ME 335 (HEAT TRANSFER), Sections 01 and 02, MWF 9:30-10:30 and 12:30-1:30, 2211 GGB, Fall 2009

WEEK OF SUBJECT READING PROBLEMS September 7 • First Class Wednesday, September 9 1.1 - 1.6 HW #1 •Introduction: Control Volume and Surface, Heat Flux Vector, Mechanisms of Heat Transfer, Energy Conservation Equation September 14 · Energy Equation for Differential Volume, Integral Volume, Combined Integral-2.1 - 2.2 HW # 2 and Differential-Length Volume, and Small-Finite Volume • Work and Energy Conversion: Mechanisms of Energy Conversion, Bounding-September 21 2.3 - 2.5 HW # 3 Surface Thermal Conditions, Methodology for Heat Transfer Analysis • Conduction: Specific Heat and Thermal Conductivity of Matter, September 28 3.1 - 3.3 HW # 4 Steady-State Conduction: Conduction Thermal Resistance October 5 Steady-State Conduction: Composites, Thermal Circuit Analysis, Contact 3.3 HW # 5 Resistance, Conduction-Energy Conversion, Thermoelectric Cooling October 12 • Transient Conduction: Distributed Capacitance Transient, Lumped Capacitance 3.4 - 3.6 HW # 6 Transient October 19 • Monday and Tuesday are Fall Study Days •Surface Radiation: Surface Emission, Interaction of Radiation and Surface, 4.1 - 4.3 Thermal Radiometry • EXAM I (THURSDAY, OCTOBER 22, 6:30-8:00 pm, 220 Chrysler and 1504 G.G. Brown, Covering Chapters 1, 2 and 3: Energy Equation and Conduction) • No Class on Friday October 26 • Surface Radiation: Diffuse-Gray Enclosures, Radiation Resistances, Thermal 4.4 HW # 7 Circuit Analysis, Two- and Three-Surface Enclosures November 2 • Inclusion of Substrate (Steady State, and Lumped Capacitance Transient) 4.6 HW # 8 •Surface Convection (Semi-Bounded Fluid): Flow and Surface Characteristics, Parallel Flow over Semi-Infinite Plate 6.1 - 6.2 • Surface Convection (Semi-Bounded Fluid): Parallel Flow over Semi-Infinite Plate, November 9 6.2 - 6.4 HW # 9 Péclet and Nusselt Numbers, Surface-Convection Resistance, Prandtl and Reynolds Numbers, Parallel Turbulent Flow, Perpendicular Flows November 16 • Surface Convection (Semi-Bounded Fluid): Thermobuoyant Flows, Liquid-Vapor 6.5 - 6.8 HW # 10 Phase Change, Nusselt Number Correlations, Inclusion of Substrate and Extended Surfaces November 23 • Surface Convection (Bounded Fluid): Flow and Surface Characteristics, Tube 7.1 - 7.2 Flow and Heat Transfer • Thanksgiving Recess, November 25-26 November 30 • Surface Convection (Bounded Fluid): Fluid Temperature Variation along Tube, 7.3 HW # 11 Average Convection Resistance, Nusselt Number for Laminar and Turbulent Flows in Tubes, Entrance Effects, Phase Change, Other Geometries • EXAM II (THURSDAY, DECEMBER 3, 6:30-8:00 pm, 220 Chrysler and 1504 G.G. Brown, Covering Chapters 4 and 6: Surface Radiation, and Surface **Convection: Semi-Bounded Fluid)** · No Class on Friday

DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY OF MICHIGAN

December 7	• Surface Convection (Bounded Fluid): Nusselt Number Correlations, Hydraulic Diameter, Particle Diameter (Large Surface-Convection Area,), Inclusion of Substrate, Inclusion of Substrate, Heat Exchangers (Two Fluid Steams)	7.4 - 7.6	HW # 12
December 14	 Selection of Heat Transfer Media and Bounding Surfaces: Primary Thermal Functions of Media and Surfaces, Review, Course Evaluation Classes End, Monday, December 14 	8.1 - 8.2	
	•FINAL EXAM (Covering Chapters 1, 2, 3, 4, 6 and 7: all Materials) Monday, DECEMBER 21, 8:00-10:00 AM		
Instructor: GSI:	Massoud Kaviany, 3108 G.G. Brown, Phone: 936-0402, e-mail: <u>kaviany@umich.edu</u> Jedo Kim, 764-3487 e-mail: <u>jedokim@umich.edu</u>		
Office hours:	Massoud Kaviany: Tu and Th 12:30 - 1:30 PM, 3108 GGB, and by Appointment Jedo Kim: M: 5:00 - 7:00 PM and Tu: 5:00 -7:00 PM, 1504 GGB		
Grade Policy:	HW: 20%, Exam I: 20%, Exam II: 20%, Final Exam: 40% The average grade for the class is B+		
Textbook:	Principles of Heat Transfer, M. Kaviany, Wiley, 2001, ISBN 0-471-43463-9 (make sure to have the latest printing which has 1007 numbered pages and is available in local bookstores)		
	Please briefly browse over the day's topic before the class and bring your book to class		
Homework:	Will be collected every Wednesday , Solutions are posted every Wednesday on Class Website Class Website : http://www.engin.umich.edu/class/me335/		
Exams	Open book, up to four pages (two 8.5x11 inch sheets) of summary notes, and a calculator (no other notes and homework solutions and no computer)		
Course Profile:	ME 335 Course Profile (Including Objectives and Outcomes) is posted at http://me-web.engin.umich.edu:8282/ME/CommitteesGroups/abet/printviewprofile?catNumber=335		