
COMPUTATIONAL PHYSICS

EXERCISES FOR CHAPTER 3

Exercise 3.1: Plotting experimental data

In the on-line resources you will find a file called sunspots.txt, which contains the observed

number of sunspots on the Sun for each month since January 1749. The file contains two

columns of numbers, the first being the month and the second being the sunspot number.

a) Write a program that reads in the data and makes a graph of sunspots as a function of

time.

b) Modify your program to display only the first 1000 data points on the graph.

c) Modify your program further to calculate and plot the running average of the data, de-

fined by

Yk =
1

2r

r

∑
m=−r

yk+m ,

where r = 5 in this case (and the yk are the sunspot numbers). Have the program plot

both the original data and the running average on the same graph, again over the range

covered by the first 1000 data points.

Exercise 3.2: Curve plotting

Although the plot function is designed primarily for plotting standard xy graphs, it can be

adapted for other kinds of plotting as well.

a) Make a plot of the so-called deltoid curve, which is defined parametrically by the equa-

tions

x = 2 cos θ + cos 2θ, y = 2 sin θ − sin 2θ,

where 0 ≤ θ < 2π. Take a set of values of θ between zero and 2π and calculate x and y

for each from the equations above, then plot y as a function of x.

b) Taking this approach a step further, one can make a polar plot r = f (θ) for some func-

tion f by calculating r for a range of values of θ and then converting r and θ to Cartesian

coordinates using the standard equations x = r cos θ, y = r sin θ. Use this method to

make a plot of the Galilean spiral r = θ2 for 0 ≤ θ ≤ 10π.

c) Using the same method, make a polar plot of “Fey’s function”

r = ecos θ − 2 cos 4θ + sin5 θ

12

in the range 0 ≤ θ ≤ 24π.

1

Exercise 3.3: There is a file in the on-line resources called stm.txt, which contains a grid of

values from scanning tunneling microscope measurements of the (111) surface of silicon. A

scanning tunneling microscope (STM) is a device that measures the shape of a surface at the

atomic level by tracking a sharp tip over the surface and measuring quantum tunneling current

as a function of position. The end result is a grid of values that represent the height of the

surface and the file stm.txt contains just such a grid of values. Write a program that reads

the data contained in the file and makes a density plot of the values. Use the various options

and variants you have learned about to make a picture that shows the structure of the silicon

surface clearly.

Exercise 3.4: Using the program from Example 3.2 as a starting point, or starting from scratch

if you prefer, do the following:

a) A sodium chloride crystal has sodium and chlorine atoms arranged on a cubic lattice but

the atoms alternate between sodium and chlorine, so that each sodium is surrounded by

six chlorines and each chlorine is surrounded by six sodiums. Create a visualization of

the sodium chloride lattice using two different colors to represent the two types of atoms.

b) The face-centered cubic (fcc) lattice, which is the most common lattice in naturally occur-

ring crystals, consists of a cubic lattice with atoms positioned not only at the corners of

each cube but also at the center of each face:

Create a visualization of an fcc lattice with a single species of atom (such as occurs in

metallic iron, for instance).

Exercise 3.5: Visualization of the solar system

The innermost six planets of our solar system revolve around the Sun in roughly circular orbits

that all lie approximately in the same (ecliptic) plane. Here are some basic parameters:

Radius of object Radius of orbit Period of orbit

Object (km) (millions of km) (days)

Mercury 2440 57.9 88.0

Venus 6052 108.2 224.7

Earth 6371 149.6 365.3

Mars 3386 227.9 687.0

Jupiter 69173 778.5 4331.6

Saturn 57316 1433.4 10759.2

Sun 695500 – –

2

Using the facilities provided by the visual package, create an animation of the solar system

that shows the following:

a) The Sun and planets as spheres in their appropriate positions and with sizes proportional

to their actual sizes. Because the radii of the planets are tiny compared to the distances

between them, represent the planets by spheres with radii c1 times larger than their cor-

rect proportionate values, so that you can see them clearly. Find a good value for c1 that

makes the planets visible. You’ll also need to find a good radius for the Sun. Choose any

value that gives a clear visualization. (It doesn’t work to scale the radius of the Sun by

the same factor you use for the planets, because it’ll come out looking much too large. So

just use whatever works.) For added realism, you may also want to make your spheres

different colors. For instance, Earth could be blue and the Sun could be yellow.

b) The motion of the planets as they move around the Sun (by making the spheres of the

planets move). In the interests of alleviating boredom, construct your program so that

time in your animation runs a factor of c2 faster than actual time. Find a good value of c2

that makes the motion of the orbits easily visible but not unreasonably fast. Make use of

the rate function to make your animation run smoothly.

Hint: You may find it useful to store the sphere variables representing the planets in an array

of the kind described on page 115.

Exercise 3.6: Deterministic chaos and the Feigenbaum plot

One of the most famous examples of the phenomenon of chaos is the logistic map, defined by

the equation

x′ = rx(1 − x). (1)

For a given value of the constant r you take a value of x—say x = 1
2—and you feed it into the

right-hand side of this equation, which gives you a value of x′. Then you take that value and

feed it back in on the right-hand side again, which gives you another value, and so forth. This

is a iterative map. You keep doing the same operation over and over on your value of x, and

one of three things happens:

1. The value settles down to a fixed number and stays there. This is called a fixed point.

For instance, x = 0 is always a fixed point of the logistic map. (You put x = 0 on the

right-hand side and you get x′ = 0 on the left.)

2. It doesn’t settle down to a single value, but it settles down into a periodic pattern, rotating

around a set of values, such as say four values, repeating them in sequence over and over.

This is called a limit cycle.

3. It goes crazy. It generates a seemingly random sequence of numbers that appear to have

no rhyme or reason to them at all. This is deterministic chaos. “Chaos” because it really

does look chaotic, and “deterministic” because even though the values look random,

they’re not. They’re clearly entirely predictable, because they are given to you by one

simple equation. The behavior is determined, although it may not look like it.

3

Write a program that calculates and displays the behavior of the logistic map. Here’s what

you need to do. For a given value of r, start with x = 1
2 , and iterate the logistic map equation

a thousand times. That will give it a chance to settle down to a fixed point or limit cycle if

it’s going to. Then run for another thousand iterations and plot the points (r, x) on a graph

where the horizontal axis is r and the vertical axis is x. You can either use the plot function

with the options "ko" or "k." to draw a graph with dots, one for each point, of you can use the

scatter function to draw a scatter plot (which always uses dots). Repeat the whole calculation

for values of r from 1 to 4 in steps of 0.01, plotting the dots for all values of r on the same figure

and then finally using the function show once to display the complete figure.

Your program should generate a distinctive plot that looks like a tree bent over onto its side.

This famous picture is called the Feigenbaum plot, after its discoverer Mitchell Feigenbaum, or

sometimes the figtree plot, a play on the fact that it looks like a tree and Feigenbaum means

“figtree” in German.

Give answers to the following questions:

a) For a given value of r what would a fixed point look like on the Feigenbaum plot? How

about a limit cycle? And what would chaos look like?

b) Based on your plot, at what value of r does the system move from orderly behavior (fixed

points or limit cycles) to chaotic behavior? This point is sometimes called the “edge of

chaos.”

The logistic map is a very simple mathematical system, but deterministic chaos is seen

in many more complex physical systems also, including especially fluid dynamics and the

weather. Because of its apparently random nature, the behavior of chaotic systems is difficult

to predict and strongly affected by small perturbations in outside conditions. You’ve probably

heard of the classic exemplar of chaos in weather systems, the butterfly effect, which was popu-

larized by physicist Edward Lorenz in 1972 when he gave a lecture to the American Association

for the Advancement of Science entitled, “Does the flap of a butterfly’s wings in Brazil set off a

tornado in Texas?” (Although arguably the first person to suggest the butterfly effect was not

a physicist at all, but the science fiction writer Ray Bradbury in his famous 1952 short story A

Sound of Thunder, in which a time traveler’s careless destruction of a butterfly during a tourist

trip to the Jurassic era changes the course of history.)

Comment: There is another approach for computing the Feigenbaum plot, which is neater

and faster, making use of Python’s ability to perform arithmetic with entire arrays. You could

create an array r with one element containing each distinct value of r you want to investigate:

[1.0, 1.01, 1.02, ...]. Then create another array x of the same size to hold the corre-

sponding values of x, which should all be initially set to 0.5. Then an iteration of the logistic

map can be performed for all values of r at once with a statement of the form x = r*x*(1-x).

Because of the speed with which Python can perform calculations on arrays, this method

should be significantly faster than the more basic method above.

Exercise 3.7: The Mandelbrot set

The Mandelbrot set, named after its discoverer, the French mathematician Benoı̂t Mandelbrot,

is a fractal, an infinitely ramified mathematical object that contains structure within structure

4

within structure, as deep as we care to look. The definition of the Mandelbrot set is in terms of

complex numbers as follows.

Consider the equation

z′ = z2 + c,

where z is a complex number and c is a complex constant. For any given value of c this equa-

tion turns an input number z into an output number z′. The definition of the Mandelbrot set

involves the repeated iteration of this equation: we take an initial starting value of z and feed

it into the equation to get a new value z′. Then we take that value and feed it in again to get

another value, and so forth. The Mandelbrot set is the set of points in the complex plane that

satisfies the following definition:

For a given complex value of c, start with z = 0 and iterate repeatedly. If the magnitude |z|
of the resulting value is ever greater than 2, then the point in the complex plane at position c

is not in the Mandelbrot set, otherwise it is in the set.

In order to use this definition one would, in principle, have to iterate infinitely many times

to prove that a point is in the Mandelbrot set, since a point is in the set only if the iteration

never passes |z| = 2 ever. In practice, however, one usually just performs some large number

of iterations, say 100, and if |z| hasn’t exceeded 2 by that point then we call that good enough.

Write a program to make an image of the Mandelbrot set by performing the iteration for all

values of c = x + iy on an N × N grid spanning the region where −2 ≤ x ≤ 2 and −2 ≤ y ≤
2. Make a density plot in which grid points inside the Mandelbrot set are colored black and

those outside are colored white. The Mandelbrot set has a very distinctive shape that looks

something like a beetle with a long snout—you’ll know it when you see it.

Hint: You will probably find it useful to start off with quite a coarse grid, i.e., with a small

value of N—perhaps N = 100—so that your program runs quickly while you are testing it.

Once you are sure it is working correctly, increase the value of N to produce a final high-quality

image of the shape of the set.

If you are feeling enthusiastic, here is another variant of the same exercise that can produce

amazing looking pictures. Instead of coloring points just black or white, color points according

to the number of iterations of the equation before |z| becomes greater than 2 (or the maximum

number of iterations if |z| never becomes greater than 2). If you use one of the more colorful

color schemes Python provides for density plots, such as the “hot” or “jet” schemes, you can

make some spectacular images this way. Another interesting variant is to color according to the

logarithm of the number of iterations, which helps reveal some of the finer structure outside

the set.

Exercise 3.8: Least-squares fitting and the photoelectric effect

It’s a common situation in physics that an experiment produces data that lies roughly on a

straight line, like the dots in this figure:

5

x

y

The solid line here represents the underlying straight-line form, which we usually don’t know,

and the points representing the measured data lie roughly along the line but don’t fall exactly

on it, typically because of measurement error.

The straight line can be represented in the familiar form y = mx + c and a frequent ques-

tion is what the appropriate values of the slope m and intercept c are that correspond to the

measured data. Since the data don’t fall perfectly on a straight line, there is no perfect answer

to such a question, but we can find the straight line that gives the best compromise fit to the

data. The standard technique for doing this is the method of least squares.

Suppose we make some guess about the parameters m and c for the straight line. We then

calculate the vertical distances between the data points and that line, as represented by the

short vertical lines in the figure, then we calculate the sum of the squares of those distances,

which we denote χ2. If we have N data points with coordinates (xi, yi), then χ2 is given by

χ2 =
N

∑
i=1

(mxi + c − yi)
2.

The least-squares fit of the straight line to the data is the straight line that minimizes this total

squared distance from data to line. We find the minimum by differentiating with respect to

both m and c and setting the derivatives to zero, which gives

m
N

∑
i=1

x2
i + c

N

∑
i=1

xi −
N

∑
i=1

xiyi = 0,

m
N

∑
i=1

xi + cN −
N

∑
i=1

yi = 0.

For convenience, let us define the following quantities:

Ex =
1

N

N

∑
i=1

xi, Ey =
1

N

N

∑
i=1

yi, Exx =
1

N

N

∑
i=1

x2
i , Exy =

1

N

N

∑
i=1

xiyi,

6

in terms of which our equations can be written

mExx + cEx = Exy ,

mEx + c = Ey .

Solving these equations simultaneously for m and c now gives

m =
Exy − ExEy

Exx − E2
x

, c =
ExxEy − ExExy

Exx − E2
x

.

These are the equations for the least-squares fit of a straight line to N data points. They tell you

the values of m and c for the line that best fits the given data.

a) In the on-line resources you will find a file called millikan.txt. The file contains two

columns of numbers, giving the x and y coordinates of a set of data points. Write a

program to read these data points and make a graph with one dot or circle for each point.

b) Add code to your program, before the part that makes the graph, to calculate the quanti-

ties Ex, Ey, Exx, and Exy defined above, and from them calculate and print out the slope m

and intercept c of the best-fit line.

c) Now write code that goes through each of the data points in turn and evaluates the quan-

tity mxi + c using the values of m and c that you calculated. Store these values in a new

array or list, and then graph this new array, as a solid line, on the same plot as the orig-

inal data. You should end up with a plot of the data points plus a straight line that runs

through them.

d) The data in the file millikan.txt are taken from a historic experiment by Robert Millikan

that measured the photoelectric effect. When light of an appropriate wavelength is shone

on the surface of a metal, the photons in the light can strike conduction electrons in the

metal and, sometimes, eject them from the surface into the free space above. The energy

of an ejected electron is equal to the energy of the photon that struck it minus a small

amount φ called the work function of the surface, which represents the energy needed to

remove an electron from the surface. The energy of a photon is hν, where h is Planck’s

constant and ν is the frequency of the light, and we can measure the energy of an ejected

electron by measuring the voltage V that is just sufficient to stop the electron moving.

Then the voltage, frequency, and work function are related by the equation

V =
h

e
ν − φ,

where e is the charge on the electron. This equation was first given by Albert Einstein in

1905.

The data in the file millikan.txt represent frequencies ν in hertz (first column) and volt-

ages V in volts (second column) from photoelectric measurements of this kind. Using the

equation above and the program you wrote, and given that the charge on the electron

is 1.602 × 10−19 C, calculate from Millikan’s experimental data a value for Planck’s con-

stant. Compare your value with the accepted value of the constant, which you can find

in books or on-line. You should get a result within a couple of percent of the accepted

value.

7

This calculation is essentially the same as the one that Millikan himself used to determine of

the value of Planck’s constant, although, lacking a computer, he fitted his straight line to the

data by eye. In part for this work, Millikan was awarded the Nobel prize in physics in 1923.

8

