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Proposition 1: Power Round

Names:

Team ID:

Instructions

1. Do not begin until instructed to by the proctor.

2. You will have 60 minutes to solve the problems during this round.

3. Your submission will be graded and assigned point values out of the total points possible
per problem. Your total score will be the sum of the points you receive for each problem.

4. Submissions will be graded on correctness as well as clarity of proof. A proof with signif-
icant progress towards a solution may receive more credit than a correct answer with no
justification.

5. You may use the result of a previous problem in the proof of a later problem,
even if you do not submit a correct solution to the referenced problem. However,
you may not use the result of a later problem in the proof of an earlier problem.

6. Please submit each part of each problem on a separate page. Write your team ID, problem
number, and page number clearly at the top of each page.

7. No calculators or electronic devices are allowed.

8. All submitted work must be the work of your own team. You may collaborate with your
team members, but no one else.

9. When time is called, please put your pencil down and hold your paper in the air. Do not
continue to write. If you continue writing, your score may be disqualified.

10. Do not discuss the problems with anyone outside of your team until all papers have been
collected.

11. If you have a question or need to leave the room for any reason, please raise your hand
quietly.

12. Good luck!
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Acceptable Answers

1. Solutions should be written in proof format. All answers, reasoning, and deductions must be explained
and justified, unless the problem explicitly asks for you to “compute”. Problems asking you to “show”,
“prove”, or “justify” require proof!

2. Proofs will be graded both on correctness as well as clarity of presentation.

3. Partial credit may be awarded for significant progress towards a solution.

4. Each problem must be written starting on a new, blank page. Two different problems should not be
written on the same page.

5. At the top right corner of each page, please clearly print your Team ID, problem number, and page
number. Do not write your Team Name.

6. Answers must be written legibly to receive credit. Ambiguous answers may be marked incorrect, even
if one of the possible interpretations is correct.
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1 Isoperimetric Problems

Problem 1.1 (2 points). Suppose we have a rod of length L. We want to cut up the rod into four pieces
(two of length x, two of length y), and then assemble those four pieces to form a rectangle. What values of
x and y will maximize the area of the rectangle?

Solution: We want to maximize xy subject to 2x+ 2y = L. From the equation, we have

xy = x

(
L

2
− x
)
.

This quadratic has a negative leading coefficient (namely −1), and it has zeros at 0 and L
2 . It follows

that it is maximized when x = 1
2

(
0 + L

2

)
= L

4 . From our original constraint, we also require y = L
4 .

Note that we maximize the area precisely when x = y.

These types of problems are often called isoperimetric problems: among all shapes (of some type) with the
same perimeter, find the one with the maximum area. The most famous one is Dido’s problem: show that
among all “shapes” (regions in the plane) with the same perimeter, a circle has the maximum area. This
problem is a tricky one: your region could be very very complicated. Even solving Dido’s problem in the case
where the region is “nice” (smooth) required some complicated calculus. However, using the below logic,
one can often get reasonably far with problems of this type.

Problem 1.2 (2 points). Show that (in the context of the previous problem) making the shorter side shorter
and the longer side longer decreases the area.

Solution: Without loss of generality, say x is the shorter side and y is the longer side. If we change
both by an amount ε > 0, then the area is

(x− ε)(y + ε) = xy − (y − x)ε− ε2

< xy − (y − x)ε

≤ xy.

The last line comes from the fact that y − x ≥ 0.
So, we see that increasing the longer side by ε and decreasing the shorter side by ε must decrease the
total area of the rectangle.

Problem 1.3 (2 points). Suppose we instead wish to assemble a rectangular prism: cutting the rod into
four pieces of length x, four of length y, and four of length z. What values of x, y, and z will maximize the
volume the rectangular prism? What is the maximum volume?

Solution: Note that we must have 2x + 2y = L
2 − 2z and we want to maximize xyz. If we imagine z

as a fixed variable, then we really have 2x+ 2y = Lz = L
2 − 2z and we want to maximize xy. The idea

here is we first maximize over x and y, and then we maximize over z. From Problem 1.1, we see that
xy is maximized when x = y. Summarizing, when xyz is maximized, we must have x = y.
We can similarly imagine y as a fixed variable. Repeating the above argument, we see that when xyz
is maximized, we must have x = z. Combining, xyz is maximized only if x = y = z, which means the

dimensions that maximize the volume are x = y = z = L
12 . The volume is then L3

1728 .
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2 Equal Sum-Product Problem

We now turn our attention to an interesting problem, which at first glance seems unrelated to the isoperi-
metric problem. It is well known that 2 + 2 = 2× 2, and similarly, 1 + 2 + 3 = 1× 2× 3. This motivates us
to ask the following question:

Q: Let n be a positive integer. How many ways can we find (a1, a2 . . . , an), where each ai is a positive
integer, and a1 ≤ a2 ≤ · · · ≤ an, such that the condition

n∑
i=1

ai =

n∏
i=1

ai

is satisfied?

(Note that the ai’s are positive integers.) For example, from above we know that when n = 2, the
collection (2, 2) is a solution, and for n = 3, the collection (1, 2, 3) is a solution. Numbers other than 1 make
the sum bigger, but make the product much much bigger. However, multiplying by 1 will not change the
product, while adding 1 will increase the sum: 1s pull in the opposite direction, making the sum larger while
leaving the product unchanged.

Problem 2.1 (6 points). Show that given an integer N , there is some n > 1 such that we can find a1, . . . , an
with N =

∑n
i=1 ai =

∏n
i=1 ai if and only if N is composite.

Solution: Suppose N is composite. Write N = xy, where 2 ≤ x ≤ y. Note that x+ y ≤ 2y ≤ xy. So,
we can let n = xy − x − y + 2. From our earlier work, we have n > 1. Define an−1 = x and an = y.
Furthermore, let ai = 1 for 1 ≤ i ≤ n− 2. Then

n∑
i=1

ai = (n− 2) + x+ y

= (xy − x− y + 2− 2) + x+ y

= xy

= N,

and

n∏
i=1

ai = 1 · · · 1 · x · y

= xy

= N,

as desired.
Now, consider the case when N is not composite. Note that for N =

∏n
i=1 ai, we must have that ai = N

for one of the i’s. But then
∑n

i=1 ai > N , since each ai ≥ 1 and n > 1. So no solution exists in this case.
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Problem 2.2 (4 points). For any integer n ≥ 1, show that at least one solution exists, by constructing an
explicit solution.

Solution: First, note that if n = 1, any choice of a1 works as a solution.
Now, suppose n ≥ 2. Define an−1 = 2 and an = n. Further define ai = 1 for 1 ≤ i ≤ n − 2 (note that
this last definition is “vacuous” if n = 2). Then

n∑
i=1

ai = (n− 2) + 2 + n

= 2n,

and

n∏
i=1

ai = 1 · · · 1 · 2 · n

= 2n,

as desired.

Your solution above will likely involve lots of 1s, which motivates us to consider the number of ones in an
arbitrary solution.

Problem 2.3 (8 points). Show that for n ≥ 3, any solution must contain at least one 1.

Solution: We will show that, if ai ≥ 2 for each 1 ≤ i ≤ n, then

n∑
i=1

ai <

n∏
i=1

ai.

Our strategy is to use induction in two different ways: one to increase n and one to increase a single ai.
So as not to get lost in notation, we will treat some steps mildly informally.
First, our base case is when n = 3 and a1 = a2 = a3 = 2. Here, we just find that the sum is 6 and the
product is 8, which is good since 6 < 8.
Next, if we increase n by 1 by adding in an+1 = 2, we see immediately that the sum increases by
an+1 = 2. Since

∏n
i=1 ai ≥ a1 ≥ 2, the product increases by at least 2. So, if

n∑
i=1

ai <

n∏
i=1

ai,

then
n+1∑
i=1

ai <

n+1∏
i=1

ai,

as desired.
Now, consider increasing one of the ai’s by 1. Say we replace aj with aj + 1. In this case, the sum
increases by 1. The product increases by

n∏
i=1
i 6=j

ai > 1.

So, here as well the result holds.
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Finally, we can construct any solution to

n∑
i=1

ai =

n∏
i=1

ai

with ai ≥ 2 for each 1 ≤ i ≤ n by starting with our base case, adding in as many ai terms as we need,
and then incrementing the ai’s appropriately, starting with an and moving leftwards. It would then
follow from the above reasoning that

n∑
i=1

ai <

n∏
i=1

ai,

meaning that (a1, . . . , an) was not actually a solution in the first place.
As noted at the beginning of this proof, we have not been completely formal. In particular, the final
step requires ugly reasoning to be completely rigorous, which is omitted.

We now know enough to solve the problem completely for n = 3.

Problem 2.4 (4 points). Show that (1, 2, 3) is the only solution for n = 3.

Solution: From Problem 2.3, we know that any solution for n = 3 must be of the form (1, x, y) for some
x ≤ y. The condition for our solution is exactly 1 + x+ y = xy. Solving for x, we see that x = y+1

y−1 . x
must be an integer, so y+ 1 must be divisible by y− 1. Consequently, y− 1 ≤ 2. We now just check the
cases y = 2 and y = 3 (y = 1 was already ruled out since 1 < x ≤ y). The former yields x = 3 > y, and
the latter yields the desired solution.

We consider a few special cases.

Problem 2.5 (6 points). Prove that a solution of length n exists with

• ai = 1 for all 1 ≤ i ≤ n− 2

• an−1, an > 2

if and only if n− 1 is composite.

Solution: Suppose we have a solution (1, . . . , 1, x, y) of length n such that x, y 6= 2. Our sum is then
n − 2 + x + y, and our product is then xy. Equating these two and solving for x, we see x = 1 + n−1

y−1 .
Since x is an integer, we must have that y − 1 divides n − 1. By our assumption, we have y 6= 2, so
y − 1 6= 1. It follows that y − 1 must be a factor of n− 1. If y − 1 = n− 1, then we can compute x = 2,
which is contrary to our assumption. So we furthermore know that y− 1 is a non-trivial factor of n− 1.
It follows that n− 1 is composite.
Now we have to show the other direction. Suppose n− 1 = uv, where 1 < u ≤ v < n− 1 (that is, n− 1
is composite). Consider the n-tuple (1, . . . , 1, u+ 1, v + 1). This has a sum of n+ u+ v. Its product is

(u+ 1)(v + 1) = uv + u+ v + 1

= (n− 1) + u+ v + 1

= n+ u+ v.

It follows that this n-tuple is a solution, as desired.
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Problem 2.6 (6 points). Prove that if n ≡ 2 (mod 6) and n > 2, there exists a solution with exactly three
non-1 values.

Solution: We construct a solution directly. Suppose n = 6k + 2. Our solution is (1, . . . , 1, 2, 2, 2k + 1).
Here, we have exactly 6k − 1 elements that are 1. Our sum is then 8k + 4. The product is also
2 · 2 · (2k + 1) = 8k + 4.

Problem 2.7 (6 points). Suppose n is even. Show that any solution S =
∑n

i=1 ai =
∏n

i=1 ai necessarily
satisfies S ≡ 0 (mod 4).

Solution: Suppose all of the ai’s were odd. If this were the case, then the sum would be even (as n is
even), but the product would be odd. So, at least one of the ai’s is even.
Now suppose exactly one of the ai’s is even. If this were the case, then the sum would be odd (as n− 1
is odd), but the product would be even. So at least two of the ai’s is even.
Now, we note that S is the product of all of the ai’s. Since at least two of them are even, S must be
doubly even.

We now attempt to tackle the general case.

Problem 2.8 (10 points). Prove that if n > 1, (a1, a2, . . . , an) is a solution, and

S =

n∑
i=1

ai,

then S ≤ 2n. Hint : Remember Problem 1.2.

Solution: Suppose (a1, . . . , an) is a solution. Our idea is to repeatedly modify this tuple. Throughout
the modifications, the sum will remain the same, but the product will decrease.
First, we will show that an−1 ≥ 2. Suppose not. Then a1 = · · · = an−1 = 1. So our sum is (n− 1) + an
and our product is an. Since n > 1, it follows that our sum and product could not be the same, so we
must have actually had an−1 ≥ 2.
Now, we will describe the modification process. Let j be the smallest number for which aj > 1. If
j = n − 1, then stop here. Otherwise, replace aj with 1, and replace an with an + aj − 1. Note that
the sum of the ai’s remains the same and the sequence of ai’s remains non-decreasing. By Problem 1.2,
the product of the ai’s must decrease. We now repeat this process until our tuple of ai’s looks like
(1, . . . , 1, an−1, an).
Our next step is to replace an−1 with 2 and an with an + an−1− 2. This again keeps the sum of the ai’s
the same while not increasing the product (since an−1 ≥ 2). We now have an n-tuple that looks like
(1, . . . , 1, 2, S − n). By our reasoning, it’s product is at most S. But it’s product is 2S − 2n. It follows
that S ≤ 2n.
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Problem 2.9 (4 points). Show that if (a1, . . . , an) is a solution, then ai ≤ n+ 1 for all i.

Solution: Applying the previous problem,

2n ≥ a1 + · · ·+ an−1 + an

≥
n−1 times︷ ︸︸ ︷

1 + · · ·+ 1 +an

= n− 1 + an

n+ 1 ≥ an.

Since an is the greatest of the ai’s, the result follows.

Problem 2.10 (2 points). Show further that if n > 1, then ai ≤ n for all i.

Solution: Due to the previous problem, we only have to consider the case that an = n+ 1. Because we
know that 2n ≥ a1 + · · ·+ an−1 + an, we have n− 1 ≥ a1 + · · ·+ an−1. Recalling that we stipulate that
each ai ≥ 1, it follows that a1 = · · · = an−1 = 1. But then the product of our tuple is n + 1, with the
sum being 2n. This would force n = 1.

We revisit the idea that we would like our solutions to contain many occurrences of 1.

Problem 2.11 (4 points). Suppose that a solution contains exactly k occurrences of 1, that is,

a1 = a2 = · · · = ak = 1,

ai 6= 1 for all k + 1 ≤ i ≤ n.

Show that k ≥ n− log2(n)− 1.

Solution: If we have exactly k occurrences of 1, then we have n − k occurrences of numbers that are
greater than 1. It follows that the product of our tuple is at least 2n−k. Recalling Problem 2.8, we have

2n ≥ 2n−k

1 + log2(n) ≥ n− k
k ≥ n− log2(n)− 1.

Using both Problem 2.8 and Problem 2.11, we can reduce the number of possible solutions to a number
which is reasonably searchable by hand.

Problem 2.12 (4 points). Compute all solutions for each of n = 4, n = 5, n = 6, and n = 7.

Solution: n = 4: We have from Problem 2.8 that our sum is at most 2 × 4 = 8. Our only solution
turns out to be (1, 1, 2, 4).
n = 5: We have from Problem 2.8 that our sum is at most 2 × 5 = 10. Our possible solutions are as
follows:
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• (1, 1, 1, 2, 5)

• (1, 1, 1, 3, 3)

• (1, 1, 2, 2, 2)

n = 6: We have from Problem 2.8 that our sum is at most 2 × 6 = 12. From Problem 2.11, any tuple
that is a solution has at least 6 − log2(6) − 1 > 2 elements that is a 1. Our only solution turns out to
be (1, 1, 1, 1, 1, 2, 6).
n = 7: We have from Problem 2.8 that our sum is at most 2 × 7 = 14. From Problem 2.11, any tuple
that is a solution has at least 7− log2(7)− 1 > 3 elements that is a 1. Our solutions are as follows:

• (1, 1, 1, 1, 1, 2, 7)

• (1, 1, 1, 1, 1, 3, 4)

A follow-up question may be to ask how the number of solutions behaves as n grows.

Problem 2.13 (10 points). Prove that for any integer M , we can find n such that the number of n-tuple
solutions is at least M .

Solution: Consider n = 22M−2 + 1. For each 1 ≤ k ≤M , consider the n-tuple

(

n−2 times︷ ︸︸ ︷
1, . . . , 1 , 2k−1 + 1, 22M−k−1 + 1).

Then the sum is n+ 2k−1 + 22M−k−1, and the product is(
2k−1 + 1

) (
22M−k−1 + 1

)
= 22M−2 + 2k−1 + 22M−k−1 + 1

= n+ 2k−1 + 22M−k−1.

Since there are M options for k and each tuple had the same length, it follows that that there are at
least M solutions of length n.

3 A Problem with Tangents

Problem 3.1 (4 points). Prove that for any triangle 4ABC, we have

tan(A) + tan(B) + tan(C) = tan(A) tan(B) tan(C).

Solution: Recalling that tan(π−x) = − tan(x) and tan(x+y) = tan(x)+tan(y)
1−tan(x) tan(y) , and using the fact that

A+B + C = π, we have

tan(C) = tan(π −A−B)

= − tan(A+B)

= − tan(A) + tan(B)

1− tan(A) tan(B)
.
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Now, we can compute

tan(A) + tan(B) + tan(C) = tan(A) + tan(B)− tan(A) + tan(B)

1− tan(A) tan(B)

= (tan(A) + tan(B))

(
1− 1

1− tan(A) tan(B)

)
= − (tan(A) + tan(B))

tan(A) tan(B)

1− tan(A) tan(B)

= tan(A) tan(B)

(
− tan(A) + tan(B)

1− tan(A) tan(B)

)
= tan(A) tan(B) tan(C).

Problem 3.2 (2 points). How many triangles, up to rescaling, have angles that all have integer tangents?
Justify your answer.

Solution: From the previous problem and Problem 2.4, we know that the only possibility for 4ABC
(up to relabeling) is when tan(A) = 1, tan(B) = 2, and tan(C) = 3. So there is only 1 such triangle, up
to rescaling.
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