
IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 31, NO. 2, APRIL 2006 421

Feedback Stabilization of High-Speed Planing
Vessels by a Controllable Transom Flap
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Abstract—This paper focuses on the mitigation of porpoising in-
stability of high-speed planing vessels using controllable transom
flap and dynamic feedback. A control oriented model that cap-
tures both steady-state and dynamic characteristics is presented
and used to facilitate the model-based control design. A nonlinear
controller is developed based on the feedback linearization method
to achieve asymptotic stability of the planing boat, thus avoiding
porpoising at high speeds. We first show that the full-state non-
linear dynamic model describing the ship motion is not feedback
linearizable. A state transformation is then constructed to de-
compose the model into a linearizable subsystem and a nonlinear
internal dynamic subsystem. A reduced order state feedback
is shown next to stabilize the planing vessel motion around the
equilibrium point. Analysis of the region of attraction is also
performed to provide an assessment of the effective safe operating
range around the equilibrium point.

Index Terms—Feedback control, planing boat, porpoising, stabi-
lization.

I. INTRODUCTION

AHIGH-SPEED planing vessel has a substantial portion of
its weight supported by the hydrodynamic lift, in contrast

to the conventional displacement vessel which is supported pri-
marily by the hydrostatic buoyancy force. Due to the compli-
cated nature of the hydrodynamic forces, high-speed planing
boats face dynamic instability problems in both vertical and
transverse planes, such as porpoising, chine walking, progres-
sive heeling, unstable pitching-induced rolling, or a combina-
tion of these motions [1], [2].

Porpoising might be the most well-known instability phe-
nomenon of the high-speed planing craft. It refers to the peri-
odic, coupled heave/pitch oscillation in the vertical plane that
a planing vessel may experience at high speeds. The motion is
sustained by the energy derived from the craft’s forward speed
and the planing lift force.

The study of the vertical-plane motion of high-speed planing
vessels can be traced back to the early twentieth century, and
the research became a very active and fruitful field during
1960s–1990s [3]–[8]. These earlier works focused mainly on
the effects of design parameters, such as the location of the
center of gravity, load, forward speed, and other geometric
parameters of the planing hull, on the characteristics of the
craft’s motion.
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While the research community was focusing on under-
standing the fundamentals of the dynamics of high-speed
planing boats, scientists and engineers had introduced ap-
pendages to control the vertical-plane motion of high-speed
vessels. In [9], controllable transom flaps and T-foils were
adopted to reduce motion sickness aboard a high-speed ferry.
Savitsky and Brown [10] studied the hydrodynamic force
induced by a static transom flap and its effects on the running
trim, drag, power requirement, and porpoising stability of the
planing hull. Compared to the substantial research progress
on the hydrodynamics and design of the high-speed planing
craft, there has been little work published on the vertical-plane
motion control for planing boats using controllable appendages.

Recently, a control-oriented nonlinear model has been devel-
oped by the authors for high-speed prismatic planing vessels
equipped with controllable transom flaps [11]. The effects of
preset static deflections of the transom flap on the running atti-
tude and motion characteristics of planing boats are analyzed.
In this paper, we investigate the feedback stabilization problem
for the planing vessels using nonlinear control theory based on
feedback linearization. A state transformation is constructed to
transform the system into a partially feedback linearizable form,
as it is demonstrated that the system is not fully feedback lin-
earizable. Local asymptotic stability is obtained by designing a
stabilizing feedback control for the linear subsystem and ver-
ifying the local stability of the nonlinear zero dynamics. With
analysis of the internal dynamics, we prove that motion sta-
bility of the high-speed planing vessel can be guaranteed by the
proposed controller for initial conditions from which the boat’s
motion trajectory remains in the applicable range of Savitsky’s
methods.

The organization of this paper is as follows. In Section II, a
nonlinear model is described for the prismatic planing vessel
with a controllable transom flap. The open loop stability of the
planing vessel with a fixed static deflection of the transom flap
is analyzed in Section III. In Section IV, a stabilizing controller,
based on the feedback linearization method, is designed to main-
tain the boat’s stability at high speeds. The region of attraction
is analyzed in Section V, before concluding remarks are given
in Section VI.

II. NONLINEAR MODEL OF PLANING VESSELS WITH

CONTROLLABLE TRANSOM FLAPS

The model described in this section combines fundamental
physical laws and empirical relations. It provides the neces-
sary tool for system analysis and controller design using model-
based methodologies.
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Fig. 1. Coordinate system of the planing vessel.

A. Coordinate System and Motion Equation

A right-handed coordinate system is defined in Fig. 1 for the
prismatic planing vessel running in calm water. At the equilib-
rium running attitude, the trim angle is defined as , and the
vertical distance of the center of gravity (CG) from the water
level as . and are the vertical displacement (i.e.,
heave) of CG and the rotation (i.e., pitch) of the vessel relative to
the inertia axis, respectively. is positive upward and
positive bow down, as shown in Fig. 1. The notations and direc-
tions are chosen to be consistent with those used in [4] and [5].

and can be expressed as follows, respectively:

(1)

(2)

where and are the effective trim angle and the effec-
tive vertical distance of CG from the water level of the craft in
motion, respectively.

For the vertical-plane motion of the planing craft, it is gener-
ally accepted that the heave/pitch motion can be decoupled from
the surge motion for small trim angles [6], [7]. This is the case
focused on in this paper, and consequently, only heave/pitch mo-
tions will be considered.

By adding the forces induced by the transom flap to the form
used in [4] and [5], the motion equation of the planing vessel
with a controllable transom flap running in the calm water can
be written as follows:

(3)

where

is the vessel mass and the pitch moment of inertia about
CG. and are the added mass and damping

coefficients, respectively. and are the heave and pitch
restoring forces, respectively. and are the forces induced
by the transom flap in heave and pitch direction, respectively.

To obtain a model of the planing vessel, those coefficients
and forces need to be determined. In our work, and are
determined based on experimental results of [4], and and

are calculated using Savitsky’s method [3], [10].

B. Added Mass and Damping Coefficients

Experiments have shown that the added mass and
damping coefficients for prismatic planing vessels are
nonlinear functions of the motion amplitude and frequency [4].
However, compared to the nonlinearities of the restoring forces
which will be discussed later, the effects of nonlinearities in

and on the craft’s motion are small [5]. Therefore,
and are assumed to be constant at a given forward speed
and running attitude. Their values are extrapolated from the
experimental results in [4], depending upon the speed, the
equilibrium trim angle, and mean wetted length beam ratio.

C. Restoring Forces

The forces acting on the planing hull with a transom flap are
shown in Fig. 2, where is the water pressure acting normal
to the bottom, the thrust force, the frictional drag, the
hydrodynamic force acting on the transom flap, the inclination
of the thrust relative to the keel, the longitudinal distance of
the center of pressure measured from the transom, the distance
between and CG, the distance between and CG, the
deflection of the transom flap, and the gravity acceleration.

From Fig. 2, the restoring forces can be expressed as follows:

(4)

(5)

(6)

Consider the simpler case studied in [3] where the thrust and
the frictional drag pass through CG, i.e., . To simplify
the model, it is also assumed that , and the sine terms in
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Fig. 2. Forces acting on the planing hull with a transom flap.

the right hand side of (4) are neglected for small trim angles.
Hence, the restoring forces become

(7)

(8)

As mentioned in [4], it is supposed that the effects of the accel-
eration and velocity of the craft’s motion on the hydrodynamic
forces have been captured in terms of added mass and damping
coefficients in the left hand side of (3). Therefore, only those
components as functions of the craft’s displacement are consid-
ered to determine .

Savitsky [3] gave empirical formulas to calculate the restoring
forces as functions of the effective mean wetted length beam
ratio and the effective trim angle . The involved formulas
are listed as follows.

(9)

(10)

(11)

(12)

where is the forward speed coefficient, the
forward speed, the beamlength, lift coefficient for a zero
deadrise surface, lift coefficient for surface with constant
deadrise of , and water density.

To express the restoring forces as explicit functions of
craft displacements, the following relation developed in [4] is
adopted to describe as a function of :

(13)

where is the vertical distance of CG from the keel.
Given the speed , the equilibrium running attitude ,

and the motion displacement , the restoring forces
can be obtained by (7)–(13).

D. Forces by Controllable Transom Flap

Savitsky and Brown [10] provided empirical formulas to cal-
culate the forces induced by the transom flap as linear functions
of the flap deflection , which is viewed as the control input to

the system. The flap lift , and the flap moment about the boat
CG, , can be determined by (14) and (15), respectively

(14)

(15)

where , are constant coefficients, the flap chord length,
and the flap span-beam ratio. , , and are defined as in
(9)–(12). Note that, by following Savitsky and Brown’s results,
we only consider the force caused by the flap deflection. From
results in aerodynamics, it has been found that forces induced
by the wing flap can be also dependent on the velocity and ac-
celeration of the flap motion [14]. However, the relationship of
these force components for high-speed planing hulls could not
be found in the open literature and, therefore, have not been in-
corporated in the model developed in this paper.

To summarize, the motion equation of the high-speed planing
vessel with a controllable transom flap running in calm water
becomes

(16)

where is determined by (7)–(13) and by
(14) and (15).

By defining the state vector
, the motion equation can be transformed to the state-

space form as follows:

(17)

where

In general, the restoring forces are nonlinear functions of the
motion displacement . An example of is illustrated
in [5, Fig. 2]. Equation (17) provides a nonlinear model and will
be used for control system design and analysis in Sections III–V.

III. MOTION STABILITY ANALYSIS WITH STATIC

FEEDFORWARD CONTROL

Fig. 3 shows an illustrative simulation of heave/pitch motion
of the planing hull, where porpoising can be clearly observed.
Due to the nonlinear nature of the restoring force in (17), set-
ting the transom flap at different static deflection positions will
not only shift the equilibrium running attitude , but also
change the motion response of the planing vessel around the
equilibrium. Effects of the preset static deflection of the transom
flap on the heave/pitch motion of the planing vessel are analyzed
in this section.

A. Equilibrium Running Attitude

The equilibrium running attitude of the craft, , can
be determined by setting and in
(17). The planing hull studied by Troesch [4] is used here, with

being maintained at 1.95 and at 1.47, where is
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Fig. 3. Heave/pitch motion of the planing vessel when C = 5:1 and � = 0.

Fig. 4. Equilibrium running attitude.

the beam loading coefficient. A full-span transom flap with the
chord length of is used to control the craft’s motion.

Fig. 4 shows the equilibrium running attitude of the planing
craft at different and . As Savitsky’s method is applicable
for trim angles greater than [3], results with are
discarded.

As increases, the trim angle decreases at a given forward
speed. Larger increases at lower speeds while decreasing

at higher speeds, but the sensitivity is rather small.

Given , as increases, the trim angle increases before
it decreases at higher speeds. A peak of appears between

and . The increase of as increases suggests
stronger planing effect at higher forward speeds. The trend of
the equilibrium running attitude in Fig. 4 can be verified by the
experimental results shown in [12].

The equilibrium running attitude obtained here is expected to
be close to the actual planing craft running in the calm water. In
[5], it is assumed that there exists sufficient mechanism to main-
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Fig. 5. Maximum speed coefficient where the stability of the planing vessel can be maintained.

tain the boat at any attitude. The equilibrium running attitude
is given a priori in their analysis. In towing tank experiments,
this assumption may be achieved with proper towing mecha-
nisms. In practice, however, the planing hull, when free in the
open water, has no mechanism to maintain arbitrary equilibrium
running attitude, even with the controllable transom flap. In our
work, no extra external mechanism is assumed to obtain a pre-
scribed equilibrium condition. The equilibrium running attitude
is calculated based on the forces induced by the boat motion and
the transom flap themselves.

B. Motion Characteristics

Fig. 5 shows the maximum forward speed coefficient
that the planing hull can maintain without inducing porpoising
for different static deflections of the transom flap. Although a
small flap deflection can increase the maximum stable speed by
a small increment in Fig. 5 (for example, increases

from 5.02 to 5.05), larger deflections reduce the stable
operating speed range of the boat. Setting lowers
down to 4.55. For speeds with , the static transom flap
is unable to stabilize the heave/pitch motion of the vessel. There-
fore, as far as the vertical-plane motion stability is concerned,
the static transom flap actually contributes very little to improve
the performance of the planing vessel, except that it reduces the
amplitude of the porpoising in some cases, as observed in our
simulations. In fact, we could conclude that it even aggravates
the problem by inducing the onset of porpoising at lower speed.1

To extend the maximum stable operating speed range without

1While the negative effect of the preset static transom flap on the vessel’s
stability is verified for the boat considered in this paper, we should point out that,
in general, these effects are problem and design specific, and different design
parameters could lead to different conclusions.

redesigning the hull, dynamic feedback stabilization through the
controllable transom flap is pursued in Section IV.

Fig. 6 shows the steady-state motion of the planing vessel in
the state–space. By simulating the model from different initial
perturbations, the boat’s steady-state motions result in the same
pattern as shown in Fig. 6, which suggests that it is initial con-
dition independent and the motion of porpoising under this op-
erating condition is basically a stable limit cycle.

It should be noted that Savitsky’s method is applicable within
certain conditions, such as and [3]. In our
simulation, these limits are often violated and, therefore, the re-
sults have to be discarded. To extend the results to larger mo-
tions, it is important to modify the empirical relations and ex-
pand the applicable range. This will be a topic of future research.

IV. STABILIZATION BASED ON FEEDBACK

LINEARIZATION METHOD

A nonlinear controller based on the feedback linearization
method is developed in this section to stabilize the planing craft
at high speeds. The control scheme is illustrated in Fig. 7, where

is the feedback control law to be designed. The
deflection of the transom flap is decomposed into two parts:

, where is the preset nominal deflection that
determines the equilibrium running attitude of the planing craft,
and is the relative deflection about as a feedback control
input.

Given , the model in (17) can be rewritten in the following
form:

(18)

where . is the equilibrium
running attitude of the vessel corresponding to the nominal flap
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Fig. 6. Steady-state motion trajectory in the state–space. C = 5:1 and � = 0.

Fig. 7. Control loop of the system.

deflection . The objective is to design a feedback control law
, using feedback linearization to stabilize the system

of planing vessels described by the model of (18) at the equilib-
rium of .

For convenience, the following notations are defined and will
be used in the sequel:

A. Feedback Linearizability

If the system in (18) can be transformed into a linear form
by applying a state transformation and state feedback, then, sta-
bilizing controllers can be easily designed based on this linear
form. For the system model under consideration, however, we
have the following.

Proposition 4.1: The model of planing hulls described in
(18) is not fully feedback linearizable.

To verify the proposition, we need the following theorem
which gives the sufficient and necessary conditions for the
system feedback linearizability [13].

Theorem 4.1: The system , where is
-dimensional, is fully feedback linearizable near if and only

if the following conditions are satisfied:

i) the matrix
has rank , where

;
ii) the distribution is

involutive (i.e., ) near
.

Proof of Proposition 4.1: We will show that the model
given by (18) is not fully feedback linearizable by using The-
orem 4.1 and proving that is not involutive. For the boat
system described by (18), , , ,

. Thus, using the definition of , we obtain

where
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If is involutive, we should have , i.e.,

can be expressed as a linear combination of ,

, and . However, note that

and the matrix has full rank

around ; we conclude that does not belong
to . Hence, is not involutive. According to Theorem 4.1, our
model is not fully feedback linearizable.

We now turn to search for a state transformation which can
partially linearize the system.

Proposition 4.2: For the planing vessel system described by
(18), there exists a state transformation

, such that the system can be transformed into the following
form:

(19)

(20)

where

and

for some functions , with .
Proof: Consider the following virtual output function:

(21)

Define a state transformation based on as
follows:

(22)

where is the Lie derivative along , i.e.,

. Substitute into (22), we have

where , . Then, the
system in (18) can be transformed into

(23)

(24)

It can be shown that the Jacobion matrix of is nonsin-
gular at . Hence, the transformation defined in (22) is a
diffeomorphism and its inverse mapping exists.

Let

(25)

(26)

and express in (26) with using the inverse mapping
we obtain the state–space model in the new coordinates

in the form given in Proposition 4.2.
Apparently, and thus is the corresponding

equilibrium of the system in the new coordinates.
Viewing as the new control input, the model described in

(19) and (20) decomposes the system into two parts in the new
coordinates: A linear part described by (19) and a nonlinear in-
ternal dynamics by (20). If is designed to stabilize the whole
system including the internal dynamics, the stabilizing control
input in the original coordinate of can be obtained by

(27)

where for the speed range of
considered in our study.

B. Zero Dynamics and Local Stability of System

While linear control theory can be applied to design the con-
trol input to stabilize the linear part described by (19), the sta-
bility of the internal dynamics in (20) is required to establish the
stability for the whole system of the planing vessel. The effect
of the internal dynamics on the system stability can be analyzed
through the so-called zero dynamics.

Setting in the internal dynamics of (20)
results in

(28)

which corresponds to the zero dynamics. The following lemma
can be derived for the system stability from the feedback lin-
earization theory [13], and the proof is omitted here.

Lemma 4.1: Suppose the equilibrium of the zero
dynamics (28) is locally asymptotically stable and
where is designed such that is Hurwitz.2 Then
the feedback law in (27) locally asymptotically stabilizes the
original system (18) at the equilibrium of .

From Lemma 4.1, the local stability of the zero dynamics is
critical to establish the local stability of the whole system using

2A matrixM is Hurwitz if all eigenvalues ofM have negative real part.
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Fig. 8. Eigenvalue of linearized zero dynamics.

the feedback linearization approach based on (19) and (20). The
linearized zero dynamics at is

(29)

Fig. 8 shows that the eigenvalue of the linearized zero dynamics
of the planing craft is negative for different operating condi-
tions of and , and therefore, the zero dynamics are lo-
cally asymptotically stable at . The local stability of
the composite system is then established by Lemma 4.1, when

is chosen such that is Hurwitz.

C. Simulations and Discussions

The feedback stabilizing control law in the new coordinate
can be designed by using the pole placement method.

Fig. 9 shows two examples where the planing vessel is stabilized
and porpoising eliminated. The poles of are placed
at by properly chosen .

When there are uncertainties in the model, which is inevitable
for this application, the robustness of the controller due to feed-
back linearization is always a concern since such controller re-
quires “exact” cancellation of nonlinearities. For the planing
vessel, the uncertainties in the model, whether associated with

, , , or , will manifest as extra terms in the state equa-
tion of (23) and (24) for and . Note that the uncertainty
term in (23) is the so-called “matched” uncertainty as it enters
the system through the same channel as the control input. The

matched uncertainties are usually considered as not destructive,
since many linear/nonlinear control design schemes are avail-
able to address them and to enforce system robustness. For the
uncertainties that appear in (24), as long as they do not change
the property of , the stability
and robustness of the equilibrium for the closed loop system will
not be affected.

V. ANALYSIS ON THE REGION OF ATTRACTION

The controller designed in the previous section establishes
local asymptotic stability for the planing vessel at high speeds.
But the analysis does not specify the region of attraction. In
other words, the results of Section IV establish that if the initial
condition is “sufficiently” close to the equilibrium, then a stable
motion is guaranteed. However, a quantitative measure of suf-
ficient closeness is not specified. For practical purpose, it is of
interest to investigate conditions under which the system can be
led to the equilibrium at the origin. This section is devoted to as-
sessing the region of attraction for the equilibrium point and to
define the safe operating range of the high-speed planing boat.

Given that the state , consisting of and , is governed
by a linear subsystem, the region of attraction for the stabilized
equilibrium point of the system (19) and (20), with

and being Hurwitz, is primarily dictated by
the nonlinear internal dynamics defined by (20). Note that (20)
has the form of

(30)
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Fig. 9. Response and control input of porpoising stabilization. � = 3 and x(0) = [0:01 m; 1 ; 0; 0] . (a) C = 5:5. (b) C = 6:0.

where

By defining

(31)

(32)

we can rewrite (20) in the form of

(33)

We then have the following proposition concerning the sta-
bility of the planing craft motion with different initial condi-
tions.

Proposition 5.1: If and given by (31) and (32) satisfy
the following conditions:

(34)

and

(35)

for some constants , and the control law is
designed such that is Hurwitz, then

as

Proof: Since is designed to be Hurwitz, there
exist positive constants and such that

(36)

where is dependent upon the controller gain and on ,
, and the initial condition . Thus, defining a nonnegative

function , we have

(37)

Let , from (37), we conclude that

(38)

Using [15, Lemma 3.2.4], we can show that (38) implies

(39)

Therefore, as follows by noting
that . Note that ( ) being Hurwitz implies that

as ; we conclude that

as .



430 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 31, NO. 2, APRIL 2006

Fig. 10. Plots of ~f(z ; 0) and ~f (z ; z ) in the model applicable range.

For the planing vessel model described in Section II, condi-
tions (34) and (35) are satisfied for the states within the range
covered by Savitsky’s empirical methods. To validate (34), we
note that since other two terms in are linear [see (31)], the
Lipschitz condition for is satisfied if is Lipschitz
in . The latter is true by examining Fig. 10(a), which plots

as a function of for all values of that are within
the applicable range of the model, while and are varied
within the range of , to reflect the
operating range of the planing vessel and the static deflection of
the transom flap.

For condition (35), we plot as a function of for all pos-
sible combinations covered by the Savitsky’s method,
as given in Fig. 10(b). It is clear that (35) is also satisfied for the
model of the planing vessel.

The above analysis indicates that, if the initial condition
and the controller gain are chosen such that the motion tra-
jectory of the planing boat remains in the applicable range of
the Savitsky’s method, then motion stability is guaranteed and
porpoising is eliminated.

VI. CONCLUSION

A nonlinear controller based on the feedback linearization
method is designed to enhance the vertical-plane stability of the
high-speed planing vessel using a controllable transom flap. A
state transformation is constructed to transform the system into
a partially linear form, and local asymptotic stability is obtained
by verifying the local stability of zero dynamics. We also show
that the proposed stabilizing controller guarantees motion sta-
bility if the boat’s movement remains in the applicable range of
the model.

The modeling and control results described in this paper pro-
vide a baseline for many future research topics. On the exper-
imental side, we plan to develop a scaled model to validate
the control design in a towing tank facility at the University
of Michigan, Ann Arbor. The mathematical model presented in
this paper will be further extended for the planing vessels run-
ning in waves. Coordinated controls for the longitudinal and roll
motion with vertical motions will also be investigated with aug-
mented control actuation.
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