
COMPUTATIONAL PHYSICS

EXERCISES FOR CHAPTER 10

Exercise 10.1: Rolling dice

a) Write a program that generates and prints out two random numbers between 1 and 6, to

simulate the rolling of two dice.

b) Modify your program to simulate the rolling of two dice a million times and count the

number of times you get a double six. Divide by a million to get the fraction of times you

get a double six. You should get something close to, though probably not exactly equal

to, 1
36 .

Exercise 10.2: Radioactive decay chain

This exercise looks at a more advanced version of the simple radioactive decay simulation in

Example 10.1.

The isotope 213Bi decays to stable 209Bi via one of two different routes, with probabilities

and half-lives thus:

Pb209

3.3 min

Tl209

Bi213

46 min

2.2 min

2.09%
97.91%

Bi209

(Technically, 209Bi isn’t really stable, but it has a half-life of more than 1019 years, a billion times

the age of the universe, so it might as well be.)

Starting with a sample consisting of 10 000 atoms of 213Bi, simulate the decay of the atoms

as in Example 10.1 by dividing time into slices of length δt = 1 s each and on each step doing

the following:

a) For each atom of 209Pb in turn, decide at random, with the appropriate probability, whether

it decays or not. (The probability can be calculated from Eq. (10.3).) Count the total num-

ber that decay, subtract it from the number of 209Pb atoms, and add it to the number of
209Bi atoms.

1

b) Now do the same for 209Tl, except that decaying atoms are subtracted from the total for
209Tl and added to the total for 209Pb.

c) For 213Bi the situation is more complicated: when a 213Bi atom decays you have to de-

cide at random with the appropriate probability the route by which it decays. Count the

numbers that decay by each route and add and subtract accordingly.

Note that you have to work up the chain from the bottom like this, not down from the top, to

avoid inadvertently making the same atom decay twice on a single step.

Keep track of the number of atoms of each of the four isotopes at all times for 20 000 seconds

and make a single graph showing the four numbers as a function of time on the same axes.

Exercise 10.3: Brownian motion

Brownian motion is the motion of a particle, such as a smoke or dust particle, in a gas, as it is

buffeted by random collisions with gas molecules. Make a simple computer simulation of such

a particle in two dimensions as follows. The particle is confined to a square grid or lattice L× L

squares on a side, so that its position can be represented by two integers i, j = 0 . . . L − 1. It

starts in the middle of the grid. On each step of the simulation, choose a random direction—up,

down, left, or right—and move the particle one step in that direction. This process is called a

random walk. The particle is not allowed to move outside the limits of the lattice—if it tries to

do so, choose a new random direction to move in.

Write a program to perform a million steps of this process on a lattice with L = 101 and

make an animation on the screen of the position of the particle. (We choose an odd length for

the side of the square so that there is one lattice site exactly in the center.)

Note: The visual package doesn’t always work well with the random package, but if you

import functions from visual first, then from random, you should avoid problems.

Exercise 10.4: Radioactive decay again

Redo the calculation from Example 10.1, but this time using the faster method described in

the preceding section. Using the transformation method, generate 1000 random numbers from

the nonuniform distribution of Eq. (10.5) to represent the times of decay of 1000 atoms of 208Tl

(which has half-life 3.053 minutes). Then make a plot showing the number of atoms that have

not decayed as a function of time, i.e., a plot as a function of t showing the number of atoms

whose chosen decay times are greater than t.

Hint: You may find it useful to know that the package numpy contains a function sort that

will rearrange the elements of an array in increasing order. That is, “b = sort(a)” returns a

new array b containing the same numbers as a, but rearranged in order from smallest to largest.

Exercise 10.5:

a) Write a program to evaluate the integral in Eq. (10.22) using the “hit-or-miss” Monte Carlo

method of Section 10.2 with 10 000 points. Also evaluate the error on your estimate.

b) Now estimate the integral again using the mean value method with 10 000 points. Also

evaluate the error.

2

You should find that the error is somewhat smaller using the mean value method.

Exercise 10.6: Construct a general proof that the mean value method always does better, or at

least no worse, than the “hit-or-miss” method of Section 10.2, as follows.

a) For an integral of the form (10.27) with f (x) ≥ 0 everywhere in the domain of integration,

show that Eq. (10.23) can be rewritten as

I ≃ (b − a)H〈s〉,
where H is the vertical height of the box enclosing the function to be integrated (so that

the box’s area is A = (b − a)H) and 〈s〉 is the average of variables si defined such that

si = 1 if the ith point in the Monte Carlo procedure was a “hit” (it fell below the curve

of f (x)) and si = 0 if it was a “miss.” Hence argue that the hit-or-miss method will never

be more accurate than the mean value method if the variance of f in Eq. (10.32) satisfies

var(f) ≤ H2 var(s).

b) Show that the variance of a single variable si is var(s) = p(1 − p), where p = I/A as

in Section 10.2. Show further that p = 〈 f 〉/H and H2 var(s) = 〈 f 〉(H − 〈 f 〉) and thus

that the hit-or-miss method will never be the more accurate method if 〈 f (f − H)〉 ≤ 0.

Given that the value of f (x) never falls outside the interval from 0 to H, prove that this

last condition is always true.

The hit-or-miss method can be extended to the case where f (x) is not always positive by adding

a constant onto f (x) large enough to make it always positive, calculating the integral of the

resulting function, then subtracting the constant again at the end. The proof above can be

extended to this case by noting that the variance of f is unaffected by additive constants, and

hence the mean value method is always the more accurate of the two integration methods for

any function, positive or not.

Exercise 10.7: Volume of a hypersphere

This exercise asks you to estimate the volume of a sphere of unit radius in ten dimensions using

a Monte Carlo method. Consider the equivalent problem in two dimensions, the area of a circle

of unit radius:

+1

+1−1

−1

y

x

3

The area of the circle, the shaded area above, is given by the integral

I =
∫∫ +1

−1
f (x, y) dx dy,

where f (x, y) = 1 everywhere inside the circle and zero everywhere outside. In other words,

f (x, y) =

{

1 if x2 + y2 ≤ 1,

0 otherwise.

So if we didn’t already know the area of the circle, we could calculate it by Monte Carlo in-

tegration. We would generate a set of N random points (x, y), where both x and y are in the

range from −1 to 1. Then the two-dimensional version of Eq. (10.33) for this calculation would

be

I ≃ 4

N

N

∑
i=1

f (xi, yi).

Generalize this method to the ten-dimensional case and write a program to perform a Monte

Carlo calculation of the volume of a sphere of unit radius in ten dimensions.

If we had to do a ten-dimensional integral the traditional way, it would take a very long

time. Even with only 100 points along each axis (which wouldn’t give a very accurate result)

we’d still have 10010 = 1020 points to sample, which is impossible on any computer. But using

the Monte Carlo method we can get a pretty good result with a million points or so.

Exercise 10.8: Calculate a value for the integral

I =
∫ 1

0

x−1/2

ex + 1
dx,

using the importance sampling formula, Eq. (10.42), with w(x) = x−1/2, as follows.

a) Show that the probability distribution p(x) from which the sample points should be

drawn is given by

p(x) =
1

2
√

x

and derive a transformation formula for generating random numbers between zero and

one from this distribution.

b) Using your formula, sample N = 1 000 000 random points and hence evaluate the inte-

gral. You should get a value around 0.84.

Exercise 10.9: The Ising model

The Ising model is a theoretical model of a magnet. The magnetization of a magnetic material

is made up of the combination of many small magnetic dipoles spread throughout the material.

If these dipoles point in random directions then the overall magnetization of the system will

be close to zero, but if they line up so that all or most of them point in the same direction then

the system can acquire a macroscopic magnetic moment—it becomes magnetized. The Ising

model is a model of this process in which the individual moments are represented by dipoles

or “spins” arranged on a grid or lattice:

4

In this case we are using a square lattice in two dimensions, although the model can be defined

in principle for any lattice in any number of dimensions.

The spins themselves, in this simple model, are restricted to point in only two directions,

up and down. Mathematically the spins are represented by variables si = ±1 on the points of

the lattice, +1 for up-pointing spins and −1 for down-pointing ones. Dipoles in real magnets

can typically point in any spatial direction, not just up or down, but the Ising model, with

its restriction to just the two directions, captures a lot of the important physics while being

significantly simpler to understand.

Another important feature of many magnetic materials is that the individual dipoles in the

material may interact magnetically in such a way that it is energetically favorable for them

to line up in the same direction. The magnetic potential energy due to the interaction of two

dipoles is proportional to their dot product, but in the Ising model this simplifies to just the

product sisj for spins on sites i and j of the lattice, since the spins are one-dimensional scalars,

not vectors. Then the actual energy of interaction is −Jsisj, where J is a positive interaction

constant. The minus sign ensures that the interactions are ferromagnetic, meaning the energy

is lower when dipoles are lined up. A ferromagnetic interaction implies that the material will

magnetize if given the chance. (In some materials the interaction has the opposite sign so that

the dipoles prefer to be antialigned. Such a material is said to be antiferromagnetic, but we will

not look at the antiferromagnetic case here.)

Normally it is assumed that spins interact only with those that are immediately adjacent to

them on the lattice, which gives a total energy for the entire system equal to

E = −J ∑
〈ij〉

sisj ,

where the notation 〈ij〉 indicates a sum over pairs i, j that are adjacent on the lattice. On the

square lattice we use in this exercise each spin has four adjacent neighbors with which it inter-

acts.

Write a program to perform a Markov chain Monte Carlo simulation of the Ising model on

the square lattice for a system of 20 × 20 spins. You will need to set up variables to hold the

value ±1 of the spin on each lattice site, probably using a two-dimensional integer array, and

then take the following steps.

a) First write a function to calculate the total energy of the system, as given by the equation

above. That is, for a given array of values of the spins, go through every pair of adjacent

spins and add up the contributions sisj from all of them, then multiply by −J. Hint 1:

5

Each unique pair of adjacent spins crops up only once in the sum. Thus there is a term

−Js1s2 if spins 1 and 2 are adjacent to one another, but you do not also need a term −Js2s1.

Hint 2: To make your final program to run in a reasonable amount of time, you will find

it helpful if you can work out a way to calculate the energy using Python’s ability to do

arithmetic with entire arrays at once. If you do the calculation step by step, your program

will be significantly slower.

b) Now use your function as the basis for a Metropolis-style simulation of the Ising model

with J = 1 and temperature T = 1 in units where the Boltzmann constant kB is also 1.

Initially set the spin variables randomly to ±1, so that on average about a half of them

are up and a half down, giving a total magnetization of roughly zero. Then choose a

spin at random, flip it, and calculate the new energy after it is flipped, and hence also

the change in energy as a result of the flip. Then decide whether to accept the flip using

the Metropolis acceptance formula, Eq. (10.60). If the move is rejected you will have to

flip the spin back to where it was. Otherwise you keep the flipped spin. Now repeat this

process for many moves.

c) Make a plot of the total magnetization M = ∑i si of the system as a function of time for a

million Monte Carlo steps. You should see that the system develops a “spontaneous mag-

netization,” a nonzero value of the overall magnetization. Hint: While you are working

on your program, do shorter runs, of maybe ten thousand steps at a time. Once you have

it working properly, do a longer run of a million steps to get the final results.

d) Run your program several times and observe the sign of the magnetization that develops,

positive or negative. Describe what you find and give a brief explanation of what is

happening.

e) Make a second version of your program that produces an animation of the system using

the visual package, with spheres or squares of two colors, on a regular grid, to represent

the up and down spins. Run it with temperature T = 1 and observe the behavior of the

system. Then run it two further times at temperatures T = 2 and T = 3. Explain briefly

what you see in your three runs. How and why does the behavior of the system change

as temperature is increased?

Exercise 10.10: Global minimum of a function

Consider the function f (x) = x2 − cos 4πx, which looks like this:

6

Clearly the global minimum of this function is at x = 0.

a) Write a program to confirm this fact using simulated annealing starting at, say, x = 2,

with Monte Carlo moves of the form x → x + δ where δ is a random number drawn from

a Gaussian distribution with mean zero and standard deviation one. (See Section 10.1.6

for a reminder of how to generate Gaussian random numbers.) Use an exponential cool-

ing schedule and adjust the start and end temperatures, as well as the exponential con-

stant, until you find values that give good answers in reasonable time. Have your pro-

gram make a plot of the values of x as a function of time during the run and have it print

out the final value of x at the end. You will find the plot easier to interpret if you make it

using dots rather than lines, with a statement of the form plot(x,".") or similar.

b) Now adapt your program to find the minimum of the more complicated function f (x) =
cos x + cos

√
2x + cos

√
3x in the range 0 < x < 50.

Hint: The correct answer for part (b) is around x = 16, but there are also competing minima

around x = 2 and x = 42 that your program might find. In real-world situations, it is often

good enough to find any reasonable solution to a problem, not necessarily the absolute best,

so the fact that the program sometimes settles on these other solutions is not necessarily a bad

thing.

Exercise 10.11: The dimer covering problem

A well studied problem in condensed matter physics is the dimer covering problem in which

dimers, meaning polymers with only two atoms, land on the surface of a solid, falling in the

spaces between the atoms on the surface and forming a grid like this:

No two dimers are allowed to overlap. The question is how many dimers we can fit in the

entire L × L square. The answer, in this simple case, is clearly 1
2 L × L, but suppose we did not

know this. (There are more complicated versions of the problem on different lattices, or with

differently shaped elements, for which the best solution is far from obvious, or in some cases

not known at all.)

a) Write a program to solve the problem using simulated annealing on a 50× 50 lattice. The

“energy” function for the system is minus the number of dimers, so that it is minimized

when the dimers are a maximum. The moves for the Markov chain are as follows:

7

i) Choose two adjacent sites on the lattice at random.

ii) If those two sites are currently occupied by a single dimer, remove the dimer from

the lattice.

iii) If they are currently both empty, add a dimer.

iv) Otherwise, do nothing.

Perform an animation of the state of the system over time as the simulation runs.

b) Try exponential cooling schedules with different time constants. A reasonable first value

to try is τ = 10 000 steps. For faster cooling schedules you should see that the solutions

found are poorer—a smaller fraction of the lattice is filled with dimers and there are larger

holes in between them—but for slower schedules the calculation can find quite good, but

usually not perfect, coverings of the lattice.

Exercise 10.12: A random point on the surface of the Earth

Suppose you wish to choose a random point on the surface of the Earth. That is, you want to

choose a value of the latitude and longitude such that every point on the planet is equally likely

to be chosen. In a physics context, this is equivalent to choosing a random vector direction in

three-dimensional space (something that one has to do quite often in physics calculations).

Recall that in spherical coordinates θ, φ the element of solid angle is sin θ dθ dφ, and the total

solid angle in a whole sphere is 4π. Hence the probability of our point falling in a particular

element is

p(θ, φ) dθ dφ =
sin θ dθ dφ

4π
.

We can break this up into its θ part and its φ part thus:

p(θ, φ) dθ dφ =
sin θ dθ

2
× dφ

2π
= p(θ)dθ × p(φ)dφ.

a) What are the ranges of the variables θ and φ? Verify that the two distributions p(θ) and

p(φ) are correctly normalized—they integrate to 1 over the appropriate ranges.

b) Find formulas for generating angles θ and φ drawn from the distributions p(θ) and p(φ).
(The φ one is trivial, but the θ one is not.)

c) Write a program that generates a random θ and φ using the formulas you worked out.

(Hint: In Python the function acos in the math package returns the arc cosine in radians

of a given number.)

d) Modify your program to generate 500 such random points, convert the angles to x, y, z

coordinates assuming the radius of the globe is 1, and then visualize the points in three-

dimensional space using the visual package with small spheres (of radius, say, 0.02).

You should end up with a three-dimensional globe spelled out on the screen in random

points.

Exercise 10.13: Diffusion-limited aggregation

This exercise builds upon Exercise 10.3 on page 457. If you have not done that exercise you

should do it before doing this one.

8

In this exercise you will develop a computer program to reproduce one of the most famous

models in computational physics, diffusion-limited aggregation, or DLA for short. There are var-

ious versions of DLA, but the one we’ll study is as follows. You take a square grid with a

single particle in the middle. The particle performs a random walk from square to square on

the grid until it reaches a point on the edge of the system, at which point it “sticks” to the edge,

becoming anchored there and immovable:

Then a second particle starts at the center and does a random walk until it sticks either to an

edge or to the other particle. Then a third particle starts, and so on. Each particle starts at the

center and walks until it sticks either to an edge or to any anchored particle.

a) Make a copy of the Brownian motion program that you wrote for Exercise 10.3. This will

serve as a starting point for your DLA program. Modify your program to perform the

DLA process on a 101 × 101 lattice—we choose an odd length for the side of the square

so that there is one lattice site exactly in the center. Repeatedly introduce a new particle

at the center and have it walk randomly until it sticks to an edge or an anchored particle.

You will need to decide some things. How are you going to store the positions of the

anchored particles? On each step of the random walk you will have to check the particle’s

neighboring squares to see if they are outside the edge of the system or are occupied

by an anchored particle. How are you going to do this? You should also modify your

visualization code from the Brownian motion exercise to visualize the positions of both

the randomly walking particles and the anchored particles. Run your program for a while

and observe what it does.

b) In the interests of speed, change your program so that it shows only the anchored par-

ticles on the screen and not the randomly walking ones. That way you need update the

pictures on the screen only when a new particle becomes anchored. Also remove any

rate statements that you added to make the animation smooth.

Set up the program so that it stops running once there is an anchored particle in the center

of the grid, at the point where each particle starts its random walk. Once there is a particle

9

at this point, there’s no point running any longer because any further particles added will

be anchored the moment they start out.

Run your program and see what it produces. If you are feeling patient, try modifying

it to use a 201 × 201 lattice and run it again—the pictures will be more impressive, but

you’ll have to wait longer to generate them.

A nice further twist is to modify the program so that the anchored particles are shown

in different shades or colors depending on their age, with the shades or colors changing

gradually from the first particle added to the last.

c) If you are feeling particularly ambitious, try the following. The original version of DLA

was a bit different from the version above—and more difficult to do. In the original ver-

sion you start off with a single anchored particle at the center of the grid and a new particle

starts from a random point on the perimeter and walks until it sticks to the particle in the

middle. Then the next particle starts from the perimeter and walks until it sticks to one of

the other two, and so on. Particles no longer stick to the walls, but they are not allowed

to walk off the edge of the grid.

Unfortunately, simulating this version of DLA directly takes forever—the single anchored

particle in the middle of the grid is difficult for a random walker to find, so you have to

wait a long time even for just one particle to finish its random walk. But you can speed it

up using a clever trick: when the randomly walking particle does finally find its way to

the center, it will cross any circle around the center at a random point—no point on the

circle is special so the particle will just cross anywhere. But in that case we need not wait

the long time required for the particle to make its way to the center and cross that circle.

We can just cut to the chase and start the particle on the circle at a random point, rather

than at the boundary of the grid. Thus the procedure for simulating this version of DLA

is as follows:

i) Start with a single anchored particle in the middle of the grid. Define a variable r

to record the furthest distance of any anchored particle from the center of the grid.

Initially r = 0.

ii) For each additional particle, start the particle at a random point around a circle cen-

tered on the center of the grid and having radius r + 1. You may not be able to start

exactly on the circle, if the chosen random point doesn’t fall precisely on a grid point,

in which case start on the nearest grid point outside the circle.

iii) Perform a random walk until the particle sticks to another one, except that if the

particle ever gets more than 2r away from the center, throw it away and start a new

particle at a random point on the circle again.

iv) Every time a particle sticks, calculate its distance from the center and if that distance

is greater than the current value of r, update r to the new value.

v) The program stops running once r surpasses a half of the distance from the center of

the grid to the boundary, to prevent particles from ever walking outside the grid.

Try running your program with a 101 × 101 grid initially and see what you get.

10

