k] 1= {z(k1), z(ki + 1), ..., z(k2)}.

To assure a meaningful MPC formulation, we make the fol-
lowing assumptions on the functions L and K:

e (A1) There exists asubset # C % such that L(x, u) > L(x, 0)
forany x € #,u € U.

e (A2)x=0¢€ int# and u =0 € int %, where int denotes
the interior of a set.

e (A3) There exist monotonically increasing functions /, s, with
1(0) = 5(0) = 0, such that L(x, 0)<I([[x]), K (x) <s(llx)
for any x € %.

e (A4) For any x € 4, there exists a function ¢ (r) such that
L(x,0)>q(]|x]]), where g(-) is monotonic in the interval
[0, r'] with ¢(0) = 0 for some r’ > 0.

Assumptions (A1)—(A4) are unrestrictive in general and can be
satisfied by most of usual MPC formulations.

Remark 2.1. For linear systems, only assumption (A2) is
needed to establish the subsequent results.

As in the standard MPC case, the string ux x+n,—1] 1S varied
within the input admissible set to minimize the cost function J
for (2). In contrast to the standard MPC which applies the first
element in the string of {u (k), u(k+1), ..., u(k+N,—1)} to the
control signal, we propose the following block MPC scheme:

Definition 2.1 (Block MPC). Let uf‘k’k +N,—1) be the opti-
mal sequence for (2) and N, be a fixed integer satisfying
I<N N, If

e (a) the first N. elements, i.e., the sub-string ufk Kt No—1] of
“Fk,k+N,.—1] are applied at time instants t =k, k+ 1, ..., k+

N, — 1 and

! The dependency of x(i|k) on u is omitted to simplify the notations.
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e (b) the optimization for (2) is repeated after N, steps at r =
k + N, with the new state x (k + N.),

then we refer to N, as the control implementation window and
the resulting control scheme as the N.-block MPC algorithm.

The block MPC scheme specified in Definition 2.1 has
similar properties to that of the regular MPC algorithm. In
fact, the N.-block MPC can be viewed as a hybrid control
scheme where the control update and optimization are car-
ried out over two different sampling intervals: 7 and N.T.
Like many other multi-rate sampling control systems, it has
the advantage of requiring less computing resource. The sav-
ing in the computational effort, however, may be achieved at
the cost of reduced disturbance rejection capability. Within
each control implementation window, the block MPC essen-
tially behaves as an open-loop control system, and as such
its inter-sampling behavior is subject to interference from
disturbances.

Remark 2.2. The proposed block MPC solves the optimiza-
tion problem every N, steps, requiring less computing effort
as compared to solving it every step. It also allows more time
to perform each optimization task, if the scheme proposed in
(Milam, Franz, Hauser, & Murray, 2005) is adopted to pre-
compute the optimization solution using the predicted initial
state instead of the measured state. In that case, one can use
up to N.T seconds (T being the sampling interval) instead
of T seconds to complete the optimization, thereby making it
feasible to solve more complex optimization problems with
additional constraints, such as the one proposed later in this

paper.

Remark 2.3. The notion of the control implementation win-
dow N, used here is different from the control window defined
in Alamir and Bornard (1995). In Alamir and Bornard (1995),
the control window N refers to the dimension of the optimiza-
tion problem, when only the first N elements of the input se-
quence U k+n,—1] are allowed to vary in minimizing J.

Remark 2.4. The concept of “block implementation” pro-
posed here is quite different from the notion of “blocking of
manipulated variable” discussed in (Ricker, 1985). In the
latter, blocking is applied to the optimization problem formu-
lation, where the control variables are grouped into blocks,
and within each block the variables are held constant. In our
case, blocking refers to implementing a string of optimized
control variables within a window instead of a single value at
one step.

In the sequel, we explore the additional design flexibility of-
fered by our block MPC scheme to achieve the desired stability
properties:

Theorem 2.1. Let V(x) be a positive definite function of x.
If (A1)-(A4) are satisfied and the N.-block MPC scheme as
defined in Definition 2.1 is designed by solving (2) with the

following additional constraint? :
V(x(k + Nclk)) <yV(x(k)) (3)

for some 0 <y < 1 and for k=0, N, 2N, ..., then the closed-
loop system with the N.-block MPC is asymptotically stable.

To prove Theorem 2.1, we first establish the following prop-
erty for the state trajectory of systems with MPC control:

Lemma 2.2. If (A1)—(A4) are satisfied and the optimal se-
quence “Fk,k+N,.—1] of (2) is applied to (1), then there exist a
r >0 and a continuous function g(-) >0 with g(0) = 0 such
that if ||x(k)|| <r, we have

lxGliol<g(lx(l), Viefk+1,....k+ N} “)

Proof of Lemma 2.2. Let x?k’kJrNr“k, X[k,k+N, ]|k be the state

trajectories corresponding to inputs u([)k kv, —1 = 1{0,....0}
and u ;. n _1)> respectively. Note that

Xk = f(fC.. f(x(K),0)..),0) == f; (x(k))
fori =k,..., k+ N,, we have
IX°GION <G k), i =k, ....k+ N, (5

where g(x) =maxi<i <k+n, {|l fi(x)||}. Given that x =0 is an
equilibrium of the system with # =0 and f(0, 0) =0, we have
fi(0)=0,i=1,..., N, and therefore g(0) = 0.

Using conditions (A1), (A2) and (A3), we have

L(x(ilk), 0) S L(x(ilk), u*(k +i))
k+N,—1
< Y LEOGiIK), 0) + K (0 (k + N, 1K)
j=k
k+N,—1

< Y GO + sk + N1 1)
j=k

SNA@EUx®ID) + s (@ UxK)D)- (6)

Here the second inequality is due to u’[“k’ K+, being the op-
timal solution of (2) and x[x «+n,jx being the correspond-
ing trajectory, and the last inequality is obtained using (5).
The remainder of the proof follows directly from (6) and the
assumption (A4). [

Note that Lemma 2.2 does not imply stability? for the MPC
scheme. It only guarantees that, inside the prediction window,
the open loop optimization leads to a state trajectory that is
bounded by a function of the initial state. Also note that this
property is required only in a local region around the origin.
The constant r can be sufficiently small, as long as it is nonzero.

2 This condition generalizes the one-step stability enforcing MPC (Mayne
et al., 2000)

3 Unless otherwise specified, “stability” in this paper refers to “asymp-
totic stability of x =0.”
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Fig. 1. Standard and block MPC for the plant of Example 2.1: case 1 (upper left): standard MPC; case 2 (upper right): MPC with block implementation,
without constraint (9); case 3 (lower left): standard MPC with constraint (9); case 4 (lower right): block MPC with constraint (9).

Proof of Theorem 2.1. Due to the block implementation, (3)
implies that we have

V(k)<y*Nev(0), k€ {0, N, 2N,, ..., }. 7

Therefore, the sequence {V (k1)}, k1 = 0, N¢, 2N,, ..., con-
verges to zero as ki — oo, which implies that x(k;) — 0 for
ki =0, N:,2Ng, .. ..

For the system behavior within the control implementa-
tion window, i.e., for x(k; + nlk;),n =1,...,N. — 1,k €
{0, N¢,2N,, ..., }, it follows from Proposition 2.2 that
lx(ki + nlkplI<g(lx(k)ll) when |lx(ki)]l is sufficiently
small. Therefore ||x(k1)|| — O and the continuity of g(-) at
0 together imply that ||x(k; + n|k;)|| — O for k; — 0 and
n=0,1,..., N, — 1. Hence, x(k) — 0 for k — oo. This
proves state convergence, while Lyapunov stability immedi-
ately follows from the definition of V. [

For N. = 1, the result of Theorem 2.1 addresses a spe-
cial case of a standard MPC with an additional constraint.
For N.> 1, even if the constraint (3) is enforced in its op-
timization of J, the standard MPC cannot guarantee stabil-
ity because V(x(k + 1)) <yV(x(k)) is not established. With
the block MPC algorithm, the constraint (3) is enforced not
only in optimization, but also in control implementation and
execution.

Remark 2.5. Note that the function V(x(k)) is not required
to be monotonically decreasing at each step k. In fact, with the
variable implementation window to be introduced later in Sec-
tion 4, V (x(k)) is allowed to even increase over time, as long

as one can find a subsequence of V (x(k)) which is monotoni-
cally decreasing over the time.

Remark 2.6. The condition (3) introduced in Theorem 2.1 is
similar to the contractive condition used in (de Oliveira Kothare
& Morari, 2000) where it is imposed at the end of the prediction
horizon k + N, to establish the stability of the MPC scheme.
In the context of block MPC, however, the time to impose
this condition, namely N, is a design parameter which will be
exploited to enhance the feasibility condition and to achieve
good trade-off between computation intensity and disturbance
rejection capability.

Example 2.1. Consider the following second order unstable
system:

1 0.25 1
xtk+1)= |:1 0 j|x(k)+ [0i| u(k), 8)

yky=[-5 1]x.

With the cost function defined as
2

k+5 4 2
J:Z[x(ilk)T[ 92 13]x(i|k)+u2(i)],
i=k 3

one can show that the standard MPC (specifically, a nonblock
MPC without terminal penalty) yields an unstable response,
shown in case 1 in Fig. 1.

Adding a new constraint

Vik+2)<yV(k), ©)
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where V = y2 + éx%, y»=0.98, the two-step block MPC imple-
mentation gives a stable response, as shown by case 4 in Fig. 1.

It should be noted that the block implementation alone (i.e.,
without enforcing the constraint (9)) does not lead to a stable
system for the example considered here (case 2 of Fig. 1).
On the other hand, adding the constraint (9) to the standard
MPC alone (i.e., using only the first control from the optimized
sequence) cannot provide the stabilization mechanism either
(case 3). It is the combination of the two that leads to the result
of case 4 in Fig. 1.

For this example, the stability can also be achieved by im-
posing a terminal state constraint or by adding a penalty on the
terminal state to the standard MPC formulation. As our example
demonstrates, the block MPC with the constraint (9) provides
an alternative mechanism to guarantee stability.

For the system discussed in Example 2.1, a constraint simi-
lar to (9) cannot be enforced in a single step. The main advan-
tage of the block MPC implementation is that it allows longer
horizon to enforce a condition that can lead to stability. Fur-
thermore, it assures that the constraint is enforced not only at
the optimization stage, but also at the control execution stage
by selecting the proper implementation window size.

3. Recursive feasibility

With the block MPC scheme, we have shown that when
the optimization problem (2) with an additional constraint (3)
has feasible solutions for each k € {0, N, 2N,, ..., }, the sta-
bility of the system can be established according to Theorem
2.1. More often than not, given a positive definite function V,
the constraint (3) is not enforceable at each sampling instant
{0, N¢, 2N, ..., } for arbitrary x € .. The recursive feasi-
bility, namely feasibility preserved under state evolution, is in
general not guaranteed even if the initial problem is feasible,
as illustrated by the following example:

Example 3.1. Consider a double integrator system:

{X1(k+1)=X1(k)+xz(k)s (10)

xa(k + 1) = x2(k) + u(k)

with |u| <1.If V is chosen as V (x) = x% +x§, we have

Vi + k) =xfk + 1) +x3(k + 1)
> (x1 (k) + x2(k))* = V (x (k) + 2x1 (k)x2 (k).

If x;(k)x2(k) >0, we have V(x(k + 1)) >V (x(k)), the con-
straint (3) cannot be satisfied for N. =1 for any state in the first
and third quadrants for any y € (0, 1). Now consider an initial
state x(0) = (=2, 3) for which V(1) <7V (0) can be satisfied
for y = 0.95 and some u (i.e., u = —1). This, however, will
lead to x(1) = (1, 2) for which no control will exist to satisfy
V(2)<yV(1). Similar scenario can be created for N, = 2. For
example, starting from the initial state x(0) = (—4, 3), one can
show that the constraint V (2) <yV(0) (y=0.95) is enforceable
with |u| <1 but V(4)<yV(2) is not.

The above example shows that the optimization problem (2)
with constraint (3) may not be recursively feasible for all states
of interest. The block MPC with a variable implementation win-
dow, to be discussed in Section 4, will improve the enforceabil-
ity of the added constraint, and thus assure recursive feasibility
for (2). In order to define the block MPC with a variable imple-
mentation window, we first introduce the following definition:

Definition 3.1. (n-step (V,y)-contractible region). Given a
positive definite function V, an n-step (V, y)-contractible re-
gion 2, is defined as the set of all the states x for which the
constraint V (x(n]0)) <yV(x(0)) with x(0) = x, in addition to
the constraints given in (2), can be satisfied by a proper choice
of the string uo ,—1]-

The n-step (V, y)-contractible region Z,, depends on the con-
traction window n and the contraction rate ), in addition to (1)
and the selection of V. For y; >7,, we have 2,(y|) 2 2,(y,).
However, n| > ny does not necessarily imply 2, (y) 2 2,,(7)
for the same y. In fact, a larger n does not necessarily lead to a
larger (V, y)-contractible region. For example, Fig. 2 shows the
contractible regions for n =1 and n =2 for the double integrator
system with V (x) =x12 —l—x%, lu| <1, and y=0.95. It is obvious
that 2, does not include Z1, neither does Z2; include #;.

Remark 3.1. In (Blanchini, 1994), a /-contractive region is
defined as the set 2 that for any x € £, there exists a control
u(x) such that f(x, u(x)) € 12 for some 4 € (0, 1]. It should
be noted that even when n = 1, the (V, y)-contractible region
given by Definition 3.1 is different from the A-contractive region
defined in (Blanchini, 1994).

In an attempt to expand 2, and to make the optimization
problem (2) with (3) recursively feasible, we introduce:

Definition 3.2. Let 2, be the n-step (V, y)-contractible region
for V as defined in Definition 3.1, where n =1, ..., N, for
some N.<N,, and N, be the prediction horizon. We define

e Uf:":"]ﬂn. If* & = 2, where ¥ is the admissible set for
x, then we call the function V' N, -step contractible for (1).

Definition 3.2 expands the V-contractible region to cover .%.
By allowing the implementation window size to vary between
1 and N, the resulting region covered by Z is always bigger
than the fixed step contractible region.

It should be also pointed out that the contractibility of V
is collectively defined by the function V and the system (1).
Changing V or the system definition both could change the
V -contractibility property. For example, for V = x% + x% and
7 =0.95, the contractible regions for the double integrator (10),
and for the system (8) of Example 2.1 are shown in Figs. 2 and 3,
respectively. For & = {x; |x1| <2, |x2] <2}, V is two-step con-
tractible for the unstable system (8), but it is not one-step or
two-step contractible for the double integrator system (10).

4 By the definition of #;, we always have 2, C 7.
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Fig. 3. Contractible regions for the unstable system (8), V(x) = x% + x%, 7 =0.95.

Remark 3.2. The condition (3) is a special case of a more
general condition

V(x(k+ Nelk)) = V(x(k)) < — o(l|x(k[]), (1)

where o is a continuous function satisfying «(0) =0, a(x) >0
if x # 0. Since the complete controllability of discrete-time
systems depends on the time interval being sufficiently large,
the constraint (11) may also not be enforceable at each sam-
pling instant. Enforcing the condition (11) instead of (3) can
nevertheless offer additional flexibility due to a choice of «(-).

Remark 3.3. For most “well-behaved” nonlinear systems
(such as those satisfy (A1)), one can always find V that is N,-
step contractible for some finite N, as long as . lies inside the
stabilizable region with constraints of (2). One can show that
any Control Lyapunov Function (Freeman & Kokotovic, 1996)
constructed for the unconstrained system can be used as V.

Remark 3.4. For a chosen V and given n, %, can be deter-
mined as

Py = {x |ming,  enV (x(n]0) <yV (x(0), x(0) = x } .

This calculation can be performed off-line over a set of grid-
points for x, yielding a functional approximation of the con-
tractible regions 2, and 2. Depending on V, the optimization
problem involved in the definition of Z,, may be nonconvex
and difficult to solve numerically even for linear systems.

The following propositions specify the recursive feasibility
condition:

Proposition 3.1. The optimization problem (2) with (3) is re-
cursively feasible when 2 = & .

Proposition 3.2. When 2 C %, if there exists a non-empty set
S0 such that o C Ry S P for some ¢ >0, where R, =
{x|V (x) <c}, then the optimization problem (2) with (3) is re-
cursively feasible for any x € ¥.

These two propositions follow directly from the definition
of 2.

The following example shows that when 2 C &, the re-
cursive feasibility condition could lead to different N, for
different V.



J. Sun et al. / Automatica 43 (2007) 1945—-1953

contractible region for V4 (n=1)

10
5
-5
-10
-10 -5 0 5 10
X1
contractible region for V4 (n=3)
10
5
-5
-10
-10 -5 0 5 10

1951

contractible region for V4 (n=2)

10
5
-5
-10

-10 -5 0 5 10

Xq
contractible region for V, (n=1)

10
5
< 0
-5
-10

-10 -5 0 5 10

Fig. 4. Contractible regions for the double integrator system, Vi(x) = x12 + 9x%, and Vo (x) = (x] + x2)2 + 4x%, 7y =0.95.

Example 3.2. Consider the double integrator system of (10),
if V(x) =)cl2 +x% is chosen, we can see from Fig. 2 that the set
Fo={x; |x11<2, |x2| <2} cannot be covered by =2 | ] 25.

Now we consider two other functions defined as

Vi) =x7 +9x3,  Va(x) = (x1 +x2)% + 4x3.
Their contractible regions are shown in Fig. 4.

Note that for Vj, even though we have ¥y C 2| %>,
no constant ¢ can be found such that #, = {x|Vi(x) <c} is
covered by 2 J 2, and covers %y. Therefore, we have to
increase the control implementation window to N, = 3 when
Ry1 = {x| V1 (x) <40} satisfies the conditions in the Proposition
3.2, thus making % a region over which recursive feasibility
condition will be satisfied.

For V5, on the other hand, Fig. 4 shows that the recur-
sive feasibility condition can be satisfied for .y with %, =
{x|Va(x) <32} for N, = 1.

4. Stable block-MPC with a variable implementation
window

We now exploit the properties of the contractible V' and
the variable control implementation window to design a stable

MPC. Let N, be the maximum control implementation window
that defines 2, we first define the optimization task .7, for
1<n<N,, as

k+Ny—1

D Lx(ilk), u(@) + K (x(k 4 Ny 1K)
i=k

min J = min
{u()}

subject to Eq.(1)
u@i)eu

and constraints x (i) € .,

V(x(k + nlk)) <yV (x(k)). 12)

Then we consider the following algorithms:

Algorithm 1. The minimum cost BMPC
defined as

algorithm is

1. For x(k) € 2, solve the optimization problem .7, of (12)
for n = 1,2,..., N.. If no feasible solution exists, set
J¥ = oo.

2. Find n* that corresponds to min,, J;*, where J is the mini-
mum cost achieved for 7 ,,.

3. Apply n*-step block MPC as defined in Definition 2.1.

4. Set k = k + n™ and repeat the process after n* steps.
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Algorithm 2. The minimum window BMPC algorithm is
defined as

(1) For x(k) € 2, setn = 1.

(2) Solve the optimization problem .7, of (12). If (12) has a
feasible solution, set n* = n and go to step 3. Otherwise,
set n =n + 1| and repeat step 2.

(3) Apply the n*-step block MPC as defined in Definition 2.1.

(4) Set k =k + n* and repeat the process after n* steps.

For the two algorithm defined above, the following theorems
establish their stability properties:

Theorem 4.1. If the recursive feasibility condition given by
Proposition 3.1 (or Proposition 3.2) is satisfied and either Al-
gorithm 1 or 2 is applied, then & (or &) is an attraction re-
gion for the equilibrium x =0 of (1). Namely, for any xo € &
(or xo € S0), the trajectory defined by the minimum-cost or
the minimum window BMPC will converge to the equilibrium
x =0.

The proof of Theorem 4.1 follows immediately from Theo-
rem 2.1 and the definitions of Algorithms 1 and 2.

Remark 4.1. If the sets &, are pre-calculated, then Algo-
rithms 1 and 2 can be substantially simplified. For the mini-
mum cost BMPC, the optimization task .7, does not need to
be carried out for all n, but only for those whose corresponding
2, includes x (k). Similarly, the minimum window n* in Al-
gorithm 2 can be determined without solving the optimization
problem.

5. Example and discussion

We consider an example of a double integrator (10) with
the control constraint |u(k)|<1. The problem, patterned after
the ship application in (Chen & Sun, 2005), is to control the
system from the initial state x (0) into the target set Sy ={x |x12 +
x5 <0.01} so that the total control effort, denoted by > u?, is
minimized. The cost function (2) has a general form

k+N,—1
J= Z u(@i)? + K (x(k + N, |k)).
i=k

We let V(x) =x?+9x2,7=0.95, N, =5, and K (x)=f-V (x),
where 5> 0. The required theoretical assumptions are satisfied
in this case, see Remark 2.1.

Numerical simulations were performed for (i) the block MPC
with fixed implementation window N. (3-BMPC, N, = 3 for
this study) and f=0; (ii) the minimum cost BMPC (mc-BMPC)
and ff = 0; and (iii) the standard MPC (s-MPC, which essen-
tially corresponds to N. =1 and y=+00) and f=0.001. In the
s-MPC case, f=0.001 was picked from a finite set of candidate
values to minimize Y u? for the initial conditions we consid-
ered. According to (Chen & Sun, 2005), the time to reach Sy
(denoted by #¢) can delineate a more preferable solution in case
two solutions provide approximately equal total control effort.

Table 1
Comparison of different MPC schemes for the double integrator example
xo=(5,1) x0 = (6,0) x0=(=7,0)
Suldr 1y Suldr 1y Suldt 1y
mc-BMPC 0.6872 48 0.0008 119 0.001 119
3-BMPC 1.1526 60 0.0050 69 0.0108 92
s-MPC 0.1231 252 0.0107 132 0.0145 133

The values of > u? and ¢ r are summarized in Table 1 for a set
of three initial conditions, which were selected arbitrarily.

As these results indicate, mc-BMPC can lower the total con-
trol effort as compared to 3-BMPC, and it can also provide a
lower total control effort as compared to s-MPC for some initial
conditions. The computational effort is less for 3-BMPC than
for s-MPC since the optimization is performed less often; this
advantage is eroded for mc-BMPC since multiple optimization
problems must be solved within each time period.?

Design parameters for the BMPC schemes include: 7y, the
contraction rate; N,, the prediction horizon; and the function
V. Their choices will affect system performance as well as the
attraction region of the equilibrium. In general, the effects of
the prediction horizon, N,, on the performance of the BMPC
are similar to that of the standard MPC, which are discussed
in (Mayne et al., 2000). On the other hand, in our specific
example it can be shown that BMPC solution satisfies u(k +
N¢)=---=u(k + N, — 1) which can be exploited to simplify
the computations. In general, reducing y will make it harder to
enforce constraint (3) and thus take more control effort. The
effect of different choices of V on the response, however, is
more complicated. It primarily affects the contractible region
2,, and thus the control implementation window. For the double
integrator, along with Vi(x) = x% + 9x§, we also examined
Vo(x)=(xq —|—x2)2 +4x§. The contractibility properties for these
two functions are illustrated in Fig. 4. The results of the mc-
BMPC algorithm with these two different V’s were compared
for the same initial condition xo = (2, 2). The function V, leads
to a trajectory with 3~ «?>=1.3501 and tr=>51, both are slightly
larger than )" u? =1.3017 and ¢y =49 which are resulted from
using the function Vi (x).

While more detailed comparisons with other MPC ap-
proaches which can be used for this problem are beyond the
scope of this brief paper, we note that block MPC can be used
as an “add-on” (i.e., not a competing scheme), providing an
extra degree of freedom in the control design.

6. Conclusion

In this paper, we proposed a novel MPC scheme which
uses block implementation to assure stability. With the design

5 Our implementation of the computations in this example (using MAT-
LAB on a regular 2GHz PC) was not optimized; hence we provide a direc-
tional assessment only, rather than reporting exact computing times.
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flexibility offered by the block implementation with variable
window size, we are able to enforce a constraint that leads to
the decrease of a Lyapunov-like function over the time inter-
val, therefore guaranteeing stability. This new design feature
can also be exploited to improve performance, such as shown
in the example in Section 5, or to save the on-line computa-
tional effort as the optimization is performed every N.T second
for the block MPC instead of every T second for the standard
MPC.
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