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A short illustrated story on the life of a neutron

HEY! WHAT’S HAPPENING
TO ME?? HELP!

from P. J. Fournier's \What the

Whoooooa, look at that!
An Up quark and two
Down quarks shooting
gluons at each other...

what this
means, right?

/

(Electron)

93¢
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devoted to \Cartoons about Life, Science, and What Not".

Hey, wait a
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g

We're a
NEUTRON!
YAAAAAY!!

2 Two Up
/ quarks and a
Down quark?

The end

93¢

Quark" website:

Hey @x*#! Would you be
quiet? I'm trying to enjoy
eternity in silence...

Yeah,
seriously
dude...
STFU!
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Chapter 15: decay

-particle's are either electrbms positrons that are emitted through a certain class
nuclear decay associated with the \weak interaction".

The discoverer of electrons was Henri Becquerel, whd twdicphotographic plates,
covered in black paper, stored near radioactive soucegseldegged.

The black paper (meant to keep the plates unexposed) kasnbumgh to stop -
particles, and Becquerel concluded that fogging was bsiusesew form of radiation,
one more penetrating thanparticles

The name \", followed naturally as the next letter in the Greek alplafiee , -
particles having already been discovered and named IbfoRiuthe
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1Technically, the word \electron" can represent either a ragpn (a fancy word fore ) or a positron €*). I'll use \electron" interchangeably with this meaning, aralso
e . Usually the context determines the meaning.



Since that discovery, we have learned tparticles are about 100 times more penetra
ing than -particles, and are spjrfermions.

Associated with the electrons is a conserved quantigssedias the quantum number
known as théepton number

The lepton number of the negatron is, by convention +1. ptwn laumber of the
positron, also the anti-particlef the negatron, is -1.

Thus, In a negatron-positron annihilation event, the egxinl number is zero. Only
leptons can carry lepton number. (More on this soon.), RecalChapter 13 (Chapter
6 in Krane), our discussion of the various decay mode<ethasaciated with decay:

Xn b ZOXR ite + e decay

A Ay O + +

AN D 2 AN T E e decay

Xn ! Xt e electron capture"] (1)
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2An anti-particle has the reverses signs of all the quantunmibers of its particle counterpart. When particle-particsnnihilation occurs, all that remains is energy,
momentum, and angular momentum, as the sum of all quantum s must be zero.



We see from these processes that there are other parlietesecdrinos

Neutrinos are also spgmeptons (part of the larger fermion family). They are varlyne
massless (but proven to have Mass

The electron neutrino is given the symyaind has lepton number +1. The antineutrino
the —, has lepton number -1. A sketch of the organization of fantimarticles is
given in Figure 1.
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3A direct measurement of neutrino mass suggests that its ugpeit is m , < 2:2eV. Indirect measurement of the neutrino mass suggest thdi4eV< m , < 0:3eV.
For the more massive lepton family groups, < 180keV, andm < 155MeV.



Figure 1. The \Standard Model" classi cation of the fundamted particles.
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Three views of decay

There are three ways of viewindecay.
The rst is the \radiological physics view" expressed by (1)

The next Is the \nuclear physics view", where we recogatizbdldecays of the nuclel
are actually caused by transformations of the nucleonusarist as expressed in (2).

n ! pte + ¢ decay
p! n+e + ¢ * decay
p+e | n+ ¢ electron capture"{ (2)

A free neutron will decay with a meanlife,8857(8)s, about 11 minutes.

A free proton is basically stable. Once these nucleonsiagdeirb@a nucleus, however,
conservation of energy, with the availability of lowegyestates, dictates whether or
not these processes are free to proceed.
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Then, there is the more microscopic view, the \particleplwsw" expressed in (3),

d! u+te + ¢ decay
u! d+e + ¢ * decay
u+e ! d+ o electron capture"( (3)

that represents the transitions of nucleons, as reakytitas between the {p) and
down(d) quarks. A particle physics picture ofdecay is given in Figure 2.

Figure 2: The particle physics view of -decay. In this case, the weak force is carried by the inthateevector boson, the
W . In the case of -decay, the weak force is carried by the intermediate védxxison, theW ", the antiparticle to the

W . There is also a neutral intermediate vector bosbh,that is responsible for such things as scattering.

Nuclear Engineering and Radiological Sciences NERS 312: Lecture 15, Slide # 10:15.0



Consequences of -decay's 3-body nal state

-decay has 3 \bodies" in the nal state: the recoil daughideus, thee , and a
neutrino.

Typically, the daughter nucleus (even in the case of fiieennéecay, is much more
massive than the leptons, therefore, the leptons carrysb afntine energy.

Even in the worst possible case, that of free neutron decegcoil proton can at most
about 0.4 keV, or about 0.05% of the readflevalue.

Consequently, if one measures the kinetic energy of ttantedeactron, one measures
a distribution of energies, that (generally) peaks at @sneatiies, and reaches an \end-
point" energy, the so-calledendpoint

This -endpoint represents the case where'thenergy approaches zero. See Figure

Nuclear Engineering and Radiological Sciences NERS 312: Lecture 15, Slide # 11:15.0



Figure 3:A typical electron energy spectrum that is measured irdacay. The endpoint energy is the maximum energy that
can be given to the electron, and that is closely related ¢oréactionQ-value (small recoll correction). At lesser energies,

the carries o some of the available kinetic energy taprovides.

This leads naturally to a discussion of ...
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Chapter 15.1: Energy release in decay

Neutron decay

n ! p+e + ¢
My = mpc®+ mg &+ m-C°+ Q,
Qn = M my® me & m- ¢
Qn = (9395655133(58) 9382720813(58) 0:5109989461(31))[MeV]m-.c?
Q. = 0:7824331(58)[MeV] m- ¢ (4)

Since4 108%<m-c?< 22 10 9 MeV] we can safely ignore the neutrino rest mas
energy, within the experimental uncertain of the redgtion

Q, = 0:7824331(58)[MeV] (5)

Nuclear Engineering and Radiological Sciences NERS 312: Lecture 15, Slide # 13:15.1



Accounting for proton recoil, the relativistically ex@ationship between the electron
endpoint energy arg, is given by:

1+ Q=(2myc?)

1+ me=mp + Q=myc?

Te™ = Q (6)

The above does not consider the less of energy the eleg&noeners from attraction
by the positive proton. This is likely in the neighborhoafewf eV and can be ignored.
(To be veried.)

Putting in numerical values, was calculdt®* = 0:7816817(58)[MeVyvhich agrees
with the direct measurementIgf®* = 0:782(13)[MeV]

We can calculate the proton's recoil energy by using @tinseo¥ Energy:

-I-r;nax — Qn TemaX
(7)

This evaluates numerically g™ 0:7513(82)[keVand is corroborated by measure-
ments of the proton recoll spectrum. Data is shown on thpauext
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From O. Nachtmann and H. Paul, \The Proton Recoil Spectrdimeoial Neutrons
Decaying in Vacuum", Z. Physik 226, 17{27 (1960).
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Q for -decay

For -decay
Xn ! ZAXN 1te + (8)

Going back to the de nition @ in terms of nuclear masses, and ignoring, hencefor
the mass of the neutrino:

Q = mN@XN) mN(zflxlgl ) Me € (9)

where the subscript \N" connotes nuclear (not atomic) masse
The relationship between the nuclear (no subscript \N"at@mec mass is:

XZ
MEXN)C = M (BXN)C + ZmeC? Bi: (10)
=1

whereB; is the binding energy of thth atomic electron.

Nuclear Engineering and Radiological Sciences NERS 312: Lecture 15, Slide # 16:15.1



Substituting (10) in (9), to eliminate the (less well knawn)ear masses results in:

Q = m(Q\XN) ZMe C; m(z+A1X|8| ) (Z+1)me CC  meC?
XZ ;(+1
+ B, B?
i=1 i=1 "
XZ ;(+1 #
= mXn) MGAXy o) CF Bi BY ;
" |:1 |:1 #
YZ
= m(Xn) MEGEXR ) S+ (Bi BP) B2 (11)

i=1
noting that the electron masses have canceled in this hadactbr

B B’- (Bi BY) B2,
i=1 i=1 i=1
Is the di erence Iin the energy of the electronic orbitalgooation of the parent and
daughter nuclei. Generally, this di erence can be igitoagyver, in the case of layje
nuclei, it can amount to about 10 keV. For accurate detdonsafQ, the di erence
In atomic electron binding energy must be accounted for.
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Q for *-decay

Similar considerations for decay lead to:
" X X 1 i
Q+= m(EXn) MG"XN4) 2me S+ Bi BY (12)
i=1 i=1
Here we note that the electron rest-mass energies do ntEtebngancel. However, the
discussion regarding the electron binding energy remeasasrie.
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Q for electron capture

For electron capture:

"XZ X1 #
Q= m(Xn) mMGAXQ,) & Bp+ B, BY (13)
=1 =1

The latter term related to electron binding energy,

XZ ;( 1
B B?
i=1 i=1
IS generally ignored, for the reasons cited above. Hahe\ke binding energy of the
captured electrofd, can approach 100 keV for lagg@&uclei, and canot be ignored.
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Discussion point: Free neutron decay, revisited

From our current understanding of the weak interactiore)db&on is created when a
down quark changes into an up quark. Qhalue for this reaction is 0.782 MeV.

Let us see If we can apply some reasoning from classicaltphssy something about
the observation of such a decay.

If the electron were a \point" particle, and it was createwwbere inside the neutron
at radius, is would feel an attraction:

&2 ( (R )"3 1 o ( R))
_ p [ r r p) .
VO= 75 TR 2 2R, T ’

whereR,, Is the radius of the proton.

We are assuming that the quarks are moving so fast insidedine that all the electron
sees Is a continuous blur of charge adding up to one unitgaf. cha
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So, ifR, L2fm (fromRy = (1:22 1:25)[fmA*=), we can conclude that the kinetic
energy that the electron is required to have to escapeccthesnialls in the range:

e’ 3 €
Te = :
Evaluating:

1.2 [MeV] T 18[MeV]>Q =0:782

In other words, it can not happen, since there is a contmaduith the observation that
It does decay, with a meanlife of about 11 minutes, withvre(i

How do we explain this?

We can only conclude that we have observed a fundamentgdlyenemenon.
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Chapter 15.2: Fermi's theory of  decay

Fermi's theory of decay starts with a statement of Fermi's Golden Rule #2afition
rate,

2
= ) VlfJ (Eif ) ; (14)
whereV is a potential that causes the transition from an initialtgoastate ; (the
parent nucleus in the this case) to a nal ong, that includes wavefunctions of the
daughter nucleus, the electron and its neutsino.h V] i is the transition ampli-
tude.

The derivation of Fermi's Golden Rule #2 is generallyag@dervgraduate courses in
Quantum Mechanics, but a version of the derivation iobevaladChapter 13, for your
Interest.

What concerns us now, Is to calculate the density of nalsstéE; ), for the -
transition. This derivation gures prominently in tispectrum, and the endpoint energy.
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Starting in Chapter 13, the density of states is derivedraelativistic particles with
mass, relativistic particles with mass (the electronsircdise), and massless particle:
(the neutrino in this case).

We start with (13.21). The number of statds, of a particle in the nal state with
energyE Is given by:

dN = Enzdn : (15)
wheren = nz + ng+ nZ, and(ny; ny; nz) are the quantum numbers of a free particl
In an in nite box potential, with side the momentum and thes are related by:
Pi = Nj ~=L : (16)
Putting (16) into (15) gives:

1 L3
dN = 2——p “dp : (17)

Or, dividing bylE,
dN 1 L3 ,dp

E-223P g

(18)
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We should point out that (18) is valid for all particles, lesassrelativistic and non-
relativistic, since (16) is universal.

All we need do now is relate momentum to energy to compuengiy dactors. For
the neutrino, which we are now treating as massless,

P = E =

dp = dE =

dN 1 L3,

dE ~ 2233" (19)

For the electron, that must be treated relativistically,

P
Pe = EZ (Me?)?=C

dpe = [Ee=(c EZ (mec?)?)]dEe
dN¢ 1 L3P

EZ (me?)?%Ee

dE, 2 2~3¢c3
dN 1 L3P
dT: = > 233 Te(Te +2MeC?)(Te + mecz) (20)

Nuclear Engineering and Radiological Sciences NERS 312: Lecture 15, Slide # 24:15.2



For decay we have two particles in the nal state, so we cansetkigeate of decay
to produce an electron with momenjuas:

d _ 2, .,dNedN

dp —] Vit | dp dE; (21)
If g is the momentum of the neutrino,

Eif = Tet+ C(Q

dEi = c(dg) (Te xed) : (22)
Thus,

d 2. ,1L3,1L3, |

dp - ~CJ\/ifJ 2 2~3p 2 2~3q (Eif [Te+ T ]) - (23)

Where the -function accounts speci cally for the conservation afyene
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Recall that the free electron and neutrino wavefunctieashesfornl. 32 expp x=-~)
andL 3*2expfg x=-), respectively.

Thus, theL for the side of the box disappears from the calculation. s@/eeplace
g=(Q Tg)=¢ ignoring the recoil of the daughter nucleus. Finallgratiteg over all
possible neutrino energies, we obtain:

d iM it j°
) = stygpz(Q Te)® or
dp 2 3~7cp d (24)

whereM if — L3Vif.

Thus we have derived Fermi's celebrated equation.
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Just a brief note on dimensions:
jVir j2 has unitdE?] because all the wavefunctions inside are normalized.

Getting rid of all thd.'s results ifM  having units [length energy (24)is correct
dimensionally.
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Allowed transitions

Now we examine the form of the \matrix elem&ht;' .

This has changed form several times during the derivatdomi)laagain, to conform with
Krane's book.

We now rewrite

Mie = gMi |

Mir = hEeP*)(e%) JO j «i; (25)
whereg is the \strength" of the transition. From experiments, it is known that:
g 088 10“%MeV fn?:

Thisg is a scalar quantity that plays the role,dhe electric charge, for electromagnetic
transitions. The unnormalized electron wavefuncexp@s x=-~), and the unnormal-
ized neutrino wavefunctionespg x=~). ,Is the wavefunction of the daughter
nucleus, while, Is the wavefunction of the parent nucleus.

Finally,O is the weak interaction operator, the cause of the transitio
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We recall from the class discussions, that the electror@nao wavefunctions have
wavelengths that are many times the size of the nucleus.

So, it seems reasonable to expand these wavefunctionglan aefees expansion, to see
how far we get. Namely,

P X P X
g X 4x (26)

~ ~

expip x=~) =1+

explg x=~) = 1+
Thus the leading-order term of (25) is:
Mg =h O j ,i: (27)

IfM? 60,the decay is called an \allowed" transition, and the rate fivedygprompt.

If M? =0, then we must go to higher order terms in (26). These ack\taltedden”
transitions, and occur, but at much slower rates. (Morasotopnc later.)
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Krane likes to adopt the following shorthand. For alloamsitions, we see that:

d° 2Jl\/l.fJ

= P’ (28)

If we haveN (t) -emitters in a sample, the momentum spectrum of electedmaan
be measured is: |

M ojz '
N°p)dp= N(t)d °= g¢°N (t)2 77 Padp: (29)

If N (t) changes little over the course of the measurement of tkrirgp@ais is the
usual case.):

N °(p)dp = COp?cfdp ; (30)

where we have gathered all constants with inside the |eggth@ses in (29) into a
global constar€©, that is determined experimentally. It can be determireedyththe
a normalization condition,

Z
dpN°p) 1:
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Conventional forms: N9(p), N%(T,)

N °(p) expressed in (30) contamandg, that are related by conservation of energy. |
terms of single momentum variable,

co _h P i
NOP)dp= "5 Q [ (P + (M2 mec?] dp (31)

since
€= Q Te=Q f [ ©02+(m®? mecg

The maximum possilpeoccurs when the neutrino component drops to zero.
This is easily found to be:

1P
Pmax = E Q2 + ZQmeG2 (32)

by settingcq above to zero.
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An even more common expression is to Naw terms ofTe.

We nd this by saying:

d
N(TodTe= N(p)dp = N°(p) = dTe (33)
e

Applying relativistic kinematic relationships, we nd:

cOp

N O(Te)dTe = 5 T2+ 2TemecH(Te+ M) (Q To)dTe : (34)

Here the -endpoint aQ = T, Is evident.
Not also, the parabolic shapi. (Q Te)?.

Look for this in plots of the spectrum, when it is expressed in the form of (34).
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Accounting of "forbiddeness" and nuclear Coulomb e ect

There are two other attributes okpectra we must take account of, before we start usi
the theoretical spectral shape to assist in analyzing data.

The Nuclear Coulomb E ect ...

accounts for the interaction of the daughter's Coulomgpecvith the resultant electron
or positron in the nal state.

This nuclear charge has no e ect on the neutral neutrino.

In (25), we wrote the electron wavefunction as a free plaeelwactual fact, that was
a fairly crude approximation.

These plane waves are distorted signi cantly by the attrdlse  would feel, and the
repulsion that the positron would feel.
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Accounting for this is quite involved, but not beyond oabibi#ips.

We would have to go back to (25) and write the electron watefisnn terms of free
particle solutions to the Coulomb potential, using avrstiatianalysis. (That would be
high-level graduate course.)

However, | have never seen detailed discussion of thsbClaglor in even graduate-
level texts, and interested students are usually tolkktolgdle papers in the literature.

The result is, however, that thespectra are multiplied by a correction factorFéreni
function that depends on the charge of the daughter nuzléusnd the electron mo-
mentum and sigi; (Z°%p). The e ect it has could have been anticipated from classi
considerations. The electron spectra is dragged bacH tesser values, while the
positron spectra are pushed toward higher values.

The mathematical form is:

F (Z%p) =21+ o)(2pRy=) 21 9exp( )j (o*i )P,

| (2 o+1)2°
where() isthe C—b’;\mma functioRy is the nuclear radius (assumed to be a uniform sph
of charge), o= 1 (Z 92, isthe ne-structure constant,= Z%=4 ),

for e, andv is the electron velocity. See the gures on the next two. pages
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In the determination of total decay rates, the entgpectrum is integrated, in order to
count the number of decay's in a given time interval, to extract the decay rate.

An integrated form of the Fermi function appears in that case

Z Pmax pde (EO Ee)2

s o (maz TP

f(Z%Eo) =

that is explicitly dimensionless, by design.

Here,p is the electron's momentum,.y IS the endpoint in terms of the electron's
momentumgEe, Is the electron enerdyy is the endpoint in terms of the electron's
energy, ané (Z° p) is the Fermi function, as seen in the gure, two pages back.

The integrated Fermi functidn(Z® E), is graphed on the following page.
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Degree of \forbiddenness"

The \forbiddeness" of the decay also a ects the shape opéles&giem. This is also a
multiplicative correction to thespectrum.

There are di erence shapes depending on the level ofdéobsd”, and that is deter-
mined by the amount of orbital angular momentuntgarried away by the electron-
neutrino pair, as well as their momenta.

Examples of these shape factors are given in the table enttpage, for the \unique
forbidden transition&"

The mathematical form of the shape factor, for the uniqudden transitions, is:

R
SL(pCD — 11d (p2+ q2+2pq )L
| 2(mec)?
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L |S"(p; 9

01 Allowed

1| (p?+ 9)=(meC)? Unique rst forbidden

2 | (p*+ 2p’? + o)=(mec)? Unique second forbidden
3 (p° + 7p*cf + 7p°a* + 0°)=(McC)® | Unique third forbidden

Table 1: Shape factors for the rst three unique forbidden tramsitio
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The -spectrum revealed

With all these various factors a ecting the spectral shvapdezay rates for decay, we
write down the nal form that is employed for data analysis:

N()/j Mgip(Q To)*S“(p;F (Z°%p) ; (35)
where,

1.M is the nuclear matrix element associate with the tranditican depend op
andq, as well as the alignment of spin and angular momentuns.vécéxhibits a
very strong dependence on the angular momenfwarried o by the lepton pair.
M also depends strongly on the \closeness" of the initiahahduclear quantum
wavefunctions. The closer the initial and nal nucleatuquastates are, the larger
their overlap, resulting in a lardyg} .

2.p%(Q To)?is the \statistical factor" associated with the densitynaf states.

3.F (Z°%p), the Fermi function. It accounts for the distortion of tkeetspl shape due
to attraction/repulsion of the electron/positron.

4. S"(p; g) accounts for spectral shape di erences. It depends otafleehidal angular

momentum carried o by the electron-neutrino jpaitheir total spin valu&, and
their orientation with respect to each other.
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Chapter 15.3: Experimental tests of Fermi's theory

Kurie plots: Shape of the  spectrum

To employ (35) to analyzespectra, one plots:

S

N (p)
St(p; QF (Z%p)

using the initial assumption tHat= 0, so thatS“(p; d = 1.

vs: Te: (36)

If the data points fall on a straight line (statistical testg be necessary), once can easil
obtain theQ-value from the from the abscissa axis from the intercapt thberdinate
IS zero.

This type of plot is called<aurie plot (named after Franz N. D. Kurie, who published a p
per, with two co-authors [J. R. Richardson and H. C. Pasitonjspectrum analysis). If
the line is straight, one has also identi ed, from its stiggiehis is an allowed transition.

An example of a Kurie plot, for an allowed transitern,. = 0, is shown on the next
page.
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If the Kurie plot is not straight, one must successivelghage factors until a straight
line match is obtained.

Once the shape factor is determined, the level of forlssldemdetermined, and the
Q-value may be extrapolated from the data unambiguously.

There are several examples on the next few pages.
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Unfolding multiple  spectra

Consider the measuregpectrum shown on the next page, for the détay 1/"Hf.

Theseft of these decays, and their general shape suggests thatdatdlys are \al-
lowed" transition.

Hence, one can successively subtract o the upper sirylesplectra and reveal, in this
example, four di erent endpoint energies.

This particular example is a simple case of well-sepaetdgoints, and allowed tran-
sitions. For endpoint energies closer together, andsdefgi@diddeness, the extraction
would be more complicated, and could be impossible.
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Total decay rate: The ft -, log,ft values

Putting in the Coulomb and shape factors into (28) allowsdasetrmine the total decay
rate for a -decay process,

jM.Lj2 Pmax
21 dp SH(p; )F (Z°% p)p°c?

2 3~7C 0
m5c4j|\/| sz 1 z Pmax
_ 2''le if L/n- Q 2~2
=9 2 37 (meC)5 0 dpS (p1CDF (Z 1p)p q
M3 M L2
o LZ0Q); (37)

where the dimensionless integral in large square brackdtseoretical factor that may
be pre-computed and employed in the data analysis.

This is conventionally written in terms of haltife, = log(2)= . Thus,

log,(2)2 3~ 6200][s]

fL(Z%Q)t1y ftip = . 38
L( 1Q) 1=2 1=2 gzmgCA'JM,'f‘JZ J|V|,'f‘12 ( )
This is known colloquially as fhevalue. (Pronouncesl tee.) Theft's can be quite
large, and sometimes the \Idd' value is quoted. (Pronounded e tee) The precise

de nition islog;(ft 1=).
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Mass of the neutrino

Our applications of-decay ignore the neutrino mass, but they turn out to bealtyiti
Important for cosmology.

There is one important fact: thdg have mass, but are small, very small in the case
thee.

The table below shows the current state of the mass detemsird the three genera-
tions of leptonsg, , and .

lepton avor neutrino symbol mass (eV)

e e 004! 2.2
< 170 10
< 1.55 10

Sourcehttp://en.wikipedia.org/wiki/Neutrino_mass#Mass

See alsohttp://en.wikipedia.org/wiki/Neutrino_oscillation
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The upper limit om _ is determined by very careful end-point energy meassrelinent
the neutrino has mass, the shape of the spectrum at then¢gd@s from having zero
slope, to in nite slope.

See the gure on the next page.

The lower bound is measured by observing the neutriratiasgillst achieved in the
Super-Kamioka Neutrino Detection Experiment (SK).

SK is a neutrino observatory which is under Mount Kamiokaeedy of Hida, Japan.
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Neutrino Oscillations

As strange as it may seem, the neutrino is actually a cengfost3 \ avor" typeseg,
, and .

Consequently, the fast, lighter components separatenforhgavier counterparts.
The math is not prohibitive, but lengthy.

However, the gures show the e ect quite clearly.
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Chapter 15.4: Angular momentum and parity selection rules

Classi cation of transitions in decay

Thee and the Inthe nal states of a decay each have Intrinsic %)irGonservation
of total angular momentum requires that:

M = Mo+ C+S: (39)

wherely, o are the total angular momenta of the parent and daughteectesly,
andLC, S are the total orbital and total spin angular momentum,atesge, of thee
pair.

Therefore, the | canbe L,forS=0,0rj L 1, forS=1.
fL=0,then | = 1
There are only two cases for lepton spin alignment.

S =0, when the= intrinsic spins anti-align, is called a Fermi transition
S =1, when thea intrinsic spins align, is called a Gamow-Teller transition
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Generally, ds ",
with the nucleus.

#, t1- " , because there is much less overlap ef thavefunctions

The entire characterization scheme is given in the tabe bel

Type of Transition | Selection RulesL ? ft
superallowed | =0; 1 0O  no|1l 1C¢{1 1¢
allowed | =0; 1 | 0| no 2 1010
15t forbidden | =0; 1 1 | yes 10°{1C
unique 15 forbidden | = 2 1 | yes 10{10
2"d forbidden l= 1 ; 2/ 2| no |2 1092 109
unique 2 forbidden = 3 2 | no 102

39 forbidden | = 2 : 3] 3| yes 108
unique 3 forbidden | = 4 3 | yes 4 10

4N forbidden = 3 ; 4| 4| no 103
unique ¥ forbidden = 5 4 | no 10

Table 2: Classi cation of transitions indecay.

Notes: () 0" !

0" can only occur via Fermi decay.

( ) Unique transitions are Gamow-Teller transitions WwhemdS are aligned.
The shape factors have very simple forms in this case.
1) transition is often associated with

( ) For then
then

2 forbidden transitions, thel =
2 forbidden transition, being indistinguishable in theune@asnts of these processes.

(n

Nuclear Engineering and Radiological Sciences
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Nomenclature alert!

Nomenclature Meaning
C; L Total orbital angular momentum of #epair
S;S Total spin angular momentum of #hepair
Fermi (F) transition S =0: e Iintrinsic spins anti-align
Gamow-Teller (GT) transitio8 = 1: e intrinsic spins align
Superallowed The nucleon that changed form, did not change
its shell-model orbital.
Allowed L =0 transition.M? 6 0. See (27).
n" forbidden Thee palir carry o n units
of orbital angular momentum
Unigue C andS are aligned.
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Examples of allowed decays

This is straight out of Krane.

40(0*) ! N (0") must be a pure Fermi decay since(Gt is 0.
Other examples aféCll 34S, and!°Cl 19B .

®He(0") ! OLi(17), a 0" ! 1' transition. This must be a pure Gamow-Teller dece
Other similar examples afB(3 )! 3C(3 ), and®*®Pa2 )! 2*°Th (3 ).

n({) ! p({) This Iis a mixed transition. The F transition preserves tiheonuspin
direction, the GT transition ips the nucleon spin. (Shawidg.)

decay can either be of the F type, the GT type or a mixturehof bot

We may generalize the matrix element and coupling cosdtalnves, for allowed decays:

gMO: gFM|9+ gGTMCOST = th xdlj xi + gGTh de#J xi ; (40)
whereO-4+ symbolizes an operator that ips the nucleon spin for thea@dition.
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The operator for the F transition is sintplyi.e. unity), and just measures the overlar
between the initial and nal nuclear states.

The fraction of F transitions Is:

~ giMgj? Y
fF_ 2'M0'2+ 2 'MO 2 1.|_ 27 (41)
QCIMe)”+ g5 M g1l y
where,
g-Mp |
y G (42)
0-ME;

Tables ofy values are given in Krane on the next page.
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Chapter 15.4.1: Matrix elements for certain special cases

This section is meant to explain several things giventwetiptanation in Krane's Chap-
ter 9.
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M = pZ for superallowed 0" ! 0" transitions

This was stated near the top of the text on Krane's p. B84.4 g 2)
We know that & ! 0" allowed transition (super or regular), must be an F toamsiti
In the case that it is also a superallowed transition, waitamexplicitly:

Mit = 07 Pl—z[e(") #+e# (] 1 ,(07) (43)

where the intrinsic spins gf tae pair are shown explicitly. This spin wavefunction
properly normalized with the2 as shown.
Separating the spins part, and the space part,

Mic = Poh d (dh(eC) (9+ e®) (Do =" 2; (44)

sin_ceh X_(j .1 =1 for superallowed transit_ions, dod) (A0 = he(® (")))0 = 1
Using this knowledge, one can measure digedtlyn0* ! 0" superallowed transitions.
Adapting (38) for superallowed transitions,

o = log,(2) >~ 1 .
F mgC4 ft 1 ’

=2 meas

(45)

giving a direct measuremengofiia measurintf .
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Table 9.2 in Krane (page 285) shows how remarkably cdasimfior0* ! 0" super-
allowed transitions. This permits us to establish thefealyeto be:

g. =0:88 10 “*MeV fm’: (46)
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Mi =1, for neutron decay,n! p+e + ~

This was stated near the top of the text on Krane's p. 290.
(Mg =1, for neutron decay.)

In this case, for an F transition:

Mi = p%[e(") #) + e#) ()] 191—2[ NOPSNE (47)
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