Quantized Black Hole Charges and Freudenthal Duality

M. J. Duff
Blackett Laboratory, Imperial College, London

October 2013
University of Michigan

Summary

Freudenthal duality

F-dual: A discrete symmetry transformation $x \rightarrow \tilde{x}$, of a Freudenthal triple system x for which $\tilde{\tilde{x}}=-x$, preserving the quartic invariant $\Delta(x)$.

Originally introduced as a symmetry of extremal black holes in supergravity
[L. Borsten, D. Dahanayake, M. J. Duff, and W. Rubens, arXiv:0903.5517]

Other applications

- Generalised to a full symmetry of black hole potential [Ferrara, Marrani, Yeranyan, arXiv:1102.4857]
- The attractor mechanism [Ortin, Shahbazi, arXiv:1206.3190]

■ Freudenthal gauge theory [Marrani, Qiu, Shih, Tagliaferro, Zumino, arXiv:1208.0013]

- Symmetry of supergravity [Borsten, Duff, Ferrara, Marrani arXiv1212.3254]

Summary

The Framework

- In quantum theory, charges are quantized
- We exploit the mathematical framework of integral Jordan algebras, the integral Freudenthal triple system and, in particular, the work of Krutelevich.
- [Krutelevich, J. Algebra (2002); J. Algebra (2007), arXiv:math/0411104]

Extremal Black Holes

Einstein-Maxwell System

- Einstein-Maxwell action and e.o.m:

$$
\begin{gathered}
S\left[g_{\mu \nu}, A_{\mu}\right]=\frac{1}{16 \pi} \int d^{4} \times \sqrt{|g|}\left[R-\frac{1}{4} F^{2}\right] \\
R_{\mu \nu}=\frac{1}{2}\left[F_{\mu}^{\rho} F_{\nu \rho}-\frac{1}{4} F^{2}\right]
\end{gathered}
$$

Reissner-Nordstöm Black Hole

$$
\begin{gathered}
d s^{2}=-\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2} \\
r_{ \pm}=M \pm \sqrt{M^{2}-Q^{2}} \\
Q=\frac{1}{16 \pi} \int_{S_{\infty}^{2}} \star F
\end{gathered}
$$

Quantum Black Holes

RN Black Hole Thermodynamics

Hawking temperature:

$$
T_{\mathrm{H}}=\frac{\sqrt{M^{2}-Q^{2}}}{2 \pi\left(M+\sqrt{M^{2}-Q^{2}}\right)}
$$

Bekenstein-Hawking entropy:

$$
S_{\mathrm{BH}}=\pi\left(M+\sqrt{M^{2}-Q^{2}}\right)^{2}
$$

The Extremal Limit: $M \rightarrow Q$

- Horizons collapse $r_{+}=r_{-}$.
- Stable against Hawking radiation $T_{\mathrm{H}} \rightarrow 0$
- But, have non-vanishing entropy $S_{B H}=\pi Q^{2}$

These special properties allow one derive the entropy quantum mechanically using string theory.

Supergravity

$\mathcal{N}=8$

- $\mathcal{N}=8$ single supermultiplet has bosonic sector

$$
g_{\mu \nu}, \quad 70 \phi, \quad 28 C_{\mu}
$$

- Scalars parametrise a homogeneous space

$$
\frac{G_{4}}{H_{4}}=\frac{E_{7(7)}}{S U(8)}
$$

- EOM invariant under G_{4}, the U-duality group
- The fields strengths plus their duals transform linearly as the 56 of E_{7}

Generic supergravity

- Scalars may or may not parametrise a homogeneous space $\frac{G_{4}}{H_{4}}$
- EOM invariant under G_{4}, the U-duality group
- The fields strengths plus their duals transform linearly under G_{4}

Extremal Black Holes in supergravity

■ Solutions similar to Reissner-Nordström, but

- More electromagnetic charges in the game (56 in the $\mathcal{N}=8$ case)

$$
p^{a}=\frac{1}{4 \pi} \int_{\mathcal{S}^{2}} F^{a}, \quad q_{a}=\frac{1}{4 \pi} \int_{\mathcal{S}^{2}} G_{a}, \quad Q=\binom{p^{a}}{q_{a}}
$$

- There are also scalar equations of motion
- Extremal solutions "attractor mechanism" kicks in: the scalars at the horizon must be fixed in terms of the charges independent of their asymptotic values. [Ferrara:1995, Strominger:1996, Ferrara:1996, Ferrara:1996, Ferrara:1997]; the horizon area loses all memory of the scalars and is a (non-polynomial) quadratic function of only the charges, just as in the Reissner-Nordström case.
- The entropy is given by a quartic U-duality invariant $\Delta(p, q)$,

$$
S_{\mathrm{BH}}=\pi \sqrt{|\Delta(p, q)|} .
$$

Cubic Jordan algebras

Jordan Algebras

A Jordan algebra \mathfrak{J} is vector space defined over a ground field \mathbb{F} equipped with a bilinear product satisfying [Jordan:1933]

$$
X \circ Y=Y \circ X, \quad X^{2} \circ(X \circ Y)=X \circ\left(X^{2} \circ Y\right), \quad \forall X, Y \in \mathfrak{J}
$$

Cubic Jordan algebras

Jordan Algebras

A Jordan algebra \mathfrak{J} is vector space defined over a ground field \mathbb{F} equipped with a bilinear product satisfying [Jordan:1933]

$$
X \circ Y=Y \circ X, \quad X^{2} \circ(X \circ Y)=X \circ\left(X^{2} \circ Y\right), \quad \forall X, Y \in \mathfrak{J}
$$

Cubic Jordan Algebras

Let V be a vector space equipped with a cubic norm and a base point:

- A cubic form:

$$
\begin{aligned}
N_{3}: V & \rightarrow \mathbb{R} \quad \text { s.t. } \quad N_{3}(\alpha X)=\alpha^{3} N_{2}(X) \quad \forall \alpha \in \mathbb{R}, X \in V, \\
N_{3}(X, Y, Z)= & N_{3}(X+Y+Z)-N_{3}(X+Y)-N_{3}(Y+Z)-N_{3}(X+Z) \\
& +N_{3}(X)+N_{3}(Y)+N_{3}(Z)
\end{aligned}
$$

is trilinear.

Cubic Jordan algebras

Jordan Algebras

A Jordan algebra \mathfrak{J} is vector space defined over a ground field \mathbb{F} equipped with a bilinear product satisfying [Jordan:1933]

$$
X \circ Y=Y \circ X, \quad X^{2} \circ(X \circ Y)=X \circ\left(X^{2} \circ Y\right), \quad \forall X, Y \in \mathfrak{J}
$$

Cubic Jordan Algebras

Let V be a vector space equipped with a cubic norm and a base point:

- A cubic form:

$$
\begin{aligned}
N_{3}: V & \rightarrow \mathbb{R} \quad \text { s.t. } \quad N_{3}(\alpha X)=\alpha^{3} N_{2}(X) \quad \forall \alpha \in \mathbb{R}, X \in V, \\
N_{3}(X, Y, Z)= & N_{3}(X+Y+Z)-N_{3}(X+Y)-N_{3}(Y+Z)-N_{3}(X+Z) \\
& +N_{3}(X)+N_{3}(Y)+N_{3}(Z)
\end{aligned}
$$

is trilinear.

- A base point: element $c \in V$ satisfying $N_{3}(c)=1$.

The Freudenthal triple system

Freudenthal triple system over a Jordan algebra \mathfrak{J} [Freudenthal:1954,Brown:1969]:

$$
\begin{gathered}
\mathfrak{F}(\mathfrak{J})=\mathbb{R} \oplus \mathbb{R} \oplus \mathfrak{J} \oplus \mathfrak{J} \\
x=\left(\begin{array}{ll}
\alpha & A \\
B & \beta
\end{array}\right), \quad \text { where } \alpha, \beta \in \mathbb{R} \quad \text { and } \quad A, B \in \mathfrak{J} .
\end{gathered}
$$

Defining relations

[1 Quadratic form $\{\bullet, \bullet\}: \mathfrak{F}(\mathfrak{J}) \times \mathfrak{F}(\mathfrak{J}) \rightarrow \mathbb{R}$

$$
\{x, y\}=\alpha \delta-\beta \gamma+\operatorname{Tr}(A, C)-\operatorname{Tr}(B, D), \quad \text { where } \quad x=\left(\begin{array}{ll}
\alpha & A \\
B & \beta
\end{array}\right), y=\left(\begin{array}{cc}
\gamma & C \\
D & \delta
\end{array}\right) .
$$

E Quartic form $\Delta: \mathfrak{F}(\mathfrak{J}) \rightarrow \mathbb{R}$

$$
\Delta(x)=-(\alpha \beta-\operatorname{Tr}(A, B))^{2}-4\left[\alpha N(A)+\beta N(B)-\operatorname{Tr}\left(A^{\sharp}, B^{\sharp}\right)\right] .
$$

B Triple product $T: \mathfrak{F}(\mathfrak{J}) \times \mathfrak{F}(\mathfrak{J}) \times \mathfrak{F}(\mathfrak{J}) \rightarrow \mathfrak{F}(\mathfrak{J})$ which is uniquely defined by

$$
\{T(x, y, w), z\}=2 \Delta(x, y, w, z)
$$

FTS symmetries

Automorphism group

$$
\begin{aligned}
\operatorname{Aut}(\mathfrak{F}):=\{\sigma \mid\{\sigma x, \sigma y\} & =\{x, y\}, \quad \Delta(\sigma x, \sigma y, \sigma z, \sigma w)=\Delta(x, y, z, w)\} \\
\Rightarrow & T(\sigma x, \sigma y, \sigma z)=\sigma T(x, y, z)
\end{aligned}
$$

\mathfrak{J}_{3}	Stro(${ }_{3}$)	$\operatorname{Aut}(\mathfrak{F}(\mathfrak{J} 3))$	$\operatorname{dim} \mathfrak{F}\left(\mathfrak{J}_{3}\right)$
R	-	$S L(2, \mathbb{R})$	4
$\mathbb{R} \oplus \mathbb{R}$	$\mathrm{SO}(1,1 ; \mathbb{R})$	$[S L(2, \mathbb{R})]^{2}$	6
$\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$	$[\mathrm{SO}(1,1 ; \mathbb{R})]^{2}$	$[\mathrm{SL}(2, \mathbb{R})]^{3}$	8
$\mathbb{R} \oplus \Gamma_{1, n-1}$	$\mathrm{SO}(1,1 ; \mathbb{R}) \times \mathrm{SO}(1, n-1 ; \mathbb{R})$	$\mathrm{SL}(2, \mathbb{R}) \times \mathrm{SO}(2, n ; \mathbb{R})$	$2 n+4$
$\mathbb{R} \oplus \Gamma_{5, n-5}$	$\mathrm{SO}(1,1 ; \mathbb{R}) \times \mathrm{SO}(5, n-5 ; \mathbb{R})$	$\mathrm{SL}(2, \mathbb{R}) \times \mathrm{SO}(6, n ; \mathbb{R})$	$2 n+12$
$J_{3}^{\mathbb{R}}$	$\mathrm{SL}(3, \mathrm{R})$	$\mathrm{Sp}(6, \mathbb{R})$	14
$J_{3}^{\text {C }}$	SL($3, \mathbb{C}$)	$\mathrm{SU}(3,3 ; \mathbb{R})$	20
$J_{3}^{3 H}$	$\mathrm{SU}^{\star}(6, \mathbb{R})$	SO* $(12, \mathbb{R})$	32
J_{3}^{0}	$E_{6(-26)}(\mathbb{R})$	$E_{7(-25)}(\mathbb{R})$	56
$J_{3}{ }^{\text {ºs }}$	$E_{6(6)}(\mathbb{R})$	$E_{7(7)}(\mathbb{R})$	56

FTS symmetries

The automorphism group is generated by [Brown: 1969]:

$$
\begin{aligned}
\phi(W):\left(\begin{array}{ll}
\alpha & X \\
Y & \beta
\end{array}\right) & \mapsto\left(\begin{array}{cc}
\alpha+(Y, W)+\left(X, W^{\sharp}\right)+\beta N(W) & X+\beta W \\
Y+X \times W+\beta W^{\sharp} & \beta
\end{array}\right), \\
\psi(Z):\left(\begin{array}{cc}
\alpha & X \\
Y & \beta
\end{array}\right) & \mapsto\left(\begin{array}{cc}
\alpha & X+Y \times Z+\alpha Z^{\sharp} \\
Y+\alpha Z & \beta+(X, Z)+\left(Y, Z^{\sharp}\right)+\alpha N(Z)
\end{array}\right), \\
T(s):\left(\begin{array}{cc}
\alpha & X \\
Y & \beta
\end{array}\right) & \mapsto\left(\begin{array}{cc}
\lambda^{-1} \alpha & s(X) \\
s^{\prime-1}(Y) & \lambda \beta
\end{array}\right) .
\end{aligned}
$$

Ranks

Natural, Aut invariant rank conditions:

$$
\begin{aligned}
& \operatorname{Rank} x=1 \Leftrightarrow 3 T(x, x, y)+\{x, y\} x=0 \quad \forall y \in \mathfrak{F} ; \\
& \operatorname{Rank} x=2 \Leftrightarrow T(x, x, x)=0, \quad \exists y \quad \text { s.t. } \quad 3 T(x, x, y)+\{x, y\} x=0 \neq 0 ; \\
& \operatorname{Rank} x=3 \Leftrightarrow \Delta(x)=0, \quad T(x, x, x) \neq 0 ; \\
& \operatorname{Rank} x=4 \Leftrightarrow \Delta(x) \neq 0 .
\end{aligned}
$$

$\mathfrak{F}^{0^{5}}:$ black holes

- In the classical supergravity limit the 28+28 electric/magnetic black hole charges $x_{I}(I=1, \ldots, 56)$ transform as the fundamental 56 of the continuous U-duality group $E_{7(7)}(\mathbb{R})$. Under $S O(1,1 ; \mathbb{R}) \times E_{6(6)}(\mathbb{R})$ the 56 breaks as

$$
56 \rightarrow 1_{3}+1_{-3}+27_{1}+27^{\prime}{ }_{-1}
$$

The charges may be represented as $x \in \mathfrak{F}\left(\mathfrak{J}_{3}^{\mathbf{O}^{\boldsymbol{s}}}\right)=\mathfrak{F}^{\mathbf{0}^{\boldsymbol{s}}}$,

$$
x=\left(\begin{array}{cc}
-q_{0} & P \\
Q & p^{0}
\end{array}\right), \quad \text { where } \quad q_{0}, p^{0} \in \mathbb{R} \quad \text { and } \quad Q, P \in \mathfrak{J}_{3}^{0^{s}} .
$$

Here, p^{0}, q_{0} are the graviphotons and P, Q are the magnetic/electric 27^{\prime} and 27.

- Leading order black hole entropy:

$$
S_{D=4, \mathrm{BH}}=\pi \sqrt{|\Delta(x)|} \quad\left(\Delta=1 \in[\mathbf{5 6} \times \mathbf{5 6 \times 5 6 \times 5 6}]_{s}\right)
$$

Black hole charge orbits

Rank	Rank cond. non-vanishing	Rep state	Orbit	dim	SUSY
1	x	$\left(\begin{array}{lc}1 & (0,0,0 \\ 0 & 0\end{array}\right)$	$\frac{E_{7(7)}(\mathbb{R})}{E_{6(6)}(\mathbb{R}) \ltimes \mathbb{R}^{27}}$	28	1/2
2	$3 T(x, x, y)+x\{x, y\}$	$\left(\begin{array}{ll}1 & (1,0,0) \\ 0 & 0\end{array}\right)$	$\frac{E_{7(7)}(\mathbb{R})}{O(6,5 ; \mathbb{R}) \ltimes \mathbb{R}^{32} \times \mathbb{R}}$	45	1/4
3	$T(x, x, x)$	$\left(\begin{array}{ll}0 & (1,1,1) \\ 0 & 0\end{array}\right)$	$\frac{E_{7(7)}(\mathbb{R})}{F_{4(4)}(\mathbb{R}) \ltimes \mathbb{R}^{26}}$	55	1/8
4	$\Delta(x)>0$	$\left(\begin{array}{ll}1 & (1,1, k \\ 0 & 0\end{array}\right)$	$\frac{E_{7(7)}(\mathbb{R})}{E_{6(2)}(\mathbb{R})}$	55	1/8
4	$\Delta(x)<0$	$\left(\begin{array}{lll}1 & (1,1,-k) \\ 0 & 0\end{array}\right)$	$\frac{E_{7(7)}(\mathbb{R})}{E_{6(6)}(\mathbb{R})}$	55	0

[Ferrara, Gunaydin: hep-th/9708025; Lu, Pope, Stelle: hep-th/9708109] [Sukuzawa: 2006; LB, Duff, Ferrara, Marrani, Rubens: arXiv:1108.0424, arXiv:1108.0908]

Generalisations

■ This Jordan algebra and FTS framework can be use to classify the black holes of a large number of theories
[Ferrara, Günaydin:hep-th/0606108; Bellucci, Ferrara, Günaydin, Marrani:hep-th/0606209]
■ In particular $D=4, \mathcal{N}=2$ theories which arise from compactifying type II string theory on a Calabi-Yau

- See "Small Orbits" and "Explicit Orbit Classification of Reducible Jordan Algebras and Freudenthal Triple Systems"
[LB, Duff, Ferrara, Marrani, Rubens: arXiv:1108.0424, arXiv:1108.0908]

QUBITS

BLACK HOLES

- $N=$ number of charges / number of kets

Freudenthal duality of black holes in supergravity with U-duality of type E_{7}

Definition

$$
\sim: \mathfrak{F} \rightarrow \mathfrak{F} \quad x \mapsto \tilde{x}=\frac{T(x, x, x)}{\sqrt{|\Delta(x)|}}
$$

Key properties

$$
\begin{aligned}
\{\tilde{x}, x\} & =2 \operatorname{sgn}(\Delta) \sqrt{|\Delta(x)|} \\
\tilde{\tilde{x}} & =-x \\
\Delta(\tilde{x}) & =\Delta(x)
\end{aligned}
$$

\Rightarrow The F-dual is a nonlinear transformation acting on the black hole charges which leaves the leading order Bekenstein-Hawking entropy invariant.

Quantization of charges

Dirac-Schwinger-Zwanziger quantization

Dirac-Schwinger-Zwanziger quantization condition for two dyons $x=\left(q_{I}, p^{\prime}\right)$ and $x^{\prime}=\left(\tilde{q}_{I}, \tilde{p}^{\prime}\right)$:

$$
\frac{1}{2}\left[p^{\prime} \tilde{q}_{I}-\tilde{p}^{\prime} q_{l}\right] \in \mathbb{Z}
$$

The charges live on an lattice and the U-duality is broken to a discrete subgroup

$$
G_{4}(\mathbb{R}) \rightarrow G_{4}(\mathbb{Z})
$$

Example: M-theory on a 7-torus

$D=4, \mathcal{N}=8$ sugra has U-duality group $E_{7(7)}(\mathbb{R})$: gets broken by stringy corrections

$$
E_{7(7)}(\mathbb{Z})
$$

Fundamental symmetry of M-theory [Hull, Townsend: hep-th/9410167]
DSZ in FTS language

$$
\left\{x, x^{\prime}\right\} \in \mathbb{Z}
$$

[LB, Dahanayake, Duff, W. Rubens: arXiv:0903.5517]

Quantization of charges: Implications

Integral FTS

- The integral charges implies we must use an "integeral FTS"

$$
\mathfrak{F}(\mathbb{R}) \rightarrow \mathfrak{F}(\mathbb{Z})
$$

based on integral Jordan algebra $\mathfrak{J}(\mathbb{Z})$

- Notion made precise by S. Krutelevich
- We focus on the $\mathcal{N}=8$ with $E_{7(7)}(\mathbb{Z})$ symmetry theory hereafter
[Krutelevich, J. Algebra (2002); J. Algebra (2007), arXiv:math/0411104]
[LB, Dahanayake, Duff, W. Rubens: arXiv:0903.5517]
[LB et al: arXiv:1002.4223]

The integral FTS

Integral Freudenthal triple system $\mathfrak{F}^{\mathrm{O}_{\mathbb{Z}}^{s}}$
The integral Freudenthal triple system $\mathfrak{F}^{O_{\mathbb{Z}}^{s}}$ provides a natural model for $E_{7(7)}(\mathbb{Z})$ acting on lattice of charges [Krutelevich: 2004].

- The quantized black hole charge vector is given by,

$$
x=\left(\begin{array}{cc}
-q_{0} & P \\
Q & p^{0}
\end{array}\right), \quad \text { where } \quad q_{0}, p^{0} \in \mathbb{Z} \quad \text { and } \quad Q, P \in \mathfrak{J}_{3}^{0_{\mathbb{Z}}^{\mathbf{s}}} .
$$

- Here \mathfrak{J} is given by

$$
Q=\left(\begin{array}{lll}
q_{1} & Q_{s} & \overline{Q_{c}} \\
Q_{s} & q_{2} & Q_{v} \\
Q_{c} & \overline{Q_{v}} & q_{3}
\end{array}\right), \quad \text { where } \quad q_{1}, q_{2}, q_{3} \in \mathbb{Z} \quad \text { and } \quad Q_{v, s, c} \in \mathbb{O}_{\mathbb{Z}}^{s} .
$$

Integral black hole canonical form

Canonical form

Every element $x \in \mathfrak{F}^{O_{\mathbb{Z}}^{s}}$ is $E_{7(7)}(\mathbb{Z})$ equivalent to a diagonally reduced canonical form,

$$
x_{\text {can }}=\alpha\left(\begin{array}{cc}
1 & k \operatorname{diag}(1, I, I m) \\
0 & j
\end{array}\right), \quad \text { where } \quad \alpha>0 .
$$

Canonical quartic norm

$$
\Delta(x)=-\left(j^{2}+4 k^{3} I^{2} m\right) \alpha^{4} \quad \Rightarrow \quad \Delta(x) \in\{0,1\} \quad \bmod 4
$$

Square of the horizon area is quantized!

- Proof [Krutelevich: 2004]

Integral black hole canonical form

- Given a discrete subgroup $G(\mathbb{Z}) \subset G$ we can define new invariants:

$$
\operatorname{gcd}(\mathbf{r e p})
$$

$$
\begin{aligned}
& d_{1}(x):=\operatorname{gcd}(x), \\
& d_{2}(x):=\operatorname{gcd}(3 T(x, x, y)+\{x, y\} x), \forall y \\
& d_{3}(x):=\operatorname{gcd}(T(x, x, x)), \\
& d_{4}(x):=\Delta(x) .
\end{aligned}
$$
\]

plus one more

$$
d_{4}^{\prime}(x):=\operatorname{gcd}(x \wedge T(x))
$$

- Insufficient to fix the can form!

$$
\alpha\left(\begin{array}{cc}
1 & (0,0,0) \\
(0,0,0) & j
\end{array}\right), \quad \alpha\left(\begin{array}{cc}
1 & (j, 0,0) \\
(0,0,0) & j
\end{array}\right)
$$

- However, in particular sub-cases they do the job.
$>1 / 8-\mathrm{BPS}$ and projective black holes.

$>1 / 8-\mathrm{BPS}$ black hole orbits

Assuming $>1 / 8$-BPS (Rank <3) improved canonical form:
Every element $x \in \mathfrak{F}^{O_{\mathbb{Z}}^{s}}$ is $E_{7(7)}(\mathbb{Z})$ equivalent to a diagonally reduced canonical form,

$$
x_{\text {can }}=\alpha\left(\begin{array}{cc}
1 & k \operatorname{diag}(1,0,0) \\
0 & 0
\end{array}\right), \quad \text { where } \quad \alpha>0
$$

- Uniquely fixed by: $d_{1}(x):=\operatorname{gcd}(x), d_{2}(x):=\operatorname{gcd}(3 T(x, x, y)+\{x, y\} x), \forall y$ since $d_{1}\left(x_{\text {can }}\right)=\alpha$ and $d_{2}\left(x_{\text {can }}\right)=2 \alpha^{2} k$.
$>1 / 8$-BPS $($ Rank $<3)$ black hole orbit classification:
1 The complete set of distinct $1 / 2$-BPS charge vector orbits is given by,

$$
\left\{\left(\begin{array}{ll}
\alpha & 0 \\
0 & 0
\end{array}\right), \quad \text { where } \quad \alpha>0\right\}
$$

- The complete set of distinct $1 / 4$-BPS charge vector orbits is given by,

$$
\left\{\alpha\left(\begin{array}{cc}
1 & k(1,0,0) \\
0 & 0
\end{array}\right), \quad \text { where } \quad \alpha, k>0\right\} .
$$

Projective black holes

The concept of a projective element was originally introduced for the case $\mathfrak{J}_{3}=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ by Manjul Bhargava (2004) in the context of generalising Gauss's composition law for quadratic forms.

An element x is said to be projective if its U-duality orbit contains a diagonal reduced element

$$
x=\left(\begin{array}{cc}
\alpha & \left(X_{1}, X_{2}, X_{3}\right) \\
0 & \beta
\end{array}\right)
$$

satisfying

$$
\begin{aligned}
& \operatorname{gcd}\left(\alpha X_{1}, \alpha \beta, X_{2} X_{3}\right)=1 ; \\
& \operatorname{gcd}\left(\alpha X_{2}, \alpha \beta, X_{1} X_{3}\right)=1 ; \\
& \operatorname{gcd}\left(\alpha X_{3}, \alpha \beta, X_{1} X_{2}\right)=1 .
\end{aligned}
$$

Projective black hole canonical form

Any projective element x is U-duality equivalent to an element (Krutelevich:2004):

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & (1,1, m) \\
(0,0,0) & j
\end{array}\right) \\
j \in\{0,1\}, m \in \mathbb{Z}
\end{gathered}
$$

where the values of m and j are uniquely determined by $\Delta(x)=-(j+4 m)$.

- When Δ is odd, $d_{3}(x)=1$ iff x is projective

In the projective case all black holes with the same quartic norm and hence lowest order entropy are U-duality related.

Implications for F-duality

Reminder: F-duality

$$
\sim: \mathfrak{F} \rightarrow \mathfrak{F} \quad x \mapsto \tilde{x}=\frac{T(x, x, x)}{\sqrt{|\Delta(x)|}}
$$

${ }^{* *}$ Not every black hole admits a well defined F-dual**

Necessary and sufficient conditions

- Requiring that \tilde{x} is integer therefore restricts us to that subset of black holes for which $|\Delta(x)|$ is a perfect square and for which $|\Delta(x)|^{1 / 2}$ divides $T(x)$:

$$
d_{4}(x)=\left[\frac{d_{3}(x)}{d_{1}(\tilde{x})}\right]^{2}=\left[\frac{d_{3}(\tilde{x})}{d_{1}(x)}\right]^{2}=d_{4}(\tilde{x})
$$

where $d_{1}(x)=\operatorname{gcd}(x), d_{3}(x)=\operatorname{gcd}(T(x))$ and $d_{4}(x)=|\Delta(x)|$.

Implications for F-duality

Discrete invariants under F-duality

- Not all discrete U-duality invariants are F-dual invariant
- For example, the product $d_{1}(x) d_{3}(x)$ is invariant but $d_{1}(x)$ and $d_{3}(x)$ separately need not be.
- However not only $d_{4}(x)$ but also $d_{2}(x), d_{2}^{\prime}(x)$ and $d_{4}^{\prime}(x)$ are F-dual invariant.
- The invariance of $d_{4}^{\prime}(x)$ follows from

$$
\begin{aligned}
\tilde{x} \wedge T(\tilde{x}) & =T(x)|\Delta|^{-1 / 2} \wedge T\left(T(x)|\Delta|^{-1 / 2}\right) \\
& =-|\Delta|^{-2} T(x) \wedge \Delta^{2} x \\
& =\operatorname{sgn}(\Delta) x \wedge T(x)
\end{aligned}
$$

and, hence, $d_{4}^{\prime}(x)=d_{4}^{\prime}(\tilde{x})$.

- Since corrections to the black hole can depend on the discrete invariants whether F-duality preserves the entropy to all orders is an open question.

Implications for F-duality

Comments

- Large class of F-dual black holes
- We don't know how they are characterised

■ Projective black holes:
In the projective case all black holes with the same quartic norm and hence lowest order entropy are U-duality related.

- Non-projective black holes:

Non-projective black holes related by an F-duality not conserving d_{1} provide examples of configurations with the same quartic norm and hence lowest order entropy that are definitely not U-duality related,

- But more surprisingly

Non-projective black holes related by an F-duality conserving d_{1} provide examples of configurations with the same quartic norm, and same discrete invariants, that are apparently not U-duality related

Open questions

- Is it possible that the full space of 4-dimensional orbits could be resolved if the complete list of independent arithmetic invariants was known?
- To proceed further, it would serve us well to have a full classification of the independent $E_{7(7)}(\mathbb{Z})$ arithmetic invariants.
■ When is Δ a perfect square?
- Can the class of black holes admitting an F-dual be classified in a useful way?
- If so what is its physical significance?

■ Does the F-dual leave the entropy invariant to all orders? Requires a U-duality invariant black hole entropy formula for arbitrary charges
For $d_{2}(x)=1$ (almost, but not quite, projectivity) entropy is determined by $d_{4}^{\prime}(x)$ and $\Delta(x)$ [Sen: 0804.0651; Sen: 0908.0039] [Bianchi, Ferrara, Kallosh; 0912.0057, 0910.3674]

- Promote to symmetry of supergravity Lagrangians? YES! [Borsten, Duff, Ferrara, Marrani arXiv1212.3254]

