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APPENDIX

A. Analysis of Targeted Ridge Estimators

This section proves some results for TR estimators, first evaluating them as imputations for the missing data,

xB, and then evaluating them in terms of MSPE for predicting the outcome Y . Throughout, we condition

on the true value of θ and assume µX = 0p.

As demonstrated in their construction, β̂src and β̂frc are equivalent to filling in the missing xB with

xsrc
B and xfrc

B and doing OLS on the completed data. Due to Marquardt (1970), ridg can also be viewed

as imputing the missing xB with xridg
B = [

√
λIp 0p · · · 0p]>, replacing the observed yB with 0nB

, and doing

OLS on the completed data. In general, we have the following result for any targeted ridge estimator.

c© The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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Theorem A.1 Assuming nB > p, a choice of (γβ , λ,Ω
−1
β ) is equivalent to making imputations x̃B and ỹB

and doing OLS on the completed data. That is, β̂(γβ , λ,Ω
−1
β ) = (x>AxA + x̃>B x̃B)−1(x>AyA + x̃>B ỹB).

Proof. For any (γβ , λ,Ω
−1
β ) defining a TR estimator in (2.6), let Ω

−1/2
β be such that Ω

−1/2
β Ω

−1/2
β

> = Ω−1β .

The Cholesky decomposition achieves this but is not the only choice. Then let x̃B = [
√
λΩ
−1/2
β 0p · · · 0p]>,

where 0p is repeated nB − p times and ỹB = [
√
λγ>βΩ

−1/2
β 0 · · · 0]>, 0 repeated nB − p times. This gives the

desired result. �

Note, although yB is observed, its value is replaced by ỹB. Also, choices of x̃B and ỹB which satisfy the

theorem may not be unique. For example, applied to frc, the algorithm presented in the proof does not

yield x̃B = xfrc
B and ỹB = yB.

The following result compares xsrc
B and xfrc

B in terms of their expected distance from xB.

Theorem A.2 Let the squared Frobenius norm of a matrix S be given by ‖S ‖2F= Tr
[
S>S

]
. Then,

ExB,wB

[
‖xfrc

B − xB‖2F − ‖xsrc
B − xB‖2F

]
> 0
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Proof. (Theorem A.2) Using xsrc
B = (1/ν)wBV and xfrc

B = (1/ν)wB,

E ‖xsrc
B − xB‖2F

= ExBEwB|xB
Tr
[

1
ν2V w

>
BwBV − 1

νx
>
BwBV − 1

νV w
>
BxB + x>BxB

]
= ExBTr

[
1
ν2V (ν2x>BxB + τ2nBIp)V − ν

νx
>
BxBV − ν

νV x
>
BxB + x>BxB

]
= Tr

[
1
ν2V (ν2ΣX + τ2nBIp)V − ν

νΣXV − ν
νV ΣX + ΣX

]
= Tr

[
nB

τ2

ν2V
2 + nB(Ip − V )2ΣX

]
(V ΣX = ΣXV )

= nB
τ2

ν2 TrV (ΣX = τ2

ν2 (Ip − V )−1V ) (A.1)

E ‖xfrc
B − xB‖2F= ExB

EwB|xB
Tr
[

1
ν2w

>
BwB − 1

νx
>
BwB − 1

νw
>
BxB + x>BxB

]
= ExB

Tr
[

1
ν2 (ν2x>BxB + τ2nBIp)− ν

νx
>
BxB − ν

νx
>
BxB + x>BxB

]
= nB

τ2

ν2 TrIp (A.2)

A comparison of expressions (A.1) and (A.2), together with the inequality Tr (Ip−V ) > 0 implied by (2.11)

completes the proof. �

Thus, xsrc
B is closer on average to xB than xfrc

B is to xB, when the assumed model for X is true. This is

to be expected given that the assumptions of the src algorithm are exactly satisfied; the frc algorithm does

not make explicit use of the model for X. However, the regression of the completed data is more relevant

in our situation. TR estimators may be evaluated in terms of prediction of the outcome Y , and, from this

perspective, this unequivocal preference of src over frc no longer holds.

To show this, we first establish that ridg and frc are closely related: β̂frc is an approximate ridge-type

estimator on the complete data, as demonstrated by the following relationship in their functional forms. By

definition, xfrc
B = (1/ν)wB = xB + (τ/ν)ξB, where ξB is the unobserved nB×p error matrix. From this, and
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the definition of xfrc
B in (2.12), we have:

Ω−1βfrc
= x>BxB + τ

νx
>
BξB + τ

ν ξ
>
BxB + τ2

ν2 ξ
>
BξB, Ω−1βfrc

γβfrc = x>ByB + τ
ν ξ
>
ByB (A.3)

Plugging these values of Ω−1βfrc
and Ω−1βfrc

γβfrc
into (2.7) gives that

β̂frc = (x>AxA + x>BxB + τ
νx
>
BξB + τ

ν ξ
>
BxB + τ2

ν2 ξ
>
BξB)−1(x>AyA + x>ByB + τ

ν ξ
>
ByB)

≈ (x>AxA + x>BxB + nB
τ2

ν2 Ip)
−1(x>AyA + x>ByB), (A.4)

where the last approximation replaces each expression involving ξB in the previous line with its marginal

expectation. Thus (A.4) characterizes β̂frc as an approximate ridge-type estimator based on the complete

data, with the shrinkage parameter nBτ
2/ν2. Ridge regression can improve prediction error over ols for

certain choices of the tuning parameter (Gelfand, 1986; Frank and Friedman, 1993). Consequently, β̂frc

may offer improved prediction, even over ols on the complete data; whether this holds in practice depends

crucially on the size of nBτ
2/ν2. As τ/ν increases, β̂frc approaches zero, as seen by the expansion above.

Interpreted from the Bayesian perspective, this is because the prior mean, γβfrc , approaches 0p with τ/ν,

and the prior precision, Ω−1βfrc
, grows without bound with τ/ν.

Following a similar expansion for src as above, note that xsrc
B = (1/ν)wBV = xBV + (τ/ν)ξBV (if µX

is assumed to be zero). When we expand β̂src as in (A.4), we obtain

β̂src = (x>AxA + V x>BxBV + τ
νV x

>
BξBV + τ

νV ξ
>
BxBV + τ2

ν2V ξ
>
BξBV )−1

× (x>AyA + V x>ByB + τ
νV ξ

>
ByB) (A.5)

From (2.11), as τ/ν → ∞, the elements of V go to zero at a rate proportional to τ2/ν2. Thus, for large

τ/ν, β̂src is “unstable”, because it approximates (x>AxA)−1x>AyA, the ols estimate of β, which does not

exist when p > nA. In contrast with the Bayesian interpretation of frc, in which the prior precision matrix

increases with τ/ν, for src, the prior precision decreases to zero (a flat prior), and using a flat prior when

p > nA yields an improper posterior. From this comparison, we may infer that the MSPE of β̂src is unbounded
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with τ/ν (because Varβ̂src is unbounded), while β̂frc is not. Next, we more formally compare src and frc

in terms of their MSPE.

Theorem A.3 Let V and Ω−1βfrc
be as in (2.11) and (2.12), respectively. Also, define κ = (τ2/ν2)β>V β and

∆src
σ = σ2(x>AxA + V Ω−1βfrc

V )−1 (A.6)

∆src
β = κ(x>AxA + V Ω−1βfrc

V )−1V Ω−1βfrc
V (x>AxA + V Ω−1βfrc

V )−1 (A.7)

∆frc
σ = σ2(x>AxA + Ω−1βfrc

)−1 (A.8)

∆frc
β = κ(x>AxA + Ω−1βfrc

)−1Ω−1βfrc
(x>AxA + Ω−1βfrc

)−1

+ (x>AxA + Ω−1βfrc
)−1Ω−1βfrc

(Ip − V )ββ>(Ip − V )Ω−1βfrc
(x>AxA + Ω−1βfrc

)−1. (A.9)

Then using (A.6)–(A.9), the MSPE of the src and frc methods can each be expressed as

σ2 + Tr
[
∆σΣX

]
+ Tr

[
∆βΣX

]
.

Proof. (Theorem A.3) The assumption [Y |X,W ] = [Y |X] gives that E[Y |W ] = β0 + E[X|W ]β and

Var[Y |W ] = σ2 + β>Var[X|W ]β. Because X and W are jointly normal (by assumption), it is seen

that E[X|W ] = (Ip − V )µX + V (W − ψ1p)/ν and Var[X|W ] = (τ2/ν2)V . Thus, E[yB|wB] = β01nB +

[1nB
,wB]Mβ and Var[yB|wB] = (σ2 + (τ2/ν2)β>V β)InB

, where

M =

(
µX
>(Ip − V )− (ψ/ν)1>p V

1
νV

)
.

These in turn yield the mean and variance of γβsrc and γβfrc . Now, assume β0 = ψ = 0. With these results
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and equations (2.7) and (2.8), we can write

Bias β̂frc Bias β̂>frc + Var β̂frc

= (x>AxA + Ω−1βfrc
)−1

×
{

Ω−1βfrc
(Eγβfrc

− β)(Eγβfrc
− β)>Ω−1βfrc

+ σ2x>AxA + Ω−1βfrc
Varγβfrc

Ω−1βfrc

}
× (x>AxA + Ω−1βfrc

)−1

= (x>AxA + Ω−1βfrc
)−1

{
σ2x>AxA + (σ2 + κ)Ω−1βfrc

+ Ω−1βfrc
(Ip − V )ββ>(Ip − V )Ω−1βfrc

}
× (x>AxA + Ω−1βfrc

)−1

= σ2(x>AxA + Ω−1βfrc
)−1

+ (x>AxA + Ω−1βfrc
)−1

{
κΩ−1βfrc

+ Ω−1βfrc
(Ip − V )ββ>(Ip − V )Ω−1βfrc

}
(x>AxA + Ω−1βfrc

)−1

Next, using the identity Ω−1βsrc
= V Ω−1βfrc

V ,

Bias β̂src Bias β̂>src + Var β̂src

= (x>AxA + Ω−1βsrc
)−1

×
{

Ω−1βsrc
(Eγβsrc

− β)(Eγβsrc
− β)>Ω−1βsrc

+ σ2x>AxA + Ω−1βsrc
Varγβsrc

Ω−1βsrc

}
× (x>AxA + Ω−1βsrc

)−1

= (x>AxA + V Ω−1βfrc
V )−1

{
σ2x>AxA + (σ2 + κ)V Ω−1βfrc

V
}

(x>AxA + V Ω−1βfrc
V )−1

= σ2(x>AxA + V Ω−1βfrc
V )−1 + κ(x>AxA + V Ω−1βfrc

V )−1V Ω−1βfrc
V (x>AxA + V Ω−1βfrc

V )−1

�

By taking the difference of the two MSPE expressions for frc and src from Theorem A.3, the following

Corollary characterizes how MSPE(β̂src)−MSPE(β̂frc) changes as a function of σ2 and β.
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Corollary A.4 MSPE(β̂src)−MSPE(β̂frc) = σ2c1 + β> (C2 −C3)β, where

c1 = Tr
[{

(x>AxA + V Ω−1βfrc
V )−1 − (x>AxA + Ω−1βfrc

)−1
}

ΣX

]
(A.10)

C2 = Tr
[
(x>AxA + V Ω−1βfrc

V )−1V Ω−1βfrc
V (x>AxA + V Ω−1βfrc

V )−1ΣX (A.11)

− (x>AxA + Ω−1βfrc
)−1Ω−1βfrc

(x>AxA + Ω−1βfrc
)−1ΣX

] (
τ2

ν2V
)

(A.12)

C3 = (Ip − V )Ω−1βfrc
(x>AxA + Ω−1βfrc

)−1ΣX(x>AxA + Ω−1βfrc
)−1Ω−1βfrc

(Ip − V ) (A.13)

. (A.14)

When p = 1, c1,C2,C3 are scalar-valued, and one can show the following:

(i) c1 > 0.

(ii) The sign of C2 −C3 is equal to that of

V 2(x>AxA + Ω−1βfrc
)2

(x>AxA + V 2Ω−1βfrc
)2
−Ω−1βfrc

(1− V )2

(τ2/ν2)V
− 1 (A.15)

(iii) As τ2/ν2 →∞,

(a) c−11 − x>AxAΣ−1X = o(1) for x>AxA 6= 0

(b) C2 = o(1) for x>AxA 6= 0

(c) C3 −ΣX = o(1)

Thus fixing all other parameters, (i) indicates that MSPE(β̂src) −MSPE(β̂frc) increases with σ2, making

frc the preferred method for large values of σ2. From (ii), if nA � nB, (A.15) is approximated by V 2 −

Ω−1βfrc

(1−V )2

(τ2/ν2)V − 1, because x>AxA and Ω−1βfrc
increase linearly in nA and nB, respectively, and therefore

(x>AxA + Ω−1βfrc
)2 ≈ (x>AxA + V 2Ω−1βfrc

)2. Because 0 6 V 6 1, the entire expression is negative in this case,
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and src is preferred to frc for large values of β2. When nB > nA, there is no clear dominance of src over

frc, as the sign of (A.15) then depends on V , which is in turn a function of τ2/ν2 and Σ−1X .

The effect of an increasing τ2/ν2 on MSPE(β̂src)−MSPE(β̂frc) gives which method is preferred in the

large measurement error case. Replacing c1,C2 andC3 with the limiting values implied by (iii), MSPE(β̂src)−

MSPE(β̂frc) is approximately σ2(x>AxA)−1ΣX−β2ΣX . The first expression (σ2(x>AxA)−1ΣX) is attributable

to Var β̂src and the second term (β2ΣX) to Bias β̂frc. Thus, when τ2/ν2 is large, MSPE(β̂src)−MSPE(β̂frc) >

0 ⇔ σ2(x>AxA)−1 > β2. Moreover, x>AxA/nA consistently estimates ΣX ; some simplification then sug-

gests the approximately equivalent statement MSPE(β̂src) −MSPE(β̂frc) > 0 ⇔ (nA + 1)−1 > R2, where

R2 = β2ΣX/(σ
2 +β2ΣX). The dominance of one method over the other thus depends on nA and the signal

in the model.

For p > 1, we were not able to prove multivariate versions of the above results; however, extensive

simulation studies that evaluate c1,C2,C3 (given in Table S1) indicate that the preceding conclusions are

still likely to hold in the general p case as long as p < nA. That is, the results above depend crucially on

the existence of (x>AxA)−1. When p > nA, as is the case in our motivating example, p − nA eigenvalues

of x>AxA + V Ω−1βfrc
V (appearing in the expressions for c1 and C2) may be nearly 0 for non-negligible

measurement error. Thus the matrix trace, being the sum of reciprocals of the eigenvalues, will be large.

This does not affect C3, and so both c1 and Tr(C2 − C3) tend to be large. Therefore, frc is favored over

src as either σ2 or β>β increase, more so as τ2/ν2 increases.

B. Analysis of Hybrid Estimators

Lemmas B.1 and B.2 are used in the proof of Theorem 3.1. We use ‘psd’ to describe a positive semi-definite

matrix and ‘pd’ to describe a positive definite matrix.
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p nB τ2/ν2 c1 Tr C2 Tr C3 Tr C2 −C3

1 10 0.01 0.0001 -0.0000 0.0000 -0.0000
1 10 0.25 0.0012 -0.0002 0.0019 -0.0021
1 10 1 0.0038 -0.0011 0.0220 -0.0231
1 10 25 0.0161 -0.0026 0.6187 -0.6213
1 10 100 0.0188 -0.0010 0.8702 -0.8712
1 50 0.01 0.0001 0.0000 0.0000 -0.0000
1 50 0.25 0.0022 0.0000 0.0127 -0.0127
1 50 1 0.0065 -0.0000 0.1105 -0.1105
1 50 25 0.0185 0.0000 0.8557 -0.8557
1 50 100 0.0196 0.0000 0.9612 -0.9612
1 100 0.01 0.0001 0.0000 0.0000 -0.0000
1 100 0.25 0.0019 0.0001 0.0208 -0.0207
1 100 1 0.0059 0.0009 0.1616 -0.1607
1 100 25 0.0181 0.0009 0.8886 -0.8877
1 100 100 0.0195 0.0003 0.9709 -0.9706
1 400 0.01 0.0000 0.0000 0.0001 -0.0001
1 400 0.25 0.0009 0.0001 0.0332 -0.0331
1 400 1 0.0028 0.0010 0.2220 -0.2209
1 400 25 0.0151 0.0034 0.9158 -0.9124
1 400 100 0.0185 0.0014 0.9779 -0.9765
9 10 0.01 0.0006 -0.0000 0.0001 -0.0001
9 10 0.25 0.0130 -0.0088 0.0274 -0.0362
9 10 1 0.0395 -0.0658 0.2747 -0.3406
9 10 25 0.1507 -0.2165 4.5387 -4.7552
9 10 100 0.1821 -0.1458 6.5387 -6.6845
9 50 0.01 0.0010 0.0000 0.0003 -0.0002
9 50 0.25 0.0213 0.0037 0.1219 -0.1183
9 50 1 0.0647 0.0236 1.0202 -0.9966
9 50 25 0.1962 0.0306 7.6113 -7.5807
9 50 100 0.2130 0.0104 8.6141 -8.6037
9 100 0.01 0.0008 0.0000 0.0004 -0.0004
9 100 0.25 0.0184 0.0124 0.1908 -0.1784
9 100 1 0.0564 0.0887 1.4544 -1.3656
9 100 25 0.1905 0.1382 7.9884 -7.8502
9 100 100 0.2098 0.0469 8.7287 -8.6817
9 400 0.01 0.0003 0.0000 0.0007 -0.0007
9 400 0.25 0.0079 0.0110 0.2994 -0.2883
9 400 1 0.0253 0.0850 1.9981 -1.9131
9 400 25 0.1491 0.3707 8.2416 -7.8709
9 400 100 0.1931 0.1794 8.8009 -8.6214
99 100 0.01 0.0258 0.0197 0.0087 0.0110
99 100 0.25 0.5821 8.9737 3.5504 5.4233
99 100 1 1.9040 74.5419 22.2836 52.2583
99 100 25 26.8529 2405.7851 86.6150 2319.1701
99 100 100 100.7154 9693.8778 93.9312 9599.9466
99 400 0.01 0.0049 0.0039 0.0080 -0.0041
99 400 0.25 0.1098 1.7935 3.3435 -1.5500
99 400 1 0.3563 14.4882 21.9265 -7.4383
99 400 25 4.3277 358.4208 90.4184 268.0024
99 400 100 14.9043 1374.9888 96.7380 1278.2507

Table S1. Numerical calculations of c1, Tr C2, Tr C3, and Tr C2−C3 as defined in Equations (A.10)–(A.13) (each row

is averaged over 200 draws of xA, wA and wB) defined in Corollary 3.4 using the true value of θ = {ψ, ν, τ,Σ−1
X }.

In all cases, nA = 50, ψ = 0, ν = 1, and ΣX = Ip.
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Lemma B.1 Given a psd matrix M with at least one strictly positive eigenvalue and pd matrix N , both of

the same dimensions, Tr(MN) > 0.

Proof. Suppose the dimension of the matrices is p. Consider the eigendecomposition of M , M = QΛQ>,

where Λ = diag(λi, . . . , λp) is the diagonal matrix of eigenvalues of M (in decreasing order) and Q =

(q1, . . . , qp) is the column matrix of corresponding eigenvectors of M (all non-zero). Then,

Tr(MN) = Tr(QΛQ>N)

= Tr(ΛQ>NQ)

=

p∑
i=1

λi(q
>
i Nqi) (since Λ is diagonal)

> λ1(q>1 Nq1) > 0,

since the largest eigenvalue λ1 is positive, q1 is non-zero, and N is pd �

Lemma B.2 Given estimators β̂1, β̂2, . . . , β̂m, define P by (3.13) in the text, ie Pij = MCPE(β̂i, β̂j). If

Var
[
(β̂1, β̂2, . . . , β̂m)v

]
has at least positive eigenvalue for every v ∈ Rm\0m, then P is pd.

Proof. We show v>Pv > 0 for v ∈ Rm\0m. Define the following random variable: U` = β − β̂`. Let

U = (U1, . . . ,Um). Then, P = σ21m1>m + E[U>XnewX
>
newU ]. Now, choose v ∈ Rm\0m. Then,

v>Pv = σ2v>1m1>mv + v>E[U>XnewX
>
newU ]v

= σ2(v>1m)2 + Var
[
X>newUv

]
+ (E[X>newUv])2.

The first and third expressions are nonnegative. Considering the second expression,

Var
[
X>newUv

]
= Tr (ΣXVar[Uv]) + E[Xnew]>Var[Uv]E[Xnew] + E[Uv]>ΣXE[Uv].
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The second and third expressions are nonnegative. We show the first is strictly positive:

Tr (ΣXVar[Uv]) = Tr
(
ΣXVar

[
β1>mv −

(
β̂1, . . . , β̂m

)
v
])

= Tr
(
ΣXVar

[(
β̂1, . . . , β̂m

)
v
])

ΣX is pd and, by assumption, Var
[(
β̂1, . . . , β̂m

)
v
]

has at least one positive eigenvalue. Applying Lemma

B.1, this is strictly positive. �

Proof. (Theorem 3.1)

(i) Being an affine combination, there always exists a feasible solution; existence and uniqueness of ωopt

follow from P being pd, which in turn comes from Lemma B.2.

(ii) Without loss of generality, suppose MSPE(β̂m) = min` MSPE(β̂`). It is always true that MSPE(b(ωopt)) 6

MSPE(β̂m). To see this, define ω(1) = {0, 0, . . . , 0, 1}>, and observe that MSPE(b(ω(1))) = MSPE(β̂m). By

definition, ωopt will do no worse in terms of MSPE than ω(1), ie MSPE(b(ωopt)) 6 MSPE(β̂m).

We now demonstrate that a sufficient condition under which this inequality is strict is MCPE(β̂m, β̂i) 6=

MSPE(β̂m) for some i 6= j. Let ωopt = {ωopt
1 , ωopt

2 , . . . , ωopt
m }> and define the m×m matrix P by (3.16) in the

text, ie Pij = MCPE(β̂i, β̂j). We show that if ωopt = ω(1) (ie, if the best prediction error comes from using

only β̂m, the estimator with smallest MSPE), then P1m = P2m = · · · = Pmm. By contraposition, if Pim 6=

Pmm for some i 6= m, then ωopt 6= ω(1), which implies, by the uniqueness of ωopt, that MSPE(b(ωopt)) <

MSPE(β̂m) (the required result). For a general ω, MSPE(b(ω)) = ω>Pω will have zero slope at its optimal

value:

ω>Pω =

m−1∑
i=1

Piiω
2
i + 2

m−1∑
i=2

ωi

i−1∑
j=1

Pijωj + Pmm

(
1−

m−1∑
i=1

ωi

)2

+ 2

(
1−

m−1∑
i=1

ωi

)
m−1∑
i=1

Pimωi

⇒∂ω>Pω

∂ω`
= 2P``ω` + 2

m−1∑
i 6=`

P`iωi − 2Pmm

(
1−

m−1∑
i=1

ωi

)
+ 2P`m

(
1−

m−1∑
i=1

ωi − ω`

)

⇒

(
∂ω>Pω

∂ω`

∣∣∣∣∣ωopt = ω(1)

)
= −2Pmm + 2P`m = 0,



12 P.S. Boonstra, J.M.G. Taylor, and B. Mukherjee

which gives that P1m = P2m = · · · = Pmm. �

Lemma B.3 Suppose we have two targeted ridge estimators, β̂k1 = β̂(γβ,k1 , λk1 ,Ω
−1
β,k1

) and β̂k2 = β̂(γβ,k2 , λk2 ,Ω
−1
β,k2

),

as defined by (2.6). Let ψ` = Tr H(λ`Ω
−1
β,`)/nA. If γβ,k1 and γβ,k2 are not functions of yA, then

E
[
(1/nA)(yA − xAβ̂k1)>(yA − xAβ̂k2)

]
= σ2 + E

[
(β − β̂k1)>

x>
AxA

nA
(β − β̂k2)

]
− σ2(ψk1 + ψk2). (B.1)

Proof. (Lemma B.3)

(1/nA)(yA − xAβ̂1)>(yA − xAβ̂2)

= (1/nA)(yA − xAβ + xAβ − xAβ̂1)>(yA − xAβ + xAβ − xAβ̂2)

= (1/nA)(yA − xAβ)>(yA − xAβ) (B.2)

+ (1/nA)(yA − xAβ)>(xAβ − xAβ̂1) (B.3)

+ (1/nA)(yA − xAβ)>(xAβ − xAβ̂2) (B.4)

+ (1/nA)(xAβ − xAβ̂1)>(xAβ − xAβ̂2) (B.5)

Taking expectations, (B.2) evaluates to σ2 and (B.5) to E
[
(β − β̂1)>

x>
AxA

nA
(β − β̂2)

]
. For (B.3),

(1/nA)E
[
(yA − xAβ)>(xAβ − xAβ̂1)

]
= (1/nA)E

[
(yA − xAβ)>(xAβ − xA(x>AxA + λ1Ω

−1
β,1)−1(x>AyA + λ1Ω

−1
β,1γβ,1))

]
(B.6)

= −(1/nA)E(yA − xAβ)>(H(λ1Ω
−1
β,1)yA)

= −(1/nA)E(yA − xAβ)>(H(λ1Ω
−1
β,1)yA −H(λ1Ω

−1
β,1)xAβ) (B.7)

= −(1/nA)E(yA − xAβ)>H(λ1Ω
−1
β,1)(yA − xAβ)

= −σ2Tr H(λ1Ω
−1
β,1)/nA

The equality between (B.6) and (B.7) assumes that yA −xAβ has mean 0p and is independent of γβ,1. The

analogous result comes from the expectation of (B.4). �
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The following lemma, a generalization from Golub et al. (1979), provides a condition for the GCV

expression being close to the true MSPE expression that it targets.

Lemma B.4 Let R` = E[(β − β̂`)>x>AxA(β − β̂`)], ie the mean squared error in estimating xAβ. This is a

consistent estimate of MSPE(β̂`) as nA increases, up to the constant σ2. A surrogate for MSPE(β̂`) is P̂`,`,

defined in expression (3.19); this is also equivalent to expression (2.15). The difference in ER` and EP̂`,`−σ2

relative to ER` is

ER` − (EP̂`,` − σ2)

ER`
=

−2ψ`
(1− ψ`)2

+
ψ2
`

(1− ψ`)2
ER` + σ2

ER`

and so is small when ψ` = Tr H(λ`Ω
−1
β,`)/nA is small.

Proof. We have P̂`,` = (1− ψ`)−2(1/nA)(yA − xAβ̂`)
>(yA − xAβ̂`). Then,

ER` − ER̃` + σ2

ER`
=

ER` + σ2 − (1− ψ)−2(ER` + σ2 − 2σ2ψ`)

ER`
(from Proof of Lemma B.3)

=
−2ψ`

(1− ψ`)2
+

ψ2
`

(1− ψ`)2
ER` + σ2

ER`

�

C. Further Simulation Study Results

Tables S2 and S3 give numerical values of empirical MSPE from Figure 2 in the main text, and S1 gives

Empirical Mean Squared Error (MSE) from the same simulation study. Next, we describe simulation results

under various model misspecifications.

When [Y |X,W ] 6= [Y |X]: We repeated each simulation with the alternative generating model Y = β0 +

X>β∗ + W>α + σ∗ε. To keep fixed the model of interest, Y = β0 + X>β + σε, for a given simulation

setting, we set α = sβ, β∗ = (1− sν)β and σ∗ = σ− sτ
√
β>β for some s ∈ [0, 1]. Previously, s = 0; Figure
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S2 plots the MSPE when s = 0.1. Because σ∗ decreases with τ , the MSPE of all methods, including ridg,

also tends to decrease with τ . hyb remains as an attractive choice.

Outcome Dependent Sampling: We repeated each simulation, automatically including the nA/2 = 25 obser-

vations in subsample A with the largest values of Y and randomly allocating the remaining observations,

as before. MSPE is plotted in Figure S3. As might be expected, since the methods do not account for out-

come dependent sampling, the MSPE is typically much larger than in the case of simple random sampling.

hyb, being a linear combination of all other methods, increases correspondingly but is still the overall best

performing method.

Violations to Normality of X Assumption and ME Structure: We considered the situation whereX is drawn

from a multivariate t distribution with 5 degrees of freedom, scaled to maintain VarX = ΣX . Simultaneously,

we perturbed (1.2): instead of Var[wij |xij ] = τ2, the underlying true variance was Var[wij |xij ] = τ2|xij |1/4.

These results are in Figure S4. MSPE actually decreases in this situation, and, again, hyb has MSPE that

is smallest or almost the smallest in nearly scenario.

When θ is known: The unbiasedness of β̂src was shown in the case that θ is known; bias or variance in the

estimates of the components of θ, particularly ΣX because it is of a large dimension, may increase MSPE

beyond our analytical derivations. In our simulation study, we estimated ΣX using the shrinkage method of

Schäfer and Strimmer (2005). However, that src does so poorly in the large p setting does not change if the

true θ is used (see Remark 2.3 in the manuscript).

We considered other values of the true β which spread the signal evenly over all components or concen-

trated the signal in a few elements. Crucially, consistent with the results in Figure 2, hyb proved to be the

most flexible of all methods: small MSPE in each case but not always the smallest.
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Fig. S1. Empirical Mean Squared Error (MSE) for the simulation study described in Section 4. p stands for the
number of covariates, nB is the size of subsample B, ρ is the first-order auto-regressive correlation coefficient for

pairwise combinations of X, and R2 = β>ΣXβ+σ
2

σ2 . The top strip varies between rows and the bottom strip varies
between columns. In all cases, nA = 50, β0 = ψ = 0, and ν = 1. The smallest possible MSE is zero.
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Fig. S2. Empirical MSPE over τ for the simulation study described in Section 4 when the conditional indepen-
dence assumption [Y |X,W ] = [Y |X] is violated. p stands for the number of covariates, nB is the size of subsample

B, ρ is the first-order auto-regressive correlation coefficient for pairwise combinations of X, and R2 = β>ΣXβ+σ
2

σ2 .
The top strip varies between rows and the bottom strip varies between columns. In all cases, nA = 50, β0 = ψ = 0,
and ν = 1. σ2, plotted in black, is the smallest possible MSPE for any estimate of β.
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Fig. S3. Empirical MSPE over τ for the simulation study described in Section 4 under outcome dependent
sampling. p stands for the number of covariates, nB is the size of subsample B, ρ is the first-order auto-regressive

correlation coefficient for pairwise combinations of X, and R2 = β>ΣXβ+σ
2

σ2 . The top strip varies between rows and
the bottom strip varies between columns. In all cases, nA = 50, β0 = ψ = 0, and ν = 1. σ2, plotted in black, is the
smallest possible MSPE for any estimate of β.
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Fig. S4. Empirical MSPE over τ for the simulation study described in Section 4 under violations to normality of
X assumption and ME structure. p stands for the number of covariates, nB is the size of subsample B, ρ is the

first-order auto-regressive correlation coefficient for pairwise combinations of X, and R2 = β>ΣXβ+σ
2

σ2 . The top strip
varies between rows and the bottom strip varies between columns. In all cases, nA = 50, β0 = ψ = 0, and ν = 1.σ2,
plotted in black, is the smallest possible MSPE for any estimate of β.
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D. Bootstrap Algorithm for Prediction Intervals

Since uncertainty in predictions is typically also of interest to the analyst, we describe a simple method for

calculating prediction intervals via the bootstrap. For b in 1, . . . , B, repeat the following:

(i) Draw separate bootstrap samples from subsamples A and B, yielding (ybA,x
b
A,w

b
A) and (ybB,w

b
B). Use

these to calculate β̂bridg, β̂bfrc, etc.

(ii) Let rbA be the size of the set of remaining observations in subsample A not sampled in step (i). Draw

an additional observation from this set, say (yb∗,xb∗), and calculate eb∗ =

√
rbA
rbA−1

(
yb∗ − xb∗β̂b

)
, for

each of β̂b = β̂bridg, β̂b = β̂bfrc, etc (Theorem D.1 gives a rationale for this approach).

(iii) For a new observation with covariate Xnew, the predicted value of Ynew is Ŷ bnew = X>newβ̂
b + eb∗.

After B such iterations, the 95% prediction interval for Ynew is (Ŷ B,2.5new , Ŷ B,97.5new ), where Ŷ B,2.5new and Ŷ B,97.5new

are the 2.5 and 97.5 percentiles of the B bootstrap predictions.

Theorem D.1 Suppose Vi isN(0, σ2), independently for i = 1, . . . , N , and U |V1, . . . , VN ∼ Unif{V1, . . . , VN}.

Then E [Var[U |V1, . . . , VN ]] = N−1
N σ2.

Proof. (Theorem D.1)

E [Var[U |V1, . . . , VN ]] = E
[

1
N

∑
V 2
i − V̄ 2

]
= σ2 − σ2/N = N−1

N σ2

�

Applying this result to the proposed bootstrap algorithm in the main text, let U be yb∗ − xb∗β̂b, a

random draw from the rbA residuals of the observations not sampled in step (i). Ignoring the bias and

variance of βb, these residuals, corresponding to V1, . . . , VrbA , are approximately N(0, σ2). Thus, if eb∗ =
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√
rbA
rbA−1

(
yb∗ − xb∗β̂b

)
, E

[
Var

[
eb∗
]]

is approximately σ2, which is our justification for using eb∗ as the

prediction error.

xA
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8

−2 0 2

Fig. S5. LOESS curves of Affymetrix (wA) by qRT-PCR (xA) measurements for 91 genes from the Chen et al. (2011)
data
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{ρ,R2} {p, nB} method τ = 0.01 0.1 0.2 0.3 0.4 0.5 0.75 1 1.5 2
{0,0.4} {99,400} ridg 20.5 20.4 20.6 20.4 20.4 20.6 20.4 20.6 20.5 20.4

src 15.9 16.0 16.2 16.4 16.8 17.2 18.7 20.8 26.3 33.4
frc 15.9 15.9 15.9 15.9 15.9 15.9 16.2 16.7 17.8 18.6
hyb 15.7 15.7 15.8 15.9 16.0 16.2 16.7 17.4 18.3 18.9

{0.75,0.4} {99,400} ridg 102.2 101.3 101.2 101.9 101.2 100.9 102.3 102.1 100.4 102.3
src 100.2 99.7 100.7 101.5 102.7 106.0 116.8 134.7 195.6 283.5
frc 100.2 99.0 98.0 95.8 93.4 92.3 89.0 87.0 86.8 89.0
hyb 94.2 93.4 93.4 93.1 92.3 92.1 92.2 92.0 92.8 96.8

{0,0.1} {99,400} ridg 86.0 86.3 86.1 86.1 86.3 86.1 86.6 86.7 86.2 86.9
src 95.0 95.2 95.7 96.8 98.5 100.1 106.5 115.1 138.2 167.6
frc 95.0 94.9 94.2 93.6 92.9 91.7 89.6 87.7 85.7 84.3
hyb 84.1 84.4 84.2 84.2 84.7 84.6 85.0 85.4 85.3 85.7

{0.75,0.1} {99,400} ridg 529.5 528.3 528.6 529.5 530.6 531.7 529.9 535.1 529.2 526.0
src 596.4 597.7 599.1 604.7 608.9 624.2 679.0 757.8 1009.5 1346.0
frc 596.3 593.5 583.2 571.9 556.1 546.9 527.0 513.5 500.4 494.2
hyb 520.8 520.1 519.3 520.0 520.0 520.7 520.2 523.1 522.7 525.6

{0,0.4} {99,150} ridg 20.5 20.5 20.3 20.4 20.4 20.5 20.4 20.4 20.6 20.5
src 24.5 24.8 25.2 26.2 27.3 28.5 33.3 39.0 55.9 76.8
frc 24.5 24.6 24.4 24.5 24.4 24.0 23.7 23.0 22.5 21.9
hyb 18.5 18.5 18.5 18.7 18.8 18.9 19.3 19.4 20.0 20.2

{0.75,0.4} {99,150} ridg 101.2 100.5 102.0 100.1 100.7 102.4 100.5 100.6 100.8 101.0
src 154.8 155.7 157.7 161.5 167.9 178.0 213.6 270.0 429.2 662.0
frc 154.8 153.2 148.4 141.8 135.6 130.2 118.7 111.8 104.5 101.0
hyb 100.2 99.7 100.9 99.4 99.9 101.0 100.0 100.7 101.8 101.9

{0,0.1} {99,150} ridg 86.0 86.3 86.2 86.1 86.9 86.1 87.5 87.1 86.5 86.4
src 146.4 148.1 150.4 153.3 157.8 163.5 181.4 207.4 279.2 363.9
frc 146.4 147.0 145.9 143.4 140.7 137.7 128.4 121.2 109.5 101.7
hyb 86.3 86.6 86.6 86.5 87.2 86.5 87.6 87.4 87.2 87.0

{0.75,0.1} {99,150} ridg 533.7 536.1 531.1 530.9 528.0 530.7 532.2 528.6 529.4 527.8
src 927.4 926.7 935.1 958.0 994.9 1052.8 1233.0 1533.4 2306.4 3282.8
frc 927.2 912.2 879.8 843.7 805.5 774.1 700.3 656.8 603.3 570.8
hyb 535.3 536.2 531.6 532.7 530.2 533.8 534.2 536.5 538.5 539.3

Table S2. Numerical values of empirical MSPE for the simulation study described in Section 4 for p = 99. The smallest
MSPE for each τ in each rectangle is in bold
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{ρ,R2} {p, nB} method τ = 0.01 0.1 0.2 0.3 0.4 0.5 0.75 1 1.5 2
{0,0.4} {5,400} ridg 1.06 1.06 1.07 1.06 1.06 1.06 1.06 1.06 1.06 1.07

src 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 1.00 1.02
frc 0.97 0.97 0.97 0.97 0.98 0.99 1.04 1.11 1.25 1.35
hyb 0.98 0.98 0.98 0.98 0.99 0.99 0.99 1.00 1.01 1.02

{0.75,0.4} {5,400} ridg 0.93 0.93 0.94 0.94 0.93 0.94 0.93 0.93 0.94 0.93
src 0.87 0.87 0.87 0.87 0.87 0.88 0.89 0.90 0.92 0.93
frc 0.87 0.87 0.87 0.87 0.88 0.89 0.94 1.00 1.14 1.22
hyb 0.88 0.88 0.88 0.88 0.88 0.89 0.89 0.90 0.92 0.92

{0,0.1} {5,400} ridg 6.19 6.17 6.19 6.18 6.18 6.20 6.17 6.15 6.18 6.19
src 5.80 5.80 5.81 5.83 5.81 5.83 5.83 5.85 5.94 6.02
frc 5.80 5.80 5.81 5.82 5.81 5.83 5.85 5.91 6.06 6.15
hyb 5.92 5.90 5.92 5.93 5.92 5.93 5.92 5.93 6.00 6.05

{0.75,0.1} {5,400} ridg 5.50 5.51 5.50 5.51 5.50 5.50 5.50 5.51 5.51 5.50
src 5.21 5.21 5.21 5.22 5.22 5.23 5.26 5.33 5.40 5.48
frc 5.21 5.21 5.20 5.21 5.20 5.20 5.25 5.32 5.43 5.52
hyb 5.30 5.31 5.29 5.31 5.29 5.31 5.32 5.37 5.40 5.44

{0,0.4} {5,150} ridg 1.06 1.07 1.07 1.06 1.06 1.06 1.07 1.07 1.06 1.07
src 0.98 0.98 0.98 0.98 0.99 0.99 1.00 1.01 1.02 1.04
frc 0.98 0.98 0.98 0.98 0.99 1.00 1.04 1.10 1.22 1.32
hyb 1.00 1.00 1.00 0.99 1.00 1.00 1.01 1.02 1.03 1.04

{0.75,0.4} {5,150} ridg 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.94
src 0.88 0.88 0.88 0.89 0.89 0.89 0.90 0.92 0.93 0.94
frc 0.88 0.88 0.88 0.88 0.89 0.89 0.93 0.99 1.11 1.20
hyb 0.89 0.89 0.89 0.89 0.89 0.90 0.91 0.91 0.93 0.93

{0,0.1} {5,150} ridg 6.16 6.19 6.18 6.19 6.14 6.18 6.18 6.17 6.19 6.18
src 5.88 5.90 5.90 5.89 5.89 5.92 5.95 5.99 6.10 6.14
frc 5.88 5.90 5.89 5.88 5.87 5.88 5.90 5.94 6.06 6.14
hyb 5.96 5.99 5.98 5.99 5.96 5.98 6.01 6.02 6.09 6.11

{0.75,0.1} {5,150} ridg 5.49 5.56 5.50 5.51 5.51 5.50 5.50 5.50 5.49 5.50
src 5.25 5.30 5.28 5.30 5.31 5.34 5.39 5.43 5.52 5.57
frc 5.25 5.30 5.26 5.26 5.25 5.26 5.28 5.31 5.42 5.50
hyb 5.34 5.39 5.36 5.37 5.36 5.37 5.38 5.40 5.44 5.46

Table S3. Numerical values of empirical MSPE for the simulation study described in Section 4 for p = 5. The smallest
MSPE for each τ in each rectangle is in bold


