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Abstract

Parameter governors are add-on control schemes that adjust parameters (such as gains or offsets) in the nominal control laws to avoid
violation of pointwise-in-time state and control constraints and to improve the overall system transient performance via the receding horizon
minimization of a cost functional. As compared to more general model predictive controllers, parameter governors tend to be more conservative
but the computational effort needed to implement them on-line can be relatively modest because the few parameters to be optimized remain
constant over the prediction horizon. In this paper, we discuss the properties of several classes of parameter governors which have a common
property in that the governed parameters do not shift the steady-state equilibrium of the states on which the incremental cost function explicitly
depends on. This property facilitates the application of meaningful cost functionals. An example, together with simulation results, is reported
to provide additional insights into the operation of the proposed parameter governor schemes.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The parameter governors are add-on control schemes that
modify parameters of the nominal control systems to enforce
pointwise-in-time state and input constraints, and to improve
the system transient performance. The governed parameters are
selected via a receding horizon minimization of a cost func-
tional.

Fig. 1 illustrates the application of a parameter governor
to a discrete-time nonlinear system which is controlled by a
parameter-dependent feedback law:

x(t + 1) = f (x(t), u(t), �(t), r(t)),

u(t) = uc(x(t), �(t), r(t)). (1)
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Here x(t) is the state, u(t) is the control input, �(t) is a vector of
adjustable parameters in a specified control function uc, r(t) is
a reference command, and t ∈ Z+, where Z+ is the set of non-
negative integers. The state vector x(t) may include both plant
states and controller states, and depending on the form of the
feedback law and parameter governor, f may explicitly depend
on �(t) and r(t). The pointwise-in-time constraints, imposed
on x(t), �(t), have the following form:

(�(t), x(t)) ∈ C(r(t)) ∀t ∈ Z+, (2)

where C(r(t)) is a specified set which may depend on r(t).
Note that the pointwise-in-time constraints on the control input
u(t) in (1) can always be recast as equivalent constraints of the
form (2).

In a typical scenario, a nominal closed-loop system (corre-
sponding to �(t) = 0) is first designed for closed-loop stability
and good “small signal” behavior but without the consideration
of the constraints. Well-developed control design methodolo-
gies exist for this purpose. The parameter governor is then
added on to enforce the constraints and to improve the system
transient performance via the on-line adjustment of �(t). This
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x(t+1) = f(x(t),u(t),θ(t),r(t))

u(t) = u
c
(x(t),θ(t), r (t)) 

Nonlinear Closed-Loop
System

Parameter
Governor

 θ(t) x(t)

r(t)
(θ(t),x(t))  C(r(t))∋

Fig. 1. The parameter governor.

adjustment is based on the following receding horizon principle.
At the time instant t, �(t) is selected so that with �(t + k) ≡
�(t), k = 0, . . . , T , a cost functional of the form

J (x(t), �(t), r(t), T )�‖�(t)‖2
��

+
T∑

k=0

�(x+(k|x(t), �(t), r(t)), �(t), r(t)) (3)

is minimized with respect to the choice of �(t) subject to the
constraints being satisfied, i.e.,

(�(t), x+(k|x(t), �(t), r(t)))∈C(r(t)), k=0, 1, . . . , T. (4)

Here T is the prediction horizon; x+(k|x(t), �(t), r(t)), denotes
the k steps ahead prediction of the system state, given the state
of the system at time t, x(t), and assuming that �(t + k)=�(t),
r(t + k) = r(t) for k = 0, . . . , T . In the cost functional (3) a
penalty on �(t), of the form ‖�(t)‖2

��
= �(t)T���(t), is used,

where �� = �T
� �0. The incremental cost function is assumed

to be of the form

�(x, �, r)�Q(x − xe(r), uc(x, �, r) − ue(r)), (5)

where Q is non-negative and ue(r) = uc(xe(r), 0, r) is the
steady-state value of the control input corresponding to xe(r)

and �(t) ≡ 0. Here xe(r(t)) denotes the desired equilibrium
state of system (1) corresponding to r(t) and �(t) ≡ 0.

As an add-on control mechanism, the parameter governor has
some common features with the well-studied reference gover-
nor (see e.g., Angeli & Mosca, 1999; Bemporad, 1998; Bempo-
rad, Casavola, & Mosca, 1996, 1997; Gilbert, Kolmanovsky, &
Tan, 1995; Gilbert & Kolmanovsky, 2002; Kapasouris, Athans,
& Stein, 1990). In fact, the reference governor can be viewed
as a special parameter governor that provides only a reference
filtering mechanism without modifying the closed-loop dynam-
ics. The virtual reference v(t) in the reference governor case
plays essentially the same role as �(t) in our parameter gov-
ernor formulation. In terms of what we are after, the reference
governor has a disadvantage in that over the prediction horizon
with �(t + k) ≡ �(t), the state trajectories usually do not con-
verge to a neighborhood of the desired equilibrium, xe(r(t)),
but to a neighborhood of xe(v(t)); this complicates the applica-
tion of the cost functionals of the form (3), (5) which penalize

the deviation of the state from the true set-point corresponding
to r(t). See, for example, the work of Angeli and Mosca (1999)
for the type of cost functionals which can be applied in the
reference governor context.

The paper will discuss several parameter governor schemes
which are designed in such a way that changes in �(t) do not
shift the equilibrium values of those states on which Q in (5)
depends explicitly. The properties of one such scheme, the so-
called gain governor, will be described first, in Section 2. The
gain governor, which adjusts the controller gains at discrete
time instants, is a generalization of the multi-mode controller
studied, for example, in Kolmanovsky and Gilbert (1997). A
generalization of the gain governor will be presented in Section
3 along with another parameter governor scheme, the so-called
feedforward governor. Section 4 will describe an example of a
gain governor applied to an engine control problem. The ben-
efits of the parameter governor approach and other concluding
remarks will be summarized in Section 5.

In the subsequent analysis of asymptotic properties of the
parameter governors, we will assume that r(t) remains con-
stant for all t. The parameter governors can cope with large
changes in r(t) (as will be further commented on in the paper),
but if arbitrary changes in r(t) are permitted a reference gover-
nor needs to be included to ensure sufficient flexibility for the
overall parameter governing scheme to rigorously enforce the
constraints and improve transient performance.

2. The gain governor

In the gain governor case, (1) has the form,

x(t + 1) = f (x(t), u(t)), (6)

where x(t) ∈ Rp is the state, u(t) ∈ Rm is the control input
and in the analysis we assume that r(t) ≡ r for all t ∈ Z+. The
function f is assumed to be continuous in its arguments. The
equilibrium values of the state, xe(r), and control input, ue(r),
satisfy f (xe(r), ue(r)) = xe(r); they are assumed to be unique
for the given r.

The control input u(t) is generated as a sum of the nominal
feedforward term, ue(r), and a feedback term uf b, which is
assumed to depend continuously on x(t) and the parameters in
the control law �(t) ∈ Rs :

u(t) = ue(r) + uf b(x(t), �(t), r). (7)

We further assume that uf b(xe(r), �, r)=0 for all � ∈ � ⊂ Rs .

This property is characteristic of the gains in a feedback control
law, as they usually multiply tracking errors. Hence, we refer
to the parameter governor scheme which adjusts �(t) in (7) as
the gain governor.

The rationale for the gain governor can be easily understood
in the case of systems with input constraints. Specifically, the
gain governor can lower the gains when it becomes necessary to
avoid violating the input constraints; the gain governor can in-
crease the gains when there is no danger of constraint violation
and doing so improves the performance. It is clear that large
changes in r(t) can also be accommodated in this situation.
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The on-line selection of �(t) for each t ∈ Z+ is based on the
minimization of the cost functional (3) subject to the constraints
(4). The horizon T > 0 needs to be selected in agreement with
our subsequent assumptions. Note that (3) and (4) can be evalu-
ated on-line by computing state predictions x+(k|x(t), �(t), r)

based on simulating models (6)–(7). If C(r) admits an inequal-
ity characterization

C(r) = {(�, x) ∈ Rs+p : gj (�, x, r)�0, j = 1, . . . , q},
then constraint (4) reduces to

gj (�(t), x+(k|x(t), �(t), r), r)�0, j = 1, . . . , q;

k = 0, . . . , T . (8)

The constraint (4) can be restated equivalently as

(�(t), x(t)) ∈ OT (r), OT (r)�{(�, x) ∈ Rs+p:

(�, x+(k|x, �, r)) ∈ C(r), k = 0, 1, . . . , T }. (9)

The rigorous theoretical results are based on the following
assumptions. These assumptions are somewhat stronger than
really needed but they simplify the exposition of the main
ideas.

(A1) The set C(r) ⊂ Rs+p in (2) is compact and �(t) ∈ �,
where � ⊂ Rs is a compact set.

(A2) There exists � > 0 such that for all � ∈ �, (�, xe(r)) +
�Bs+p ⊂ C(r), where Bs+p is the unit ball in Rs+p.

(A3) x+(k|x̄, �, r) → xe(r) as k → ∞ for all � ∈ � and
(�, x̄) ∈ C(r).

(A4) There exists k∗
1 ∈ Z+ and 0�q < 1 such that for all

(�, x̄) ∈ C(r), � ∈ � and k�k∗
1 ,

�(x+(k|x̄, �, r), �, r)�q · �(x̄, �, r).

(A5) The function Q in (5) is continuous and is such that for
all � ∈ �, �(xe(r), �, r) = 0, and if x 	= xe(r) then
�(x, �, r) > 0.

Assumption (A1) may require that artificial constraints be
added for the state variables that are unconstrained by the virtue
of the problem formulation. Compactness of � and C(r) may
be relaxed to their boundness if (A2) and (A3) hold for closures
of � and C(r). Assumption (A2) can be interpreted as a strict
steady-state feasibility condition. Assumption (A3) character-
izes the needed stability properties of the system when �(t) is
maintained at a constant value. Given that (6), (7) are intended
to represent a stable closed-loop system, both (A3) and (A4) are
reasonable and not very limiting. Assumption (A5) is imposed
on the incremental cost function and not on the original system
itself. It holds, for example, if Q is continuous, Q(0, 0) = 0,
and Q is positive-definite in the state variable, i.e., Q(a, b) > 0
if a 	= 0.

Assumptions (A2) and (A3) and the compactness of C(r)

and � imply the following:

Proposition 1. There exists k∗
2 ∈ Z+ such that for all � ∈

� and (�, x̄) ∈ C(r), if (�, x+(k|x̄, �, r)) ∈ C(r) for k =
0, . . . , k∗

2 , then (�, x+(k|x̄, �, r)) ∈ C(r) for all k ∈ Z+.

The result in Proposition 1 enables to relax the con-
ditions (�, x+(k|x(t), �, r)) ∈ C(r) for all k ∈ Z+ to
(�, x+(k|x(t), �, r)) ∈ C(r) for k = 0, 1, . . . , T , provided that
T is sufficiently large. A similar property has been exploited in
the reference governor case (Bemporad, 1998) and it is related
to finite determination of maximum constraint admissible sets
(Gilbert et al., 1995).

The main result characterizing the response properties of the
gain governor is given by the following theorem.

Theorem 2. Suppose assumptions (A1)–(A5) hold, T >

max{k∗
1 , k∗

2}, where k∗
1 is defined in (A4) and k∗

2 is defined in
Proposition 1, and the initial state x(0) is feasible in the sense
that there exists �(0) ∈ � such that (�(0), x(0)) ∈ OT (r) for
all k�0. Suppose further that �(t) = �∗(t), t �0, has been
selected and let x∗(t), u∗(t) denote, respectively, the resulting
state and control trajectories. If for each t ∈ Z+,

J (x∗(t), �∗(t), r, T )�J (x∗(t), �∗(t − 1), r, T ), (10)

and (�∗(t), x∗(t)) ∈ OT (r), then x∗(t) remains feasible for
all t �0 (in particular, constraints (�∗(t), x∗(t)) ∈ C(r) are
satisfied for all t �0) and x∗(t) → xe(r), u∗(t) → ue(r) as
t → ∞. Furthermore, ‖�∗(t)‖2

��
converges to a limit.

Proof. The proof of Theorem 2 is similar to the stability proofs
for receding horizon optimal controllers (see, for example,
Mayne, Rawlings, Rao, & Scokaert, 2000). Using (A4), (3),
(10) and that �∗(t) is a feasible choice (guarantees constraint
satisfaction) at time t + 1, we obtain,

J (x∗(t + 1), �∗(t + 1), r, T )�J (x∗(t + 1), �∗(t), r, T )

�J (x∗(t), �∗(t), r, T ) − (1 − q) · �(x∗(t), �∗(t), r). (11)

Note that the first inequality in (11) is based on (10)
while the second inequality in (11) is based on (A4). Since
0�q < 1, and � takes only non-negative values, the sequence
{J (x∗(t), �∗(t), r, T )} is bounded and non-increasing with t.
Therefore, it has a limit as t → ∞ and

�(x∗(t), �∗(t), r) → 0 as t → ∞. (12)

By (A5) and continuity of uf b, x∗(t) → xe(r) and u∗(t) →
ue(r). Finally, note that J (x∗(t), �∗(t), r, T ) converging to a
limit, (12) and (3) imply that ‖�∗(t)‖2

��
converges too. The

proof is complete. �

Remark 1. The cost non-increase condition (10) allows signif-
icant flexibility in applying numerical optimization to (3) and
(4). In particular, the exact minimizer is not required and (10),
(4) for t > 0 can be trivially satisfied with �∗(t) = �∗(t − 1) if
the numerical optimizer fails to provide a better value. Clearly,
�∗(t − 1) can be used as an initial guess by the numerical op-
timizer when computing �∗(t) at the time instant t.

Remark 2. Theorem 2 applies when � consists only of a
finite number of elements. In this case the minimization of (3)
subject to (4) can be accomplished by performing a finite num-
ber of on-line model simulations for each value of �(t) ∈ �
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and comparing the cost values for those trajectories which sat-
isfy (4). Each of the simulations can be run up to the hori-
zon T or until the first time instant when constraints become
violated.

Remark 3. If T satisfies the assumptions of Theorem 2, then
the terminal set and terminal penalty conditions (Mayne et al.,
2000) are not needed to guarantee the state convergence. In
the gain governor case, these conditions would require that a
terminal penalty function term, F(x+(T |x(t), �(t), r)), where
F(xe(r)) = 0, be added to (3) and a terminal set condition
x+(T |x(t), �(t), r) ∈ � be imposed. The terminal set � must
be positively invariant for all � ∈ � (i.e., x+(k|x̄, �, r) ∈ � if
x̄ ∈ �) and constraint-admissible (i.e., (�, x+(k|x̄, �, r) ∈ C for
all x̄ ∈ �, � ∈ � and k ∈ Z+). The terminal penalty function F
must satisfy F(x+(1|x̄, �, r))−F(x̄)�−�(x+(1|x̄, �, r), �, r)

for all x̄ ∈ �,� ∈ �. As these terminal set and terminal penalty
conditions complicate the optimization, not requiring them is
an advantage.

Remark 4. The dimensionality of the optimization problem
for determining �(t) does not grow with T (it remains equal
to s).

Remark 5. The number of constraints in (4) or (8) grows
with T. This can complicate on-line optimization if T is large.
As in the reference governor case (Gilbert & Kolmanovsky,
2002), the use of a simple off-line functional characterization
of a subset, M(r) = {(�, x) : V (x, �, r)�0} ⊂ OT (r), in
place of OT (r) provides an alternative. In this case, multiple
inequalities in (4) or (8) can be replaced by a single inequal-
ity, V (x(t), �(t), r)�0. With M(r) used in place of OT (r)

no feasible �(t) ∈ � may exist for some t, i.e., it can hap-
pen that V (x(t), �) > 0 for all � ∈ �. In this case, setting
�(t) = �(t − 1) preserves the response properties in Theorem
2. Another scheme to minimize the on-line computational bur-
den is to implement an explicit gain governor by calculating
the optimal values of � = �∗(x, r) off-line for different x and
r and then developing a functional approximation, �̄

∗
(x, r) of

�∗(x, r) for on-line implementation. Suppose that such an ex-
plicit solution is available for x ∈ � ⊂ Rp where � is a set
such that xe(r) ∈ int�. As long as x(t) ∈ �, �̄

∗
(x, r) is de-

fined. If the trajectory of x starts in � but exits � at a time
instant t, then �̄

∗
(x(t), r) is not defined but �(t) can be set to

the value of �(t̃) = �∗(x(t̃), r), where t̃ < t is the last time in-
stant for which x(t̃) ∈ �. Even if x(t) exits � at a time in-
stant t, the condition xe(r) ∈ int� and (A3) guarantee that x(t)

must re-enter � in finite-time where �̄
∗
(x, r) can again be ap-

plied. The reduction in the size of the set � over which the
functional approximation to the explicit solution is developed
and deployed provides a mechanism for decreasing the com-
plexity of this functional approximation and for improving its
accuracy.

Remark 6. A practical numerical procedure to approxi-
mately determine an adequate horizon T is available. This
procedure is based on computing two quantities, L1(k)

and L2(k), k ∈ Z+:

L1(k) = max
j=1,...,q,�∈�,(�,x)∈C(r)

gj (�, x+(k|x, �, r), r),

L2(k) = max
�∈�,(�,x)∈C(r)

�(x+(k|x, �, r), r, �)

�(x, r, �)
,

where gj is defined in (8). The L1(k), L2(k) are, respectively,
the maximum constraint violation and the minimum decay ratio
of the incremental cost due to x+(k|x, �, r) as x, � and r vary
(� ∈ �, (�, x) ∈ C(r) and r varies within the intended operating
range). An acceptable T must satisfy the conditions L1(k)�0
and L2(k)�q for all k�T and some 0�q < 1. Either off-line
numerical optimization or multiple off-line simulations of the
model for different x, � and r can be used to estimate L1(k) and
L2(k). An acceptable T can be easily picked from the graphical
plots of L1(k) and L2(k) versus k. We note that the resulting T
is a numerical approximation to the required horizon and not a
guaranteed upper bound.

Remark 7. In a common situation when (6) and (7) represent
a discrete-time approximation of a continuous-time system and
� is the physical time period between two subsequent para-
meter updates, it is usually the underlying continuous-time
dynamics that dictate an acceptable value for T · � to yield
properties required in (A4) and Proposition 1. In particular, se-
lecting larger � (i.e., using less frequent parameter updates) can
lead to smaller T while the effort to simulate the continuous-
time model to a desired level of accuracy does not increase
with �. The drawback of larger � is in cruder enforcement of
constraints for the original continuous-time system. This draw-
back can be addressed by using a finer time grid for constraint
enforcement, with (4) replaced by

(�(t), x̄+(n�|x(t), �(t), r)) ∈ C(r(t)), n = 0, . . . , N .

Here x̄+(n�|x(t), �(t), r)) is the predicted state of the
continuous-time system at time n�, where � < � and N� > T �.
If the approach of Remark 5 is used, the number of constraints
in the resulting optimization problem may not be large.

From Theorem 2, ‖�∗(t)‖2
��

converges to a limit. Suppose
that

lim
t→∞ ‖�∗(t)‖�� = lim

t→∞

√
(�∗(t))T���

∗(t) = vlim �0. (13)

It turns out that under appropriate, additional assumptions,
vlim = 0. In other words, asymptotically the gain governor be-
comes inactive and the closed loop system functions under the
nominal control law (corresponding to � = 0). The additional
assumptions are:

(A6) The function x+(k|x, �, r) is locally Lipshitz as a func-
tion of � and the function uf b(x, �, r) is locally Lipshitz
as a function of x and � for all (�, x) ∈ C(r), � ∈ � and
k = 0, . . . , T .

(A7) 0 ∈ int�, � is convex.
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(A8) Q is twice continuously differentiable.
(A9) The matrix �� in (3) is positive definite, �� > 0.

Theorem 3. Suppose assumptions (A6)–(A9) hold in addition
to the assumptions of Theorem 2 and �∗(t) is the minimizer of
(3) subject to (4). Then, all conclusions of Theorem 2 remain
valid, and ‖�∗(t)‖�� → 0.

Proof. See Appendix A. �

Remark 8. The result in Theorem 3 holds if an exact minimizer
is computed at each time instant t. The result in Theorem 2
does not depend on this condition.

3. More general parameter governors and a feedforward
governor

We now consider a class of parameter governors which are
more general than the gain governors. Suppose that the state of
the system, x, in (6) can be partitioned as

x =
[
xp

xi

]
, (14)

so that uf b in the control law (7) has the form,

uf b(x, �, r) = ūf b(xp, xi, �, r). (15)

Unlike in the gain governor case, here we no longer assume
that system (6), (7), (14), (15) has the steady-state equilibrium
which does not depend on �; this property is assumed only for
xp. Thus the unique equilibrium corresponding to �(t) ≡ � and
r(t) ≡ r is assumed to have the form,

xe(�, r) =
[

xpe(r)

xie(�, r)

]
(16)

and

ūf b(xpe(r), xie(�, r), �, r) = 0 for all � ∈ �. (17)

The cost function penalizes the deviation of xp from xpe(r)

and u from ue(r) so that in (3)

�(x, �, r) = Q̄(xp − xpe(r), ūf b(xp, xi, �, r)). (18)

The results similar to Theorems 2 and 3 for this more gen-
eral parameter governor follow immediately under essentially
the same assumptions as in the gain governor case. See the
conference version of this paper (Kolmanovsky & Sun, 2004)
for details. Specifically, in (A1)–(A4) and (A8), xe(r) is re-
placed by xe(�, r) and Q is replaced by Q̄. Assumption (A5)
needs to be replaced by Q̄ being continuous and Q̄(a, b) > 0
if (a, b) 	= 0. The results require an additional technical as-
sumption that ūf b in (15) is invertible with respect to xi and
the inverse is a continuous function of xp and � for all � ∈ �
and xp sufficiently close to xpe(r). This assumption guarantees
that xp(t) → xpe(r), u(t) → ue(r) imply xie(t) → xie(�, r).

Clearly the gain governor represents a special case of this
more general parameter governor, with x =xp. Another special

case is the feedforward governor, for which the complete system
of equations has the following form:

xp(t + 1) = fp(xp(t), u(t)), (19)

xi(t + 1) = xi(t) + y(t) − r , (20)

y(t) = h(xp(t)), (21)

u(t) = ue(r) + ũf b(xp(t), xi(t), r) + �(t). (22)

Thus the adjustable parameter vector �(t) appears as a feedfor-
ward offset in the control law (22).

The integrator (20) is essential to the feedforward governor
operation to eliminate the influence of the constant offset term,
�(t), on the steady-state values of xp and u, and thus guarantee
the equilibrium properties in (16), (17). Note that to achieve
this, the dimensionality of y must be equal or exceed the di-
mensionality of u. If the original plant does not contain such
an integrator, it may be artificially added in the process of the
feedforward governor design.

As shown in Kolmanovsky and Sun (2004), system (19)–(22),
under appropriate assumptions and owing to the presence of
an integrator, exhibits slow and fast dynamics decomposition
with the slow manifold satisfying the constraints; then the fast
portion of the trajectory can be made to satisfy the constraints
through the adjustment of �(t). This mechanism permits to
handle large changes in r(t).

4. Example

In this section, we illustrate the application of the gain gov-
ernor to an example of an engine with an electronic throttle and
variable cam phasing. The objective is to use the gain governor
to coordinate these two actuators to provide fast and monotonic
air flow response into the engine cylinders. The background for
this problem is described in Stefanopoulou and Kolmanovsky
(1999). Several other examples, for both the gain governor and
the feedforward governor cases, were reported in the confer-
ence version of this paper (Kolmanovsky & Sun, 2004).

The engine breathing dynamics, in a simplified form as com-
pared to Stefanopoulou and Kolmanovsky (1999), have the fol-
lowing form in continuous time:

ṗ = cm(k1 · uth ·
√

p − p2 − W),

W = k2 · p ·
(

1 − 	

90

)
,

	̇ = −
(	 − 	e),

üth = −2��nu̇th − �2
n(uth − uth,e),

where p is the intake manifold pressure, uth is the throttle an-
gle, W is the cylinder flow, 	 is the cam phasing angle, and the
subscript e signifies the equilibrium value of a variable. The
constants are cm = 0.0414, k1 = 4.0, k2 = 30.0, �n = 24.5. The
governed parameters are 
 and � so that 
= 8 + �1, �= 1 + �2,

where � ∈ � = [−6, 8] × [−0.8, 1.0]. They determine, respec-
tively, the speed of cam phasing adjustment and the damping
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Fig. 2. Time histories of cylinder flow with (a) 
(t) ≡ 2, �(t) ≡ 1; (b)

(t) ≡ 16, �(t) ≡ 1; (c) 
(t), �(t) prescribed by the gain governor.

ratio in the throttle position response. These parameters are
updated every Ts =50 ms by the gain governor. The incremental
cost function Q in (3) is

Q = q1 · (W − We)
2 + q2 · (	 − 	e)

2 + q3 · (uth − uth,e)
2

+ q4 · u̇2
th,

where uth,e = r = 20, 	e = 25, q1 = 100, q2 = 0.01, q3 = 10−4,
q4 =10−4, while �� =diag(0.001, 0.001). Due to a large value
of q1, the cost emphasizes fast cylinder flow response to provide
better engine responsiveness and drivability.

Assuming the command is to increase the cylinder flow, the
constraint which ensures the monotonic cylinder flow response
is Ẇ (t)�0. Strictly speaking, our theory does not permit the
treatment of constraints in this form because in steady-state
Ẇ (t)=0 and (A2) is violated. We therefore relax the constraint
to Ẇ (t)� − 0.1. In this example, artificial constraints, defined
by 0.6�p�0.99, 10�	�30, 10�uth �30, −80� u̇th �80
were added to complete the definition of the set C(r) in (4)
and formally satisfy (A1). The horizon, T = 44, was estimated
based on the off-line numerical procedure of Remark 6 applied
to 105 simulated trajectories, each corresponding to values of
�(t) and x(0) selected at random.

Fig. 2 demonstrates that the gain governor is able to coordi-
nate throttle and cam phasing to produce a monotonic cylinder
flow response. Figs. 3 and 4 indicate that the gain governor cre-
ates an initial overshoot in throttle response (by decreasing the
damping ratio). This increases the air flow through the throttle
and into the engine intake manifold, and it mitigates the in-
crease in the residuals due to changing cam phasing. The gain
governor initially adjusts the cam phasing position slowly and
then speeds it up. For comparison, two cases where 
(t) and
�(t) are maintained constant are also included in Figs. 3 and
4. The overall response of the cylinder flow in these two cases
is slower than with the gain governor and the cylinder flow
monotonicity constraint is violated.
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Fig. 3. Time histories of 
(t) and �(t) prescribed by the gain governor.
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Fig. 4. Time histories of uth,	 with (a) 
(t) ≡ 2, �(t) ≡ 1; (b) 
(t) ≡ 16,
�(t) ≡ 1; (c) 
(t), �(t) prescribed by the gain governor.

5. Concluding remarks

A parameter governor uses receding horizon optimization for
on-line adjustment of parameters in a nominal control law to
avoid violation of pointwise-in-time state and control input con-
straints, and to improve transient performance. The adjustable
parameters remain constant over the prediction horizon. Thus
the dimensionality of the optimization problem being solved
does not depend on the horizon and is equal to the number of
parameters. As was demonstrated for the gain governor case, if
the horizon satisfies appropriate assumptions, terminal set and
terminal penalty conditions are not required to guarantee state
and control input convergence. Furthermore, a large degree of
flexibility exists in accommodating the on-line optimization.
For example, the exact minimizer is not required or need not be
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computed at every sample time instant. Key results hold even if
the parameter values are restricted to a finite set; in this case the
optimization reduces to a finite number of on-line simulations.
In addition, an explicit implementation (wherein the solution
to the receding horizon optimization problem is pre-computed
off-line and its functional approximation is applied on-line) can
be generated for a subset of the state space and then extended
in a simple way beyond this subset while preserving the state
convergence.

The parameter adjustment approach provides only a limited
mechanism for dealing with constraints and for on-line per-
formance improvement. At the same time, the required on-line
computational effort to implement it may be relatively modest
as compared to more general model predictive control (MPC)
schemes. This may make the parameter governor approach suit-
able for systems with fast dynamics and limited computational
resources.

Two special parameter governors, the gain governor and the
feedforward governor, were discussed in the paper in more de-
tail. More research is needed to delineate situations when the
gain governor or when the feedforward governor should be
used. The considerations in the paper and the examples which
we treated so far suggest that the feedforward governor may
be preferable over the gain governor when large and frequent
changes in r(t) are permitted. The gain governor, on the other
hand, may be a preferred choice when changes in r(t) are less
frequent (so the operation of the overall system resembles re-
peated stabilization) and in the case when there are only control
input constraints.

Future research may help identify other effective classes of
parameter governors and to understand their robustness proper-
ties as well as modifications needed to deal with uncertainties
and disturbances. The related developments in the reference
governor and multimode controller cases suggest that similar
treatment should be possible in a general parameter governor
case. Additional insights can be gained by applications of pa-
rameter governors to realistic practical problems and through
the experimental validation.

Appendix A. Proof of Theorem 3

The idea of the proof is to compare the optimal decision at
time t, �∗(t), with an alternative decision,

�̂(t)��∗(t) · vlim

vlim + 
2
, 
2 > 0, (23)

and to demonstrate that if vlim > 0, t is sufficiently large and 
2

is sufficiently small, then �̂(t) is a feasible choice at time t and
actually results in a smaller value of the cost (3) than �∗(t).

Indeed, define x̂(t + k) = x+(k|x(t), �̂(t), r), x∗(t + k) =
x+(k|x(t), �∗(t), r), û(t + k) = ue(r) + uf b(x̂(t + k), �̂(t), r),
u∗(t + k) = ue(r) + uf b(x

∗(t + k), �∗(t), r) and consider the

difference of the cost values corresponding to �̂(t) and �∗(t).

Noting that

‖�̂(t)‖2
��

− ‖�∗(t)‖2
��

= (�̂(t) − �∗(t))T��(�̂(t) + �∗(t))

= − 
2
‖�∗(t)‖��

(vlim + 
2)
2 (2vlim + 
2),

we obtain

J (x(t), �̂(t), r, T ) − J (x(t), �∗(t), r, T )

= −
2
‖�∗(t)‖��

(vlim + 
2)
2 (2vlim + 
2)

+
T∑

k=0

(Q(x̂(t + k) − xe(r), û(t + k) − ue(r))

− Q(x∗(t + k) − xe(r), u
∗(t + k) − ue(r))). (24)

By (A8) and Taylor series expansion properties,

Q(x̂(t + k) − xe(r), û(t + k) − ue(r))

− Q(x∗(t + k) − xe(r), u
∗(t + k) − ue(r))

= DQ(x∗(t + k) − xe(r), u
∗(t + k) − ue(r)) ·

[
x̂(t + k) − x∗(t + k)

û(t + k) − u∗(t + k)

]

+
[
x̂(t + k) − x∗(t + k)

û(t + k) − u∗(t + k)

]T D2Q(z�(t + k))

2

[
x̂(t + k) − x∗(t + k)

û(t + k) − u∗(t + k)

]
,

where

z�(i) = �(i) ·
[
x∗(i) − xe(r)

u∗(i) − ue(r)

]
+ (1 − �(i)) ·

[
x̂(i) − xe(r)

û(i) − ue(r)

]
,

0��(i)�1. By (A6) and (A9), for all 
2 > 0 sufficiently small
we can find LQ > 0 such that

sup
k=0,...,T

∥∥∥∥ x̂(t + k) − x∗(t + k)

û(t + k) − u∗(t + k)

∥∥∥∥ � LQ
2

vlim + 
2
‖�∗(t)‖�� , (25)

where ‖ ·‖ denotes the usual 2-vector norm. From (A8), x∗(t +
k) → xe(r), u∗(t + k) → ue(r), and since (0, 0) is a minimum
of Q (so that DQ(0, 0) = 0) and since DQ is continuous, it
follows that

sup
k=0,...,T

∥∥DQ(x∗(t + k) − xe(r), u
∗(t + k) − ue(r))

∥∥ → 0

as t → ∞. (26)

Consider now �̂(t) defined by (23). By (A7), �̂(t) ∈ �. In
view of (A2) and (25), for all 
2 > 0 sufficiently small, if t is
sufficiently large, then �̂(t) is a feasible choice at time t. From
(24)–(26),

J (x(t), �̂(t), r, T ) − J (x(t), �∗(t), r, T )

� − 
2
‖�∗(t)‖��

(vlim + 
2)
2 (2vlim + 
2)

+ T LQ
2‖�∗(t)‖��

vlim + 
2
sup

k=0,...,T

‖DQ(x∗(t + k)

− xe(r), u
∗(t + k) − ue(r))‖

+ O(
2
2). (27)

Note that ‖�∗(t)‖�� → vlim as t → ∞. If vlim > 0, 
2 > 0 is
sufficiently small and t ∈ Z+ is sufficiently large, the first term
in (27) can be made to strictly dominate in absolute value the
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third term and, in view of (26), the first term can also dominate
the second term so that

J (x(t), �̂(t), r, T ) < J (x(t), �∗(t), r, T ),

which contradicts the fact that �∗(t) is a minimizer for J. The
proof is complete.
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