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Summary

Freudenthal duality

F-dual: A discrete symmetry transformation x → x̃ , of a Freudenthal triple system x
for which ˜̃x = −x , preserving the quartic invariant ∆(x).

Originally introduced as a symmetry of extremal black holes in supergravity
[L. Borsten, D. Dahanayake, M. J. Duff, and W. Rubens, arXiv:0903.5517]

Other applications

Generalised to a full symmetry of black hole potential [Ferrara , Marrani,
Yeranyan, arXiv:1102.4857]

The attractor mechanism [Ortin, Shahbazi, arXiv:1206.3190]

Freudenthal gauge theory [Marrani, Qiu, Shih, Tagliaferro, Zumino,
arXiv:1208.0013]

Symmetry of supergravity [Borsten, Duff, Ferrara, Marrani arXiv1212.3254]



Summary

The Framework

In quantum theory, charges are quantized

We exploit the mathematical framework of integral Jordan algebras, the integral
Freudenthal triple system and, in particular, the work of Krutelevich.

[Krutelevich, J. Algebra (2002); J. Algebra (2007), arXiv:math/0411104]



Extremal Black Holes

Einstein-Maxwell System

Einstein-Maxwell action and e.o.m:
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Quantum Black Holes

RN Black Hole Thermodynamics

Hawking temperature:

TH =

√
M2 − Q2

2π(M +
√

M2 − Q2)

Bekenstein-Hawking entropy:

SBH = π(M +
√

M2 − Q2)2

The Extremal Limit: M → Q

Horizons collapse r+ = r−.

Stable against Hawking radiation TH → 0

But, have non-vanishing entropy SBH = πQ2

These special properties allow one derive the entropy quantum mechanically
using string theory.



Supergravity

N = 8

N = 8 single supermultiplet has bosonic sector

gµν , 70φ, 28Cµ

Scalars parametrise a homogeneous space

G4

H4
=

E7(7)

SU(8)

EOM invariant under G4, the U-duality group

The fields strengths plus their duals transform linearly as the 56 of E7

Generic supergravity

Scalars may or may not parametrise a homogeneous space G4
H4

EOM invariant under G4, the U-duality group

The fields strengths plus their duals transform linearly under G4



Extremal Black Holes in supergravity

Solutions similar to Reissner–Nordström, but

More electromagnetic charges in the game (56 in the N = 8 case)

pa =
1
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∫
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∫
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)
There are also scalar equations of motion

Extremal solutions “attractor mechanism” kicks in: the scalars at the horizon
must be fixed in terms of the charges independent of their asymptotic values.
[Ferrara:1995, Strominger:1996, Ferrara:1996, Ferrara:1996, Ferrara:1997]; the
horizon area loses all memory of the scalars and is a (non-polynomial) quadratic
function of only the charges, just as in the Reissner–Nordström case.

The entropy is given by a quartic U-duality invariant ∆(p, q),

SBH = π
√
|∆(p, q)|.



Cubic Jordan algebras

Jordan Algebras

A Jordan algebra J is vector space defined over a ground field F equipped with a
bilinear product satisfying [Jordan:1933]

X ◦ Y = Y ◦ X , X 2 ◦ (X ◦ Y ) = X ◦ (X 2 ◦ Y ), ∀ X ,Y ∈ J.

Cubic Jordan Algebras

Let V be a vector space equipped with a cubic norm and a base point:

A cubic form:

N3 : V → R s.t. N3(αX ) = α3N2(X ) ∀α ∈ R,X ∈ V ,

N3(X ,Y ,Z) =N3(X + Y + Z)− N3(X + Y )− N3(Y + Z)− N3(X + Z)

+ N3(X ) + N3(Y ) + N3(Z)

is trilinear.

A base point: element c ∈ V satisfying N3(c) = 1.
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The Freudenthal triple system

Freudenthal triple system over a Jordan algebra J [Freudenthal:1954,Brown:1969]:

F(J) = R⊕R⊕ J⊕ J.

x =

(
α A
B β

)
, where α, β ∈ R and A,B ∈ J.

Defining relations

1 Quadratic form {•, •}: F(J)× F(J)→ R

{x , y} = αδ−βγ+Tr(A,C)−Tr(B,D), where x =

(
α A
B β

)
, y =

(
γ C
D δ

)
.

2 Quartic form ∆ : F(J)→ R

∆(x) = −(αβ − Tr(A,B))2 − 4[αN(A) + βN(B)− Tr(A],B])].

3 Triple product T : F(J)× F(J)× F(J)→ F(J) which is uniquely defined by

{T (x , y ,w), z} = 2∆(x , y ,w , z).



FTS symmetries

Automorphism group

Aut(F) := {σ|{σx , σy} = {x , y}, ∆(σx , σy , σz, σw) = ∆(x , y , z,w)}.

⇒ T (σx , σy , σz) = σT (x , y , z)

J3 Str0(J3) Aut(F(J3)) dimF(J3)

R − SL(2,R) 4
R⊕R SO(1, 1;R) [SL(2,R)]2 6

R⊕R⊕R [SO(1, 1;R)]2 [SL(2,R)]3 8
R⊕ Γ1,n−1 SO(1, 1;R)× SO(1, n − 1;R) SL(2,R)× SO(2, n;R) 2n + 4
R⊕ Γ5,n−5 SO(1, 1;R)× SO(5, n − 5;R) SL(2,R)× SO(6, n;R) 2n + 12

JR3 SL(3,R) Sp(6,R) 14
JC3 SL(3,C) SU(3, 3;R) 20
JH3 SU?(6,R) SO?(12,R) 32
JO3 E6(−26)(R) E7(−25)(R) 56
JO

s
3 E6(6)(R) E7(7)(R) 56



FTS symmetries

The automorphism group is generated by [Brown: 1969]:

φ(W ) :

(
α X
Y β

)
7→
(
α+ (Y ,W ) + (X ,W ]) + βN(W ) X + βW

Y + X ×W + βW ] β

)
,

ψ(Z) :

(
α X
Y β

)
7→
(

α X + Y × Z + αZ ]

Y + αZ β + (X ,Z) + (Y ,Z ]) + αN(Z)

)
,

T (s) :

(
α X
Y β

)
7→
(

λ−1α s(X )

s′−1(Y ) λβ

)
.

Ranks
Natural, Aut invariant rank conditions:

Rankx = 1⇔ 3T (x , x , y) + {x , y}x = 0 ∀y ∈ F;

Rankx = 2⇔ T (x , x , x) = 0, ∃y s.t. 3T (x , x , y) + {x , y}x = 0 6= 0;

Rankx = 3⇔ ∆(x) = 0, T (x , x , x) 6= 0;

Rankx = 4⇔ ∆(x) 6= 0.



FO
s
: black holes

In the classical supergravity limit the 28+28 electric/magnetic black hole charges
xI (I = 1, . . . , 56) transform as the fundamental 56 of the continuous U-duality
group E7(7)(R). Under SO(1, 1;R)× E6(6)(R) the 56 breaks as

56→ 13 + 1−3 + 271 + 27′−1.

The charges may be represented as x ∈ F(JO
s

3 ) = FO
s
,

x =

(
−q0 P
Q p0

)
, where q0, p0 ∈ R and Q,P ∈ JO

s
3 .

Here, p0, q0 are the graviphotons and P,Q are the magnetic/electric 27′ and 27.
Leading order black hole entropy:

SD=4,BH = π
√
|∆(x)| (∆ = 1 ∈ [56× 56× 56× 56]s)



Black hole charge orbits

Rank Rank cond. Rep state Orbit dim SUSYnon-vanishing

1 x
(

1 (0, 0, 0)
0 0

) E7(7)(R)

E6(6)(R) nR27 28 1/2

2 3T (x , x , y) + x{x , y}
(

1 (1, 0, 0)
0 0

) E7(7)(R)

O(6, 5;R) nR32 ×R
45 1/4

3 T (x , x , x)
(

0 (1, 1, 1)
0 0

) E7(7)(R)

F4(4)(R) nR26 55 1/8

4 ∆(x) > 0
(

1 (1, 1, k)
0 0

) E7(7)(R)

E6(2)(R)
55 1/8

4 ∆(x) < 0
(

1 (1, 1,−k)
0 0

) E7(7)(R)

E6(6)(R)
55 0

[Ferrara, Gunaydin: hep-th/9708025; Lu, Pope, Stelle: hep-th/9708109]
[Sukuzawa: 2006; LB, Duff, Ferrara, Marrani, Rubens: arXiv:1108.0424,
arXiv:1108.0908]



Generalisations

This Jordan algebra and FTS framework can be use to classify the black holes of
a large number of theories
[ Ferrara, Günaydin:hep-th/0606108; Bellucci, Ferrara, Günaydin,
Marrani:hep-th/0606209]

In particular D = 4,N = 2 theories which arise from compactifying type II string
theory on a Calabi-Yau

See “Small Orbits” and “Explicit Orbit Classification of Reducible Jordan Algebras
and Freudenthal Triple Systems”
[LB, Duff, Ferrara, Marrani, Rubens: arXiv:1108.0424, arXiv:1108.0908]



N = 4N = 3

N = 2a N = 2b N = 2c

N = 1

N = 0 1 Susy

1� 2 Susy

1� 4 Susy

1� 8 SusyGHZW

A-BC B-CA C-AB

A-B-C

Null Null

Separable

Bipartite

Tripartite

QUBITS BLACK HOLES

N= number of charges / number of kets



Freudenthal duality of black holes in supergravity with U-duality of type E7

Definition

˜: F→ F x 7→ x̃ =
T (x , x , x)√
|∆(x)|

Key properties

{x̃ , x} = 2 sgn(∆)
√
|∆(x)|

˜̃x = −x

∆(x̃) = ∆(x)

⇒ The F-dual is a nonlinear transformation acting on the black hole charges which
leaves the leading order Bekenstein-Hawking entropy invariant.



Quantization of charges

Dirac-Schwinger-Zwanziger quantization

Dirac-Schwinger-Zwanziger quantization condition for two dyons x = (qI , pI ) and
x ′ = (q̃I , p̃I ):

1
2

[pI q̃I − p̃IqI ] ∈ Z.

The charges live on an lattice and the U-duality is broken to a discrete subgroup

G4(R)→ G4(Z)

Example: M-theory on a 7-torus

D = 4,N = 8 sugra has U-duality group E7(7)(R): gets broken by stringy corrections

E7(7)(Z)

Fundamental symmetry of M-theory [Hull, Townsend: hep-th/9410167]

DSZ in FTS language

{x , x ′} ∈ Z

[LB, Dahanayake, Duff, W. Rubens: arXiv:0903.5517]



Quantization of charges: Implications

Integral FTS

The integral charges implies we must use an “integeral FTS”

F(R)→ F(Z)

based on integral Jordan algebra J(Z)

Notion made precise by S. Krutelevich

We focus on the N = 8 with E7(7)(Z) symmetry theory hereafter

[Krutelevich, J. Algebra (2002); J. Algebra (2007), arXiv:math/0411104]
[LB, Dahanayake, Duff, W. Rubens: arXiv:0903.5517]
[LB et al: arXiv:1002.4223]



The integral FTS

Integral Freudenthal triple system FO
s
Z

The integral Freudenthal triple system FO
s
Z provides a natural model for E7(7)(Z)

acting on lattice of charges [Krutelevich: 2004].

The quantized black hole charge vector is given by,

x =

(
−q0 P
Q p0

)
, where q0, p0 ∈ Z and Q,P ∈ J

Os
Z

3 .

Here J is given by

Q =

q1 Qs Qc
Qs q2 Qv
Qc Qv q3

 , where q1, q2, q3 ∈ Z and Qv,s,c ∈ Os
Z.



Integral black hole canonical form

Canonical form
Every element x ∈ FO

s
Z is E7(7)(Z) equivalent to a diagonally reduced canonical form,

xcan = α

(
1 k diag(1, l , lm)
0 j

)
, where α > 0.

Canonical quartic norm

∆(x) = −(j2 + 4k3l2m)α4 ⇒ ∆(x) ∈ {0, 1} mod 4

Square of the horizon area is quantized!

Proof [Krutelevich: 2004]



Integral black hole canonical form

Given a discrete subgroup G(Z) ⊂ G we can define new invariants:

gcd(rep).

[Krutelevich:2004]:

d1(x) := gcd(x),

d2(x) := gcd(3T (x , x , y) + {x , y}x), ∀y
d3(x) := gcd(T (x , x , x)),

d4(x) := ∆(x).

plus one more
d ′4(x) := gcd(x ∧ T (x)).

Insufficient to fix the can form!

α

(
1 (0, 0, 0)

(0, 0, 0) j

)
, α

(
1 (j , 0, 0)

(0, 0, 0) j

)
,

However, in particular sub-cases they do the job.

>1/8-BPS and projective black holes.



>1/8-BPS black hole orbits

Assuming >1/8-BPS (Rank < 3) improved canonical form:
Every element x ∈ FO

s
Z is E7(7)(Z) equivalent to a diagonally reduced canonical form,

xcan = α

(
1 k diag(1, 0, 0)
0 0

)
, where α > 0.

Uniquely fixed by: d1(x) := gcd(x), d2(x) := gcd(3T (x , x , y) + {x , y}x), ∀y
since d1(xcan) = α and d2(xcan) = 2α2k.

>1/8-BPS (Rank < 3) black hole orbit classification:

1 The complete set of distinct 1/2-BPS charge vector orbits is given by,

{(α 0
0 0

)
, where α > 0

}
.

2 The complete set of distinct 1/4-BPS charge vector orbits is given by,

{
α

(
1 k(1, 0, 0)
0 0

)
, where α, k > 0

}
.



Projective black holes

The concept of a projective element was originally introduced for the case
J3 = Z⊕Z⊕Z by Manjul Bhargava (2004) in the context of generalising Gauss’s
composition law for quadratic forms.

An element x is said to be projective if its U-duality orbit contains a diagonal reduced
element

x =

(
α (X1,X2,X3)
0 β

)
,

satisfying

gcd(αX1, αβ,X2X3) = 1;

gcd(αX2, αβ,X1X3) = 1;

gcd(αX3, αβ,X1X2) = 1.



Projective black hole canonical form

Any projective element x is U-duality equivalent to an element (Krutelevich:2004):(
1 (1, 1,m)

(0, 0, 0) j

)
,

j ∈ {0, 1}, m ∈ Z,

where the values of m and j are uniquely determined by ∆(x) = −(j + 4m).

When ∆ is odd, d3(x) = 1 iff x is projective

In the projective case all black holes with the same quartic norm and hence lowest
order entropy are U-duality related.



Implications for F-duality

Reminder: F-duality

˜: F→ F x 7→ x̃ =
T (x , x , x)√
|∆(x)|

**Not every black hole admits a well defined F-dual**

Necessary and sufficient conditions

Requiring that x̃ is integer therefore restricts us to that subset of black holes for
which |∆(x)| is a perfect square and for which |∆(x)|1/2 divides T (x):

d4(x) =

[
d3(x)

d1(x̃)

]2
=

[
d3(x̃)

d1(x)

]2
= d4(x̃),

where d1(x) = gcd(x), d3(x) = gcd(T (x)) and d4(x) = |∆(x)|.



Implications for F-duality

Discrete invariants under F-duality

Not all discrete U-duality invariants are F-dual invariant

For example, the product d1(x)d3(x) is invariant but d1(x) and d3(x) separately
need not be.

However not only d4(x) but also d2(x), d ′2(x) and d ′4(x) are F-dual invariant.

The invariance of d ′4(x) follows from

x̃ ∧ T (x̃) = T (x)|∆|−1/2 ∧ T (T (x)|∆|−1/2)

= −|∆|−2T (x) ∧∆2x

= sgn(∆)x ∧ T (x)

and, hence, d ′4(x) = d ′4(x̃).

Since corrections to the black hole can depend on the discrete invariants whether
F-duality preserves the entropy to all orders is an open question.



Implications for F-duality

Comments

Large class of F-dual black holes

We don’t know how they are characterised

Projective black holes:
In the projective case all black holes with the same quartic norm and
hence lowest order entropy are U-duality related.

Non-projective black holes:
Non-projective black holes related by an F-duality not conserving d1
provide examples of configurations with the same quartic norm and
hence lowest order entropy that are definitely not U-duality related,

But more surprisingly
Non-projective black holes related by an F-duality conserving d1 provide
examples of configurations with the same quartic norm, and same
discrete invariants, that are apparently not U-duality related



Open questions

Is it possible that the full space of 4-dimensional orbits could be resolved if the
complete list of independent arithmetic invariants was known?

To proceed further, it would serve us well to have a full classification of the
independent E7(7)(Z) arithmetic invariants.

When is ∆ a perfect square?

Can the class of black holes admitting an F-dual be classified in a useful way?

If so what is its physical significance?

Does the F-dual leave the entropy invariant to all orders? Requires a U-duality
invariant black hole entropy formula for arbitrary charges
For d2(x) = 1 (almost, but not quite, projectivity) entropy is determined by d ′4(x)
and ∆(x) [Sen: 0804.0651; Sen: 0908.0039] [Bianchi, Ferrara, Kallosh;
0912.0057, 0910.3674 ]

Promote to symmetry of supergravity Lagrangians?
YES! [Borsten, Duff, Ferrara, Marrani arXiv1212.3254]
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