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S1 Properties of the Exponential Power (EP) Distri-

bution

Normalizing Constant

Let α ∼ EPk(σ), so that π(α) ∝ exp{−|α/
√

2σ|k}, α ∈ (−∞,∞). The normalizing constant

is Z(σ, k) = 1/
[∫∞
−∞ exp{−|x/

√
2σ|k}dx

]
= 0.5/

[∫∞
0

exp{−(x/
√

2σ)k}dx
]
. Define u =

(x/k)k, so that x = ku1/k and dx = u1/k−1 du. Then,∫ ∞
0

exp{−(x/
√

2σ)k}dx =

∫ ∞
0

u1/k−1 exp
{
−u(
√

2σ/k)−k
}

du

= (
√

2σ/k)Γ(1/k).

The last integral is the kernel of a gamma density, implying that U = (|α|/k)k ∼ Gamma(1/k, (
√

2σ/k)k).
Thus, Z(σ, k) = k/[

√
8σΓ(1/k)], and

π(α|σ, k) =
k exp{−|α/

√
2σ|k}√

8σΓ(1/k)
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Distribution Function

Using the above relationship and the symmetry of the ExpPow distribution, we have

Pr(|α| > x|σ, k) = Pr(U > (x/k)k|σ, k) =
Γ
(
1/k, (x/k)k/(

√
2σ/k)k

)
Γ(1/k)

=
Γ
(
1/k, (x/

√
2σ)k

)
Γ(1/k)

This can be calculated in R (R Core Team, 2016) with

> pgamma(q = (x/sqrt(2)/sigma)^k,shape = 1/k,lower.tail = FALSE)

S2 Generating Scenarios in Simulation Study: Further

Details

Scenario 1 X is multivariate Bernoulli with length p = 4, where X = 1[X∗ > 0]; X∗

is multivariate normal with length p; each element has mean zero, unit variance, and
pairwise correlation 0.50; β∗ = {0.50, . . . , 0.50}; α∗ = −2.5; α∗ + E(X)>β∗ = −1.5;
n ∈ {50, 100, 200, 400}

Scenario 2 X is multivariate Bernoulli with length p = 25, where X = 1[X∗ > 0]; X∗

is multivariate normal with length p; each element has mean Φ−1(0.25) = −0.67, unit
variance, and pairwise correlation 0.15; β∗ = {1.5, 0, . . . , 0}; α∗ = −2; α∗+E(X)>β∗ =
−1.625; n ∈ {50, 100, 200}

Scenario 3 X is multivariate Bernoulli with length p = 25, where X = 1[X∗ > 0]; X∗

is multivariate normal with length p; each element has mean Φ−1(0.25) = −0.67,
unit variance, and pairwise correlation 0.15; β∗ = {0.06, . . . , 0.06}; α∗ = −2; α∗ +
E(X)>β∗ = −1.625; n ∈ {50, 100, 200}

Scenario 4 X is multivariate Bernoulli with length p = 25, where X = 1[X∗ > 0]; X∗

is multivariate normal with length p; each element has mean Φ−1(0.05) = −1.64,
unit variance, and pairwise correlation 0.30; β∗ = {3, . . . , 3︸ ︷︷ ︸

10

, 0, . . . , 0︸ ︷︷ ︸
15

}; α∗ = −6.5;

α∗ + E(X)>β∗ = −5; n ∈ {100, 200, 400}

Scenario 5 X is multivariate Bernoulli with length p = 25, where X = 1[X∗ > 0]; X∗

is multivariate normal with length p; each element has mean Φ−1(0.05) = −1.64,
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unit variance, and pairwise correlation 0.30; β∗ = {3, . . . , 3︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
15

}; α∗ = −4; α∗ +

E(X)>β∗ = −2.5; n ∈ {50, 100, 200}

Scenario 6 X is multivariate normal with length p = 75; each element has mean zero, unit
variance, and pairwise correlation 0.30; β∗ = {2, 0, . . . , 0}; α∗ = α∗ +E(X)>β∗ = −4;
n ∈ {100, 200, 400}

Scenario 7 X is multivariate Bernoulli with length p = 75, where X = 1[X∗ > 0]; X∗

is multivariate normal with length p; each element has mean Φ−1(0.25) = −0.67, unit
variance, and pairwise correlation 0.30; β∗ = {2, 0, . . . , 0}; α∗ = −3.5; α∗+E(X)>β∗ =
−3; n ∈ {100, 200, 400}

Scenario 8 X is multivariate normal with length p = 150; each element has mean zero,
unit variance, and pairwise correlation 0.10; β∗ = {−0.5,−0.5, 0, . . . , 0}; α∗ = α∗ +
E(X)>β∗ = −3; n ∈ {100, 200, 400, 600}

Scenario 9 X is multivariate normal with length p = 150; each element has mean zero,
unit variance, and pairwise correlation 0.10; β∗ = {−1/150, . . . ,−1/150}; α∗ = α∗ +
E(X)>β∗ = −3; n ∈ {100, 200, 400, 600}

S3 Algorithm 2: Calculate ncomp, npiv, or nover

We assume that ncomp is to be calculated, and the algorithm is similar for the other separation
statistics. For a given hyperplane of dimension p+1, say b, which yields the one-dimensional
linear predictor {1,X>i }b, i = 1, . . . , n, the minimum number of observations removed to
induce separation is calculable in n log(n) time by using a binary search. The minimum of
these minima over all possible hyperplanes is precisely the ncomp statistic, but determining
this is NP hard (Hoffgen et al., 1995; Christmann and Rousseeuw, 2001). The algorithm we
used also reports a minimum of minima but searches over a subset of candidate hyperplanes
that is intended to be likely to contain the best-separating hyperplane, i.e. correspond to
ncomp. Thus, by construction, the value returned by our algorithm will always bound the
true value of ncomp from above, but this may not be tight, i.e. we can only guarantee it is
an upper-bound.

For a given dataset of n observations of {Yi,Xi}i with Xi being length-p, the algorithm
proceeds as follows.

1. Calculate the linear predictor from the full multivariable logistic regression of Y against
all predictors {Xi}i simultaneously. Set ncurrent

comp equal to the number observations
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needed to induce separation using this linear predictor. If this number is zero, proceed
to step 5.

2. Now determine whether a different hyperplane constructed using a subset of obser-
vations can induce separation. The intuition is that hyperplanes constructed from
subsamples that preferentially exclude the high-influence observations, i.e. those sub-
samples enriched with low-influence observations, may be able to better separate the
data than those hyperplanes that are sensitive to high-influence observations. Calculate
a length-n vector of sampling weights {wi}, where each wi is equal to the square root of
the reciprocal of the absolute difference between the corresponding observation’s linear
predictor from the full multivariable logistic model and that calculated after leaving
out the observation. This is used as a simple measure of that observation’s influence
in estimation.

3. For k = 1, . . . ,MAXk,

(a) if
(

n
n−k

)
< NDRAWS, then, construct every possible subset of

(
n

n−k

)
observations.

(b) Otherwise, sample NDRAWS subsets of size n − k as follows. Identify the
NDRAWS/2 subsets of observations with the largest partial sums of weights
wi from step 3. For the remaining NDRAWS/2 subsets, randomly sample obser-
vations in proportion to each weight wi. Remove any duplicated sampled subsets
from among the NDRAWS subsets.

For every subset of observations above, calculate the linear predictor for all n observa-
tions using the multivariable logistic regression of Y against all X’s fit to the subset of
size n− k. Whenever the minimum number removed to induce separation falls below
ncurrent
comp , set ncurrent

comp equal to this number. If ncurrent
comp = 0, step out of the loop and

proceed to step 5.

4. Return the final value of ncurrent
comp as the estimate of ncomp and the corresponding hyper-

plane that resulted in this greatest separation.

We extended this algorithm to also approximate npiv (the minimum number of observations
necessary to induce pivotal separation among the remaining subsets, defined in Section 2.1)
and nover (the minimum number of observations necessary to remove to induce quasi-complete
separation among the remaining subset (Christmann and Rousseeuw, 2001)). Applied to
five datasets considered in Christmann and Rousseeuw (2001), and using MAKk = 8 and
NDRAWS = 1000 (for small n) or NDRAWS = 200 (for large n), Algorithm 2 was able
to match or improve upon (i.e. identify a verifiable lower upperbound of ncomp or nover) an
alternative algorithm considered in that paper (see Table 4 in the manuscript). We were not
able obtain a sixth dataset (‘Hemophilia’) considered by those authors
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In the simulation study and analysis in the manuscript, we used MAKk = 8 and a larger
value of NDRAWS = 5000.

S4 Supplemental Tables and Figure

Table S1: Values of the extreme boundaries logit−1(sn) and the scale parameter σn of the
EP distribution with k = 2 or k = 4 and the Logistic distribution, for varying sample sizes
n, as calculated by Algorithm 1 with δ = 1 and q = 0.01.

EP(k = 2) EP(k = 4) Logistic
n logit−1(sn) σn σn σn

250 6.21 2.41 3.52 1.17
500 6.91 2.68 3.91 1.30
1000 7.60 2.95 4.30 1.44
2000 8.29 3.22 4.70 1.57
4000 8.99 3.49 5.09 1.70
8000 9.68 3.76 5.48 1.83
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Table S2: Median AUCs (×100), across 200 datasets, using the posterior mean of β for all
combinations of six priors on the intercept parameter α and two priors on β. Larger numbers
are better. In each row, values in italicscorrespond to the largest median AUC, and values in
bold had a larger AUC than the italicized value in at least 33% of the datasets. All metrics
were calculated separately for each prior on β. The columns ncomp and npiv give the median
values of these statistics across the 200 simulated datasets.

median β ∼ HS(p̃eff) β ∼ Logis(1)
Scenario p n ncomp. npiv. t3(10) t∞(10) EP2(σn) EP4(σn) EP10(σn) Logis(σn) t3(10) t∞(10) EP2(σn) EP4(σn) EP10(σn) Logis(σn)

1 4 50 9 9 66.3 66.4 66.4 66.3 66.4 66.5 65.5 65.5 65.5 65.5 65.5 65.5
1 4 100 20 20 66.9 67.1 67.0 67.0 67.1 67.1 66.6 66.5 66.5 66.5 66.5 66.5
1 4 200 40 40 67.7 67.7 67.7 67.8 67.7 67.7 67.4 67.4 67.4 67.4 67.4 67.4
1 4 400 84 84 67.9 67.9 67.9 67.9 67.9 67.9 67.8 67.8 67.8 67.8 67.8 67.8

2 25 50 0 1 56.5 56.5 57.8 57.5 57.3 58.0 56.6 56.5 56.6 56.5 56.4 56.7
2 25 100 2 7.5 62.7 63.1 63.1 62.9 62.8 63.1 58.5 58.5 58.5 58.5 58.4 58.6
2 25 200 22 24.5 65.3 65.3 65.3 65.3 65.3 65.3 61.2 61.3 61.3 61.2 61.2 61.3

3 25 50 0 1 53.0 52.9 53.0 52.9 53.0 53.0 52.8 52.8 52.8 52.7 52.8 52.8
3 25 100 2 8 52.6 52.6 52.5 52.6 52.6 52.6 52.5 52.5 52.6 52.6 52.5 52.5
3 25 200 22 25 53.7 53.7 53.8 53.8 53.8 53.7 52.8 52.7 52.8 52.8 52.8 52.8

4 25 100 0 0 80.0 78.9 82.2 82.4 82.2 82.1 91.7 91.7 91.1 91.2 91.2 91.3
4 25 200 1 2 92.5 92.2 93.6 93.6 93.6 93.5 94.8 94.8 94.7 94.7 94.8 94.8
4 25 400 2 7 96.1 96.1 96.1 96.1 96.1 96.1 96.3 96.3 96.3 96.3 96.3 96.3

5 25 50 1 1 72.4 72.5 73.9 73.7 73.5 73.8 83.9 83.9 84.1 84.1 84.3 84.0
5 25 100 2 2 79.8 79.8 80.6 80.5 80.4 80.6 88.0 87.9 88.0 88.2 88.0 88.0
5 25 200 6 6 90.0 90.1 90.1 90.1 90.0 90.0 90.8 90.8 90.8 90.8 90.8 90.8

6 75 100 0 0 85.6 85.6 86.2 86.2 86.2 86.3 74.5 74.1 70.3 68.6 67.3 72.2
6 75 200 0 1 88.5 88.5 88.7 88.7 88.7 88.7 78.5 78.4 74.7 72.4 71.4 76.7
6 75 400 0 8 88.7 88.7 88.8 88.7 88.7 88.8 79.0 79.0 78.0 77.4 77.2 78.6

7 75 100 0 0 60.3 60.1 63.6 63.8 63.5 64.1 57.7 57.7 57.0 56.5 56.4 57.2
7 75 200 0 2 67.7 67.5 69.5 69.4 69.1 69.4 58.5 58.6 57.8 57.6 57.3 58.2
7 75 400 0.5 12 71.7 71.9 72.0 71.9 72.0 72.1 60.2 60.4 60.2 59.9 59.9 60.2

8 150 100 0 0 55.7 55.7 56.5 56.5 56.4 56.4 55.7 55.7 55.1 55.0 55.0 55.5
8 150 200 0 0 58.4 58.4 58.6 58.5 58.3 58.4 56.3 56.1 55.7 54.9 54.6 55.9
8 150 400 0 4 61.3 61.2 61.0 61.1 61.1 61.2 55.6 55.6 55.0 54.6 54.4 55.5
8 150 600 0 14 63.4 63.6 63.5 63.4 63.4 63.6 56.1 56.0 55.7 55.9 55.9 55.9

9 150 100 0 0 54.7 55.2 55.6 55.8 56.1 56.0 55.0 55.1 55.2 55.1 55.0 55.0
9 150 200 0 0 56.0 55.9 56.2 55.9 55.9 56.3 55.0 54.9 54.9 54.3 54.0 54.8
9 150 400 0 3 56.2 56.1 56.7 56.3 56.2 56.6 54.2 54.3 54.2 53.7 53.8 54.3
9 150 600 0 11 56.9 57.0 56.9 56.9 56.9 57.1 54.2 54.1 54.0 54.1 53.9 54.1

Avg. Rank (1-6) 3.77 3.80 3.29 3.36 3.48 3.30 3.05 3.13 3.67 3.77 3.91 3.45
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Figure S1: Comparison of t3(10) prior on α against five alternative priors on α (columns)
under two different priors on β (rows). Each point represents an individual simulated dataset.
The y-axis gives area under the curve (AUC) ratios on the negative-log2 scale when using
the posterior of mean of β to classify observations, and the x-axis defines groups based
upon separation: “0!” indicates pivotal separation (npiv = 0); “0/{0!}” indicates complete
but not pivotal separation (npiv > ncomp = 0); and the remaining categories correspond to
value(s) of ncomp. Positive values on the y-axis indicate that the given prior on α
yielded better classification of observations than a t3(10) prior on α. Different plot
characters are used to indicate p, the number of predictors. In total, each panel contains
6000 points (30 unique scenario-sample size configuration times 200 simulated datasets per
configuration).
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