
Chapter 1

Sound

W
e begin our study of the science of music by asking “What is sound?”

What is sound made of? What properties does it have? And what do they

tell us about music? At the most basic level, sound is a wave of pressure,

moving through the air. It consists of tiny changes in air pressure generated by the

objects around us as they move. Let’s take a look at how this happens.

1.1 Air

Air is the gas that makes up the atmosphere of planet Earth. It is all around us and we

breath it in to get the oxygen we need to live. It is transparent and invisible, although

you can feel it: the wind on your face is air hi�ing your skin. And tiny vibrations of

the air, like ripples on the surface of a pond, are picked up by our ears as sound.

Air, like all ma�er, is made of up of atoms and molecules. Air is a mixture of two

gases, about 80% nitrogen and 20% oxygen (plus trace amounts of others). Nitrogen

and oxygenmolecules are light, but they are not weightless. Air has a weight, though

we are not usually aware of it. One cubic meter of normal air weighs 1.204 kilograms,

or about two pounds, a fact that will be important to us in our discussions.

Unlike the molecules in solid ma�er, which are �xed in place, molecules in gases

are free to move around, jostling one another and bouncing o� objects. �e mole-

cules in air are continually moving, and moving fast: a typical speed is about 500

meters per second (about 1800 kilometers per hour or 1100 miles per hour). �is

motion is responsible for the phenomenon of air pressure. Imagine the air inside a

�e air molecules inside
a party balloon move
around and collide with
the walls of the balloon,
producing air pressure
on the walls.

party balloon. As the molecules move around they bounce against the insides of the

walls of the balloon and push them outward. You cannot feel the force of individual

collisions—they are too small—but there are trillions of them every second and col-

lectively they produce a force that you can feel. If you squeeze a balloon it pushes

back against you �rmly.

�e air around us is constantly exerting pressure on its surroundings in exactly
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Chapter 1 | Sound

this way. �ere is air pressure on walls and �oors and ceilings and furniture and

people, the collective e�ect of many many molecules bouncing o� them all the time.

Technically, pressure is de�ned as the amount of force per square meter of surface.For reference, one new-
ton is about theweight of
an average apple, which
is an easy way to remem-
ber it if you’re familiar
with the story of Isaac
Newton, who is said to
have invented his theory
of gravity a�er seeing an
apple fall from a tree.

Force is measured in scienti�c units of newtons, so pressure is measured in newtons

per square meter (wri�en N/m2), also called pascals (and denoted Pa). Normal atmo-

spheric pressure is 101 000 Pa, although this is perhaps easier to envisage if translated

into more familiar units: that’s equivalent to about 15 lbs per square inch, one kilo-

gram per square centimeter, or ten metric tonnes of force per square meter. �at’s

To convert from newtons
to kilograms, you divide
by 9.81, although o�en
it’s good enough to just
divide by 10, which gives
roughly the same answer
and is a lot easier to do.

a large amount of force, and seems perhaps surprising at �rst. If the air is exerting

that much force on us, why do we not feel it? �e answer is that the force is exerted

in all directions and so balances out. Pressure does not intrinsically have a direc-

tion: pressure acts on any surface that you present to it. If you hold out your hand

�at, for instance, then the pressure of the air above it exerts a force of one kilogram

per square centimeter downwards on it. But the air below also exerts one kilogram

per square centimeter upward from underneath your hand, so the net force on your

hand is zero and you don’t feel anything. If the air pressure changes—as when a

plane lands, for instance—then you may notice it, but most of the time we are simply

oblivious to the tremendous pressure around us. One way in which we do notice it,

however, is in the pressure waves we call sound.

1.2 Pressure waves

Sound consists of changes in the pressure of the air around us. �e changes are

tiny—a few parts per million or less for typical musical sounds. It is a testament to

the remarkable sensitivity of our ears that we can hear sound at all.

To get an idea of whatwe are talking about, consider a long tube or pipe, as shown

in Fig. 1.1a, closed o� at both ends. Initially it contains air at normal atmospheric

pressure, but now suppose we inject some extra air though a small hole at one end

of the pipe, as indicated by the arrow in the �gure. �is will drive up the pressure at

that end of the pipe so there is a pressure imbalance in the tube, but this imbalance

cannot last. Over time the air will �ow down the tube away from the hole and the

pressure will equalize. For an analogy, imagine pouring water in at one side of a

pool or pond. Temporarily this will make the water higher at that side, but very

quickly water will �ow from the higher parts to the lower parts and the water level

will equalize everywhere.

�e equalization of air pressure is rapid but not instantaneous. Rather, it happens

as depicted in Fig. 1.1 panels (b) to (d), the region of higher pressure spreading out

until the pressure is the same everywhere along the tube. �e speed at which theFor other gases the speed
would be di�erent, but
we are only interested in
air here.

front travels along the tube is an intrinsic property of air and is found to be 343meters

per second, which is equivalent to about 1200 kilometers per hour or 770 miles per
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Figure 1.1: �emotion of a pressure wave in a tube. (a) Air injected through a small hole

at the end of an otherwise closed tube will push the pressure up inside the tube. Initially the

pressure will increase near the end where the air is injected. (b) to (d) Over time the higher

pressurewill spread down the tube, moving at the speed of sound. (e) If we change the pressure

in a more complicated pa�ern, raising it and lowering it over time, these disturbances will also

travel down the tube at the speed of sound. Any changes we make in the pressure at one end

will travel down the tube and be copied at other points a short time later.

hour.

Now suppose we take our experiment a step further. Instead of just injecting

extra air one time, we �rst inject air then, a fraction of a second later, we remove

some, driving the pressure down again. �e �rst act, of injecting the air, will cause a

front of higher pressure to travel down the tube as we have seen. �e second act, of

removing it, will cause another traveling front, but this time of lower pressure, with

the opposite shape to the �rst front, as shown in Fig. 1.1e. �e result is a pulse of

pressure that travels down the tube. We can repeatedly raise and lower the pressure

at the start of the tube as o�en as we like and each time the change the pressure
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Chapter 1 | Sound

travels down the tube at the same speed of 343m/s, so that a point some distance

down the tube experiences the same variations in pressure that are injected at the

start of the tube, just a fraction of a second later because of the time the disturbance

takes to travel.

�is is what we call a sound wave. It is a change of pressure that travels through

the air, so that whatever pa�ern of pressure we start o� with is felt, some time later,

at a distance from where it started. �e pa�ern travels through the air with �xed

speed 343m/s, which we call the speed of sound.

We have described a wave traveling down a tube, which is an easy case to visu-

alize, but sound waves do not need a tube to guide them. �ey will travel through

air wherever it is available. �e air is constantly �lled with sound waves traveling in

all directions, which our ears detect as the amazing array of sounds around us: the

sound of people talking, of music, of birds and cars and footsteps and rain falling on

the roof. All of these produce tiny variations in pressure which travel though the air

as sound.

1.2.1 Sound pressure

As we have said, there is always pressure in the air, the prevailing atmospheric pres-

sure. A sound wave consists of variations around this prevailing value: sometimes

the pressure is slightly greater, sometimes slightly less. We can write the total pres-

sure, including the regular atmospheric pressure and the extra part due to sound, as

% = %0 + ?. (1.1)

Here % is the total pressure, %0 is the atmospheric pressure, and ? is the sound pressure,

the additional pressure due to the sound wave. Almost always in this book it will

be the sound pressure that we are concerned with. �e atmospheric pressure will

not usually ma�er—it is simply the background over which the sound pressure is

superimposed. �e sound pressure ? is the part of the pressure that is important in

our consideration of musical sound.

1.3 Sound production

In our discussion above we envisaged a pressure wave produced by injecting air into

a tube. �is is basically the way wind instruments like the clarinet work. A clarinet

has a reed that moves back and forth rapidly, opening and closing an aperture and

injecting bursts of air into the instrument’s pipe. �e human voice also works in

essentially the same way, with the vocal cords playing the role of the reed. We look

at the workings of wind instruments and the voice in Chapters 11 and 12 of this book.
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1.3 | Sound production

Most sound, however, is produced in a di�erent manner, by the motion or vibra-

tion of objects, like the �oor when you walk across it, the strings and soundboard of

a guitar when you strum a chord, or a drum head when you hit it with a drumstick.
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Figure 1.2: Sound production by a vibrating sur-

face. A surface such as the soundboard of a guitar

vibrates back and forth and alternately pushes on the

air next to it then backs o�, producing waves of pres-

sure that travel outward in the form of sound.

Take the example of the guitar, for instance. Most of

the sound from an acoustic guitar is produced not directly

by the strings but by the soundboard, which is the wooden

front panel of the instrument. When you pluck a string it

vibrates and causes the soundboard to also vibrate, which

in turn moves air back and forth and produces a sound

wave. �e situation is sketched in Fig. 1.2.

When the soundboardmoves outward, it pushes on the

nearby air and compresses it, temporarily driving up the

pressure in the immediate vicinity. When it moves back

again the pressure goes back down. In Section 1.6.1 it is

shown that the sound pressure ? produced by a moving

object is proportional to the velocity D of the object ac-

cording to the formula

? = ID, (1.2)

where the constant of proportionality I is called the acous-

tic impedance of air and has a value of 413 Pa s/m. Because

the pressure and velocity are proportional to one another,

the sound pressure just copies the pa�ern of movement of the object—the sound-

board in this case—and then this pa�ern of pressure travels outward, producing the We study the workings
of the guitar in more
depth in Section 10.2.

wave that we call sound. �is is how a guitar makes music.

In principle, anymoving object can produce sound by pushing on the air around it.

Musical instruments do this, but so also does themoving diaphragm of a loudspeaker,

the metal of a ringing bell, the bo�om of a bucket when you drum on it, or virtually

any object when it is struck or brushed or scraped—a dinner plate, the �oor under

your feet, a door as you knock on it.

Example 1.1: Sound pressure from a guitar

Equation (1.2) tells us that the sound pressure produced by a guitar depends on the velocity

of movement of the soundboard as it vibrates. As we will see in Chapter 2, the vibrations

we are talking about in the case of a guitar have a rate of about 200 oscillations per second—

the soundboard moves back and forth 200 times each second.

�e movement of the soundboard is very small—completely invisible to the eye. A

typical range of motion might be a thousandth of a millimeter or one micrometer. If the

soundboard moves back and forth by 0.001mm, then it travels a total of 0.002mm in one

round trip, and hence a total of 200 × 0.002mm = 0.4mm per second or 0.0004m/s. �is
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Chapter 1 | Sound

gives us a rough estimate of the velocity of the soundboard. Plugging this �gure into

Eq. (1.2) and using I = 413 Pa s/m, we then �nd a rough estimate of the magnitude of the

sound pressure:

? = 413 × 0.0004 = 0.16 Pa. (1.3)

�is is a very small amount of pressure, almost a million times smaller than the 101 000

pascals of regular atmospheric pressure, but it is typical of musical sounds. Musical sounds

are made up of very tiny, one-part-in-a-million variations in the air pressure around us.

1.4 Mathematics of sound waves

In Section 1.6 we show that a sound wave can be represented mathematically by an

equation like this:

? (G, C) = 5 (G − 2C). (1.4)

In this equation ? (G, C) is the sound pressure at position G and time C , the quantity

2 is a constant (which we’ll give a value for in a moment), and 5 is a mathematical

function that represents the shape of the wave. A sound wave can take any shape at

all—di�erent shapes correspond to di�erent sounds—so 5 can take any shape too.

What does this equation actually mean? Let us look at it in detail. First of all, the

variables G and C measure position and time. We set up a distance scale that measures

distance along the direction the sound wave is traveling in and we call this the G axis.

Any position can be described by giving the appropriate value of G in meters. Where

does the axis start? It does not ma�er. �e G axis doesn’t really exist. It is purely for

our convenience, so we can choose the G = 0 point to be at any place we like, such as

the middle of the laboratory, or the stage in a concert hall, or a speaker on a podium.

Similarly we measure time C in seconds and we can describe any moment in time by

saying what the value is of C at that moment. Again we can choose the start of the

time-scale to be at any moment we like—it’s just for our convenience, so we could

for example choose C = 0 to represent the time at which an instrument plays a note,

or the start of an experiment, or the time at which we start making measurements.

Equation (1.4) applies no ma�er what choice we make.

Now consider how the pressure looks at time C = 0. Pu�ing C = 0 in the equation

we get

? (G, 0) = 5 (G). (1.5)

In other words at time C = 0 the pa�ern of pressure along the G axis of the wave is

just equal to the function 5 (G). An example is shown in the top frame of Fig. 1.3. If

we were doing an experiment we could measure the pressure at all points along the

G-axis and that would tell us the shape of 5 (G) for that particular sound wave.

But once we know 5 (G), then we can use it to calculate the pressure at any other

time C . For instance, suppose we want to know the pressure one second later at
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Figure 1.3: �e motion of a sound wave over time. Top: at time C = 0 there is some wave

of pressure spread out along the G-axis, as shown by this graph. Middle: one second later at

C = 1 the wave has moved over to the right by a distance 2 . So, for instance, the peak marked

by the vertical dashed line moves over as shown by the arrow. Bo�om: another second a�er

that it has moved a further distance 2 .

time C = 1. Pu�ing C = 1 in Eq. (1.4), we �nd that

? (G, 1) = 5 (G − 2). (1.6)

�is equation says that the pressure at position G at time C = 1 is 5 (G − 2). In other

words it is the same as the pressure was at time C = 0, but at position G − 2 , which is

2 meters further back. Whatever the pressure was at G − 2 , that same pressure is now

to be found at G . In other words the pressure has “moved” forward a distance 2 . If we

wait another second, until C = 2, the pressure will move forward another distance 2 ,

and so forth.

�is process is illustrated in Fig. 1.3: observe how the peakmarked by the vertical

dashed line in the �rst frame of the �gure at time C = 0 has moved to the right in the

second frame at time C = 1. In the third frame, a second later at C = 2, it has moved
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Chapter 1 | Sound

the same distance again. Every peak and trough in the wave moves in this same way,

so the entire wave just travels through the air, moving a distance 2 every second.

�is is the miracle of sound waves: whatever pressure you start with, that exact

same pressure is felt at points further and further away as time goes by. �e air

transmits whatever pa�ern of pressure you make in one place to other surrounding

places. Since the pressure moves 2 meters in every second, that means it has speed 2 ,

so 2 is the speed of the sound, which is 343m/s, as we have said.
�is almost magical mechanism is what makes all sound possible: music, speech,

the barking of dogs, a car going by on the street. Any pa�ern of pressure changes

gets transmi�ed through the air and if you have the means to detect it—ears or a

microphone—then you can hear all the things going on around you. �ere are limits

to how far sound will travel—it gets diluted with distance for reasons we discuss in

Section 3.5—but sound in air provides us with a remarkable vehicle for transmi�ing

thoughts and creative performances from one person to another.

Equation (1.4) is one of two possible mathematical forms for a sound wave. �e

other is

? (G, C) = 5 (G + 2C). (1.7)

�e only di�erence between the two is that this one has a plus sign instead of a

minus, which changes the direction of travel of the wave. In Eq. (1.4) and Fig. 1.3

the wave is traveling to the right (towards greater values of G ) but in Eq. (1.7) it is

traveling to the le�. �e mathematics tells that both are possible—sound will travel

either way. Furthermore, though we have pictured sound traveling along a single

“G” axis, there is no limit to what direction it can travel in. Sound will travel through

open air in any direction. If we make a sound by playing a musical instrument, for

instance, that sound will travel outward in all directions from the player and can be

heard by people all around, provided they are not too far away.

1.5 Waveforms

Any pa�ern of pressure variation in the air gets carried away from its source at the

speed of sound and can be picked up by a listener’s ears. �e pa�ern of the pressure

changes that make up a sound are called the waveform of the sound. �e standard

way to represent a sound waveform is as a graph like the one shown in Fig. 1.4. �e

horizontal axis of the graph represents time in seconds and the vertical axis shows

how the sound pressure varies. As the sound wave passes the listener, the pressure

will go up and down according to the pa�ern in this graph.

�ewaveform determines everything about theway a sound sounds. If you know

the waveform then you know the complete sound. For instance, sound recording

works precisely because it captures a waveform and then reproduces it later on: if
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Figure 1.4: A soundwaveform. �ewaveform of a sound is the pa�ern of pressure variation

over time, conventionally depicted as a graph like this of sound pressure against time.

you can recreate the waveform exactly as it was, you will hear the exact original

sound.

Waveforms come in an in�nite variety of shapes and sizes, each of them corre-

sponding to its own unique sound. �ere are deep rumbles and high-pitched squeals.

�ere are sounds that are ear-spli�ingly loud and sounds so quiet we can barely hear

them. �ere are bright sounds and warm sounds and tinny sounds and dull sounds.

By studying the correspondence between the waveform and the sound we hear we

will come to understand, in scienti�c terms, where all of this amazing variety comes

from.

1.5.1 Waveforms of musical sounds

Not all sounds �nd use in music. Music, as it is played in most traditions and cultures

around the world, focuses primarily on a subset of sounds, the periodic waveforms.

A periodic waveform is one that repeats the same shape over and over again, as in

Fig. 1.4 for example. In musical terms, the sound of a periodic waveform corresponds

to a note with a clear pitch. Not all sounds have a clear pitch. What note does

running water make, for instance? Or a thunderclap? Or a door slamming? �ese

sounds do not have periodic waveforms and hence they are not “notes” in the way

we commonly understand the word. To get a distinct note you need periodicity.

In practice, musical waveforms are not always exactly periodic. Musical instru-

ments are not perfect machines, and slight variation in the waveform is normal and

can even add interesting character to the sound. If you look closely at Fig. 1.4 you can

see small changes in the shape from one cycle of the wave to the next. Nonetheless,

to produce a useful musical note the waveform needs to be close to periodic.

An exception to the use of periodic waveforms in music is the sound of unpitched
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Chapter 1 | Sound

percussion instruments such as drums and cymbals, which have aperiodic wave-

forms and don’t possess a clear pitch. We discuss the special characteristics of these

instruments in Chapter 13. For the moment, however, we will focus on the periodic

waveforms, which account for the sounds of most of the instruments you are prob-

ably familiar with, including the instruments of the orchestra, marching band, and

jazz, rock, and pop music, with the exception of percussion.

1.5.2 Characteristics of waveforms

A periodic, repeating waveform has three essential characteristics that de�ne its mu-

sical properties: frequency, amplitude, and shape.

Frequency: A periodic waveform consists of the same pa�ern of pressure varia-

tion repeated over and over again. �e frequency of the waveform tells us how o�en

it repeats, measured as the number of cycles per second. In musical terms, the fre-

quency determines the pitch of the note we hear. Higher frequencies (more cycles

per second) correspond to higher notes and lower frequencies to lower notes. We

will see shortly exactly how this correspondence works. �e frequencies of musical

notes range from about 20 cycles per second to about 4000.

Amplitude: �e amplitude of a waveform is the range of pressure variation from

the highest highs to the lowest lows. Musically speaking, the amplitude corresponds

to the loudness of the sound. Waveforms with more variation in pressure sound

louder; those with less sound quieter. Amplitude could be measured in terms of

the number of pascals of variation in the pressure of the wave, but in practice it is

measured using a di�erent scale, the decibel scale, and we will see shortly how this

works.

Wave shape: �e third property of the waveform is its shape. �e shape con-

trols the quality or “timbre” of the sound. Is it bright? Is it warm? Is it intense or

jagged or so� or jangly? Two waves may have the same frequency and amplitude,

and hence produce sounds with the same pitch and loudness, and yet they can sound

completely di�erent because they have di�erent shapes. A violin and a trumpet can

play the same note, but no one would mistake one for the other. In order to under-

stand the link between waveform shape and timbre, we will learn about the tools of

spectral analysis, which allow us to break a waveform into its component parts and

understand exactly what each part contributes to the sound.

We will look in detail at each of these three properties of musical waveforms,

frequency, amplitude, and shape, over the course of the next three chapters.

10



1.6 | The wave eqation

Advanced material

1.6 The wave eqation

So far we have only described how sound behaves in rough

terms, but it is possible describe its behavior precisely us-

ing di�erential equations, and speci�cally the wave equa-

tion for sound, which is derived from two basic physical

facts: Newton’s second law of motion and the compress-

ibility of air.

Consider a sound wave traveling through the air in a

tube or pipe as shown in Fig. 1.5, where the shading repre-

sents the changing sound pressure. Suppose the tube has

cross-sectional area � and let us measure position along

the tube by G . Consider a narrow slice of the air in the

tube, between positions G and G + dG . �e pressure of the

air to the le� of the slice exerts a force on the slice equal

to % (G, C)�, where % (G, C) is the total pressure at the le�

side at time C . At the same time, the pressure at the right

side is % (G + dG, C) and exerts a force on the slice in the op-

posite direction equal to % (G + dG, C)�. So the net force on

the slice is

� = % (G, C)� − % (G + dG, C)�

=

% (G, C) − % (G + dG, C)
dG

� dG

= − m%

mG
+ , (1.8)

where + = � dG is the volume of the slice.

Another way of looking at our sound wave is in terms

of themovement of the air. �emolecules in air aremoving

all the time, as described in Section 1.1, bumping into one

another and into walls and objects and people, but these

motions are random so on average we can ignore them: on

average the air is not moving anywhere, like ants milling

around in an anthill, each individuallymoving even though

the anthill overall isn’t going anywhere. �e sound wave,

however, changes that. When sound pressure is present,

increasing or decreasing the pressure from its normal at-

mospheric pressure, the air �ows around to equalize that

pressure, giving it a net overall motion. Let us denote the

overall displacement of the air from its position at rest

by b (G, C), and its acceleration is the second derivative of

this displacement 0 = m2b/mC2.
Now suppose that the density of the air is d . �is

means that the mass of our slice of air is< = d+ , where+

is again the volume. So we now have expressions for the

force � on our slice (from Eq. (1.8)) and its mass< and ac-

celeration 0. Newton’s second law of motion tells us that

these three quantities are related by � =<0, and hence we

have

− m%

mG
+ = d+

m2b

mC2
. (1.9)

We cancel a factor of+ throughout and use Eq. (1.1), which

says that % = %0 + ? where the atmospheric pressure %0 is

a constant, and we get

− m?

mG
= d

m2b

mC2
. (1.10)

�is is one of the two results we will need for deriving

the wave equation. �e other concerns the compressibility

of the air. As we have said, air is intrinsically squishy—

think again of a party balloon. Exactly how squishy air is

is measured by the bulk modulus. If we take a volume +

of air at normal atmospheric pressure and squash it so that

its volume decreases by a small amount Δ+ , we will get

a small increase in the pressure. �is pressure increase is

dx x

Figure 1.5: A sound wave traveling in a tube. Distance along the tube is measured by G

and the shading represents variation in the pressure. We consider a small slice of air as shown,

with width dG , and calculate the force of the air pressure acting on it from either side.
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precisely what we call the sound pressure ?—the excess

pressure that comes from the compression of the air. �e

extra pressure is proportional to the fractional change in

volume Δ+ /+ thus:

? = −�Δ+
+

. (1.11)

�e minus sign arises because the pressure goes up when

the volume goes down. �e constant of proportionality �

is called the bulk modulus and is an intrinsic property of

air. �e bulk modulus has units of pressure (i.e., pascals)

and for normal air at atmospheric pressure takes the value

1.42 × 105 Pa.

When a sound wave passes through our slice of air,

the air at the le� end of the slice at position G moves a

distance b (G, C), reducing the volume of the slice by an

amount b (G, C)�. At the same time, the air at the right end

of the slice moves a distance b (G + dG, C), increasing the

volume by b (G +dG, C)�. �us the net increase in volume is

Δ+ = b (G + dG, C)� − b (G, C)�

=

b (G + dG, C) − b (G, C)
dG

� dG

=

mb

mG
+ . (1.12)

Substituting this expression for Δ+ into Eq. (1.11) we get

? = −� mb

mG
. (1.13)

�is is the second result we needed. Now we are ready to

derive the wave equation.

Di�erentiating Eq. (1.13) twice with respect to C , we get

m2?

mC2
= −� m2

mC2
mb

mG
= −� m

mG

m2b

mC2
=

�

d

m2?

mG2
(1.14)

where we have used Eq. (1.10) in the last equality. �is re-

sult can be rearranged into the form

m2?

mG2
− 1

22
m2?

mC2
= 0, (1.15)

where

2 =

√

�

d
. (1.16)

Equation (1.15) is thewave equation for soundwaves. It de-

scribes how the sound pressure ? varies in space and time.

�e wave equation has two general solutions:

? (G, C) = 5 (G − 2C), (1.17)

? (G, C) = 5 (G + 2C), (1.18)

where 5 (G) is any function of G . We can easily verify that

these are solutions by substituting into the wave equation.

For instance, taking the �rst solution, Eq. (1.17), we have

m2?

mG2
= 5 ′′ (G − 2C), (1.19)

where 5 ′′ (G) is the second derivative of 5 , and

m2?

mC2
= 22 5 ′′ (G − 2C) . (1.20)

Substituting these into Eq. (1.15) then gives

m2?

mG2
− 1

22
m2?

mC2
= 5 ′′ (G − 2C) − 1

22
22 5 ′′ (G − 2C) = 0, (1.21)

as required. It is le� as an exercise for the reader to verify

that Eq. (1.18) is also a solution of the wave equation.

As discussed in Section 1.4, Eqs. (1.17) and (1.18) repre-

sent sound waves traveling in the positive and negative G

directions respectively. �e function 5 speci�es the shape

of the waveform and 2 is the speed with which the wave

travels. In other words 2 is the speed of sound.

Equation (1.16) thus tells us that the speed of sound

is 2 =

√

�/d and given the value � = 1.42 × 105 Pa

of the bulk modulus, along with the measured density of

air at standard pressure and room temperature, which is

d = 1.204 kg/m3, we �nd that

2 =

√

1.42 × 105

1.204
= 343m/s. (1.22)

�e speed of sound has been measured many times in ex-

periments and agrees well with this theoretical value.

Note, however, that the density d varies with temper-

ature, so the actual value of the speed of sound may be

slightly di�erent from place to place and from day to day.1

1�e bulk modulus does not depend on temperature so long as atmospheric pressure stays the same.

In fact a standard result from thermodynamics says that the bulk modulus is equal to 7
5 times the prevail-

ing atmospheric pressure. For a standard atmospheric pressure of 1.013 × 105 Pa this gives a �xed value

of � = 1.418 × 105 Pa for the bulk modulus.

12



1.6 | The wave eqation

Temperature Density d Speed of sound 2 Acoustic impedance I
(◦C) (kg/m3) (m/s) (Pa s/m)

−25 1.422 315.8 449.2
−20 1.394 319.0 444.8
−15 1.367 322.1 440.4
−10 1.341 325.2 436.2
−5 1.316 328.3 432.2
0 1.292 331.3 428.2
5 1.269 334.3 424.3
10 1.247 337.3 420.5
15 1.225 340.3 416.9
20 1.204 343.2 413.3
25 1.184 346.1 409.8
30 1.164 349.0 406.4
35 1.146 351.9 403.1

Table 1.1: Variation of the speed of sound with temperature. As temperature goes up,

air expands and its density d decreases, so the speed of sound 2 , given by Eq. (1.16), is higher

at higher temperatures. At a typical room temperature of 20◦C we have 2 = 343m/s and we

will use this value in many calculations in this book, but the actual value may be slightly

higher or lower in practice. �e acoustic impedance I, Eq. (1.30), also varies with tempera-

ture, going down as temperature goes up. All values are at standard atmospheric pressure of

101 325 × 105 Pa.

�e value of 2 = 343m/s above is for a standard room tem-

perature of 20◦C. Table 1.1 gives values for a range of other
temperatures. As we can see the speed of sound can be as

low as 316m/s at −25◦C or as high as 352m/s at 35◦C.�is

variation has some practical consequences. For instance, it

causes woodwind instruments to go out of tune as they

warm up (see Section 11.1.3) and it requires sound level

meters to be recalibrated when the temperature changes

(Section 3.2.2). For general purposes, however, a value of

343m/s is a good average �gure for the speed of sound and
we will use this value in this book.

1.6.1 Pressure, velocity, and acoustic

impedance

�e velocity D (G, C) of the air at position G and time C is

given in terms of the displacement b (G, C) by

D =

mb

mC
. (1.23)

Di�erentiating this equation with respect to time and us-

ing Eq. (1.10), we get

mD

mC
=

m2b

mC2
= − 1

d

m?

mG
. (1.24)

For a sound wave traveling in air, the pressure is given by

the solution to the wave equation ? = 5 (G −2C) (Eq. (1.17)).
Substituting into (1.24) and performing the derivative, we

get
mD

mC
= − 1

d
5 ′ (G − 2C), (1.25)

and integrating again with respect to time we get

D =

1

d2
5 (G − 2C) +� =

?

d2
+�, (1.26)

where � is an integration constant and we have used ? =

5 (G − 2C) again.
We know that the velocity D is zero in undisturbed air

where ? = 0, so D = 0 when ? = 0, which implies that

the constant � = 0 and thus we �nd that the pressure and

13



Chapter 1 | Sound

velocity in a sound wave are related by

D =

?

d2
. (1.27)

In other words the pressure and velocity are proportional

to one another. �e quantity d2 is called the acoustic

impedance of the air, denoted I:

I = d2, (1.28)

and hence we can also write

? = ID. (1.29)

Using Eq. (1.16) the acoustic impedance can also be wri�en

I =

�

2
, (1.30)

so acoustic impedance is essentially just a rescaled version

of the bulk modulus and, like the bulk modulus, it is a mea-

sure of the sti�ness of air, the extent to which it resists

compression.

�e density of air is d = 1.204 kg/m3, so with 2 =

343m/s we have an acoustic impedance of

I = d2 = 1.204 × 343 = 413 Pa s/m, (1.31)

and we will use this value in this book. Note, however, that

since, as we have seen, both the density of air and the speed

of sound vary with temperature, the acoustic impedance

does too, so somewhat higher or lower values are possible.

In general acoustic impedance is lower for higher temper-

atures. Table 1.1 lists values for a range of temperatures.

We used Eq. (1.29) in Section 1.3 when we considered

sound production by a moving object, like the soundboard

of a guitar. In that case the soundboard moves with a cer-

tain velocity D and it causes the air in immediate contact

with it to move at the same velocity. Once we know the

velocity of the air, then Eq. (1.29) tells us the correspond-

ing pressure and in this way we can calculate the sound

pressure produced by a moving object. See Example 1.1 on

page 5 for a demonstration.

Finally, on a technical note, we should point that

strictly speaking I is the speci�c acoustic impedance. �ere

is another quantity called acoustic impedance, denoted by

capital / , which is de�ned as the ratio / = �/D of the

force � on an object and its velocity D. �e two quan-

tities are closely related. Pressure is force per unit area

? = �/�, so

I =

?

D
=

�/�
D

=

�/D
�

=

/

�
, (1.32)

so the speci�c impedance is equal to the regular impedance

divided by the area over which the force is exerted.

In some cases it is convenient to use the regular

impedance. We will use it for instance in our discussion

of the properties of the soundboard of a string instrument

in Section 10.5. When talking about air, however, it makes

more sense to work with pressure rather than force, which

leads us to the speci�c impedance I = ?/D. Usually in

this book we will be talking about speci�c impedance, so

we drop the word “speci�c,” except on the rare occasions

where it is important to make the distinction.

Chapter summary:

• Sound is a pressure wave, moving in air.

• A disturbance in the air pressure will spread out from its source at a speed

of 343m/s, denoted in our equations by the le�er 2 and commonly called the

speed of sound.

• �e speed of sound can be calculated from the formula

2 =

√

�

d
,
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Exercises

where � is the bulk modulus of air (a measure of howmuch the air resists being

compressed) and d is its density.

• �e pa�ern of variation of pressure over time is called the waveform of a

sound. �e waveform determines everything we hear—if we know the wave-

form then we know the sound.

• Musical sounds o�en have periodic waveforms, ones that repeat the same

pa�ern of pressure variation over and over again, although non-periodic wave-

forms are found in the sounds of percussion instruments. Periodic waveforms

correspond to sounds with a clear pitch, like a note on a piano. Non-periodic

ones have no clear pitch, like the sound of footsteps.

• �ree properties of waveforms are particularly important for music: the fre-

quency (which determines musical pitch), the amplitude (which determines

loudness), and the shape of the waveform (which determines the quality or

timbre of the sound).

Exercises

1.1 A rectangular room is 5 meters long, 4 meters wide, and has a 3 meter high ceiling.

a) What is the volume of the room?

b) How much does the air in the room weigh, in kilograms?

c) What is the area of the ceiling?

d) What is the total force on the ceiling (in newtons) from the air pressure in the room?

e) About how much is this in tons (or tonnes)?

f) In what direction is this force pushing?

1.2 A playing �eld is 100 meters long and 50 meters wide.

a) What is the area of the �eld?

b) What is the total force exerted by air pressure downward on the surface of the �eld in

units of newtons?

c) What is the equivalent force in units of metric tonnes?

1.3 How far, in either kilometers or miles, would sound travel in a minute?

1.4 Lightning strikes one kilometer away. How long a�er the strike will you hear the thun-

derclap if the temperature outside is (a) 20◦C and (b) 30◦C?

1.5 A marching band is playing on a football �eld.

a) If the band is spread out across the entire �eld, how long will it take fromwhen a player

at one end of the �eld plays a note until a player at the end other hears that note? You

can assume that the �eld is 100 meters long, which is close enough.
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Chapter 1 | Sound

b) Based on your calculation, why is it important that the marching band has a conductor?

1.6 �e diaphragm or “cone” of a loudspeaker vibrates 1000 times a second and moves back

and forth a distance of 10−7m. Roughly what is the sound pressure in pascals the loudspeaker

produces, measured right next to the cone?

1.7 A person walks across a wooden �oor and the sound of their footsteps creates a sound

pressure of around 0.1 Pa close to the �oor.

a) Explain why footsteps make a sound.

b) About how fast is the �oor moving when the person’s feet strike it?
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