RAFT: Reconfigurable Array of High-Efficiency Ducted Turbines for Hydrokinetic Energy Harvesting

University of Michigan-Ann Arbor, Rutgers, Oregon State University
Technical Overview: RAFT team

Th1: Hydrodynamics Modeling
Kevin Maki
Yulin Pan

Th2: Structural Modeling and Analysis
Roger Wang
Onur Bilgen

Th3: Electrical System Design
Ted Brekken
Yue Cao

Th4: System & Control Co-Design
Joaquim Martins
Reza Amini

Th5: Integration & Validation
Onur Bilgen

Th6: Technology Transfer

*Th: Research Thrust
Technical Overview

- Develop and demonstrate a novel Hydrokinetic Turbines (HKT) concept with:
 - Modularized architecture with reconfigurable arrays;
 - Ducted design for flow conditioning;
 - Folding blades for dislodging debris;
 - Multi-scale and multi-discipline optimization and control co-design (CCD) at micro and macro levels.

- The main objectives of the project:
 - Demonstrate RAFT concepts;
 - Leverage CCD to dramatically reduce LCOE;
 - Develop multi-physics models;
 - Develop design processes and optimization tools.

One Integrated Solution Applicable for Tidal, Riverine, Utility, and Remote Applications
Thrust 1: Hydrodynamic

- Single micro turbine modeling and design optimization:
 - **OpenFoam**: CFD modeling for turbine performance with duct;
 - **DAFoam**: Geometry optimization via adjoint method.

- Macro array modeling and optimization:
 - **Bi-fidelity CFD** model (full geometry vs. body force) for array performance;
 - **Array optimization** via surrogated-based method.

- Macro array modeling and optimization:
 - **FLORIS** to account for wake interactions;
 - Aim for both riverine and tidal environments;
 - **Farm-level** optimization via DRESSA.
Thrust 2: Structural

- **Conceptual design and parametric geometry:**
 - A tool that generates the “wet” or so-called outer-mold-line (OML) geometry of all designs;
 - Visualization and qualitative study of different turbine geometries and array assemblies;
 - Rough estimation of the basic size and mass properties.

- **High-fidelity structural modeling:**
 - FE model for rigid-mounted turbines and turbine arrays;
 - Internal topology design to achieve minimum mass-, transportation-, hydrodynamic-, and generator-induced deformations, and the associated stresses.

- **Low-fidelity structural modeling:**
 - Physics-based models for rigid-mounted and moored-submerged turbines, and turbine arrays;
 - Two-way coupled fluid-structure and generator-structure interactions predictions;
 - System design to minimize mass-, transportation-, hydrodynamic-, and generator-induced deformations, and stresses.
Thrust 3: Electrical

- Achieving high efficiency, high reliability, low cost:
 - Modularized power electronic converters with silicon carbide (SiC) devices and integrated cooling;
 - Less-rated more-efficient cheaper devices,
 - Distributed losses and improved water cooling,
 - Scalable voltages up to medium voltage, less ohmic loss,
 - Smoother power and reduced passive elements,
 - Fault-tolerance and health monitoring;
 - Fault bypass allowing module offline maintenance,
 - Reinforcement learning for condition changes: biofouling,
 - Generator control and control for microgrid connection;
 - Max generator power, min power fluctuation, min stress,
 - Grid-following and grid-forming grid support,
 - Environmental friendliness and adaptation;
 - Minimal electric or magnetic noise emission,
 - Overall electro-mechanical-thermal design optimization.
Thrust 4: System & Control Co-Design

- **Multi-physics modeling and analysis:**
 - Strongly-coupled low-order lumped-parameter multi-physics modeling;
 - Analysis of theoretical bounds for system responses;
 - Theoretical and experimental system identification and validation.

- **Hydrokinetic turbine design optimization:**
 - Leverage OpenMDAO;
 - Modular architecture optimization;
 - Efficient solution of coupled hierarchical models;
 - Efficient computation of coupled derivatives via coupled adjoint method.

- **Control Co-Design and Real-time Control:**
 - Dymos open-source framework built with OpenMDAO;
 - Efficiently computes gradients via an adjoint approach;
 - Control co-design integration with hydro-electro-structural design optimization;
 - Real-time, distributed, and constrained load and power generation optimization via model predictive control (MPC).
Thrust 5: Validation and Demonstration

‣ Integrated system testing at MHL:
 – Physical model basin, 109 m (L), 6.7 m (W), and up to 3.4 m depth;
 – Powered, manned carriage, and an unmanned sub-carriage;
 – Plunging wave-maker for regular and irregular wave generation;
 – Model scale experimental testing and demonstration of the integrated RAFT system (single and multiple units).

‣ Benchtop, wind tunnel, and hydro-environmental testing at Rutgers:
 – Closed-circuit low-speed tunnel with a 71 cm × 51 cm test section;
 – Fully automated Eiffel type tunnel with max flow speed of 72 m/s;
 – Motion capture and high-sensitivity load cells for automated benchtop experiments;
 – Hydraulic, wave, and sediment flume, volumetric hydraulic benches.

‣ Electrical system testing at WESRF
 – 750 kVA dedicated utility power;
 – Multiple rotary test beds up to 300 hp;
 – Multi-physics energy storage banks;
 – Medium-voltage high-power power supplies.
Path to Target LCOE

Key RAFT Contributions	LCOE, M1, and M2 Variables Affected
Reconfigurability and Modularity | Water turbine availability, Structure manufacturing, OpEx/kW
Control co-design and Power regulator | Max. power coefficient, Resilience and robustness
Elimination/reduction of floating/mooring system, as well as tower/cross-arm/columns | Mass reduction
Less number of drive train components | Drive-train losses, Mass reduction, OpEx/kW, Turbine availability

Key T0 (environmental) activities:
- **Filtering** of debris and marine species, **dislodging** of entangled species, and **bio-fouling cleaning** through duct inlet screen, and **folding blades**;
- **Alleviating noise** and vibration through electrical module design and system control;
- **Assessing marine animal collision** risks, and physical impact on environmental flow conditions, sediment transport.
Project Impact

- **Innovations and Transformational Impacts**
 - **Modularized** architecture with **reconfigurable** units:
 - Significant reduction in LCOE, CapEx, and OpEx;
 - **Scalable** design **adaptable** to river-bed/sea-floor topographies;
 - **Control co-design** enabling **resilient** operation in the harsh marine environment:
 - Multi-disciplinary optimization to exploit synergies between physical and control design spaces;
 - **Distributed load control** for optimal power production:
 - Innovative differential control for active yaw and pitch control of the array assembly,
 - Leveraging the environmental condition and coordination among RAFT units.

TSR: tip speed ratio
Tech to Market Plan

- **Design Cases:**
 - One integrated solution applicable for S1, S2, S3, and S4 (tidal, riverine, remote, utility);
 - Focus on S2 and S3 (tidal/remote, riverine/utility);
 - Adoption of moored-submerged type of RAFT for ocean current.

- **Target Stakeholders/Market:**
 - Renewable and offshore energy industry;
 - Suppliers and the US government.

- **T2M Barriers:**
 - No pre-existing commercialization partner(s);
 - Manufacturing and supply chain for HKT.

Reconfigurable Micro-Turbine as building blocks

Removal of key barriers for T2M (fabrication, manufacturing, CapEx, OpEx, ...)

ASSESS DEVELOP UNLEASH MARKET ANALYSIS ADVANCE TECHNOLOGY REDUCE RISK LICENSE

FELLOWS REPORT PROTECTION FEEDBACK PARTNER SELECTION AGREEMENT MANAGEMENT

Preliminary T2M Plan, Value proposition, Key stakeholder, IP management, Competitive landscape, Scale-up, Follow-up funding, Formal T2M Plan, Update 1 of T2M Plan, Update 2 of T2M Plan, Update 3 of T2M Plan, Update 4 of T2M Plan, Final T2M & Pitch Plan
RAFT: Reconfigurable Array of High-Efficiency Ducted Turbines for Hydrokinetic Energy Harvesting