# Quantized Black Hole Charges and Freudenthal Duality

# M. J. Duff Blackett Laboratory, Imperial College, London

October 2013 University of Michigan

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

# Summary

### Freudenthal duality

F-dual: A discrete symmetry transformation  $x \to \tilde{x}$ , of a Freudenthal triple system x for which  $\tilde{\tilde{x}} = -x$ , preserving the quartic invariant  $\Delta(x)$ .

Originally introduced as a symmetry of extremal black holes in supergravity

[L. Borsten, D. Dahanayake, M. J. Duff, and W. Rubens, arXiv:0903.5517]

### Other applications

- Generalised to a full symmetry of black hole potential [Ferrara , Marrani, Yeranyan, arXiv:1102.4857]
- The attractor mechanism [Ortin, Shahbazi, arXiv:1206.3190]
- Freudenthal gauge theory [Marrani, Qiu, Shih, Tagliaferro, Zumino, arXiv:1208.0013]
- Symmetry of supergravity [Borsten, Duff, Ferrara, Marrani arXiv1212.3254]

# Summary

### The Framework

- In quantum theory, charges are quantized
- We exploit the mathematical framework of integral Jordan algebras, the integral Freudenthal triple system and, in particular, the work of Krutelevich.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

[Krutelevich, J. Algebra (2002); J. Algebra (2007), arXiv:math/0411104]

# Extremal Black Holes

### Einstein-Maxwell System

Einstein-Maxwell action and e.o.m:

$$\begin{split} S[g_{\mu\nu},A_{\mu}] &= \frac{1}{16\pi}\int d^4x \sqrt{|g|} \left[R - \frac{1}{4}F^2\right] \\ R_{\mu\nu} &= \frac{1}{2}\left[F_{\mu}{}^{\rho}F_{\nu\rho} - \frac{1}{4}F^2\right] \end{split}$$

### Reissner-Nordstöm Black Hole

$$ds^{2} = -\left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right) dt^{2} + \left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right)^{-1} dr^{2} + r^{2} d\Omega_{2}^{2}$$
$$r_{\pm} = M \pm \sqrt{M^{2} - Q^{2}}$$
$$Q = \frac{1}{16\pi} \int_{S^{2}_{\infty}} \star F$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

### **RN Black Hole Thermodynamics**

Hawking temperature:

$$T_{\rm H} = rac{\sqrt{M^2 - Q^2}}{2\pi (M + \sqrt{M^2 - Q^2})}$$

Bekenstein-Hawking entropy:

$$S_{\mathsf{BH}} = \pi (M + \sqrt{M^2 - Q^2})^2$$

### The Extremal Limit: $M \rightarrow Q$

- Horizons collapse  $r_+ = r_-$ .
- Stable against Hawking radiation  $T_{H} \rightarrow 0$
- But, have non-vanishing entropy  $S_{\rm BH}=\pi Q^2$

These special properties allow one derive the entropy quantum mechanically using string theory.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

### $\mathcal{N}=8$

•  $\mathcal{N} = 8$  single supermultiplet has bosonic sector

 $g_{\mu\nu}$ , 70 $\phi$ , 28 $C_{\mu}$ 

Scalars parametrise a homogeneous space

$$\frac{G_4}{H_4} = \frac{E_{7(7)}}{SU(8)}$$

- **EOM** invariant under  $G_4$ , the U-duality group
- The fields strengths plus their duals transform linearly as the 56 of E<sub>7</sub>

### Generic supergravity

- Scalars may or may not parametrise a homogeneous space  $\frac{G_4}{H_4}$
- EOM invariant under  $G_4$ , the U-duality group
- The fields strengths plus their duals transform linearly under  $G_4$

# Extremal Black Holes in supergravity

- Solutions similar to Reissner–Nordström, but
- More electromagnetic charges in the game (56 in the  $\mathcal{N}=8$  case)

$$p^a = rac{1}{4\pi} \int_{\mathcal{S}^2} F^a, \qquad q_a = rac{1}{4\pi} \int_{\mathcal{S}^2} G_a, \qquad Q = \begin{pmatrix} p^a \\ q_a \end{pmatrix}$$

There are also scalar equations of motion

- Extremal solutions "attractor mechanism" kicks in: the scalars at the horizon must be fixed in terms of the charges independent of their asymptotic values. [Ferrara:1995, Strominger:1996, Ferrara:1996, Ferrara:1996, Ferrara:1997]; the horizon area loses all memory of the scalars and is a (non-polynomial) quadratic function of only the charges, just as in the Reissner–Nordström case.
- The entropy is given by a quartic U-duality invariant  $\Delta(p, q)$ ,

$$S_{\mathsf{BH}} = \pi \sqrt{|\Delta(p,q)|}.$$

### Jordan Algebras

A Jordan algebra  $\mathfrak J$  is vector space defined over a ground field  $\mathbb F$  equipped with a bilinear product satisfying [Jordan:1933]

$$X \circ Y = Y \circ X, \quad X^2 \circ (X \circ Y) = X \circ (X^2 \circ Y), \quad \forall \ X, Y \in \mathfrak{J}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Jordan Algebras

A Jordan algebra  $\mathfrak J$  is vector space defined over a ground field  $\mathbb F$  equipped with a bilinear product satisfying [Jordan:1933]

$$X\circ Y=Y\circ X, \quad X^2\circ (X\circ Y)=X\circ (X^2\circ Y), \quad orall \ X, Y\in \mathfrak{J}.$$

### Cubic Jordan Algebras

Let V be a vector space equipped with a cubic norm and a base point:

A cubic form:

$$N_{3}: V \to \mathbb{R} \quad \text{s.t.} \quad N_{3}(\alpha X) = \alpha^{3} N_{2}(X) \quad \forall \alpha \in \mathbb{R}, X \in V,$$
  
$$N_{3}(X, Y, Z) = N_{3}(X + Y + Z) - N_{3}(X + Y) - N_{3}(Y + Z) - N_{3}(X + Z) + N_{3}(X) + N_{3}(Y) + N_{3}(Z)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is trilinear.

### Jordan Algebras

A Jordan algebra  $\mathfrak J$  is vector space defined over a ground field  $\mathbb F$  equipped with a bilinear product satisfying [Jordan:1933]

$$X\circ Y=Y\circ X, \quad X^2\circ (X\circ Y)=X\circ (X^2\circ Y), \quad orall \ X, Y\in \mathfrak{J}.$$

### Cubic Jordan Algebras

Let V be a vector space equipped with a cubic norm and a base point:

A cubic form:

$$N_3: V \to \mathbb{R}$$
 s.t.  $N_3(\alpha X) = \alpha^3 N_2(X) \quad \forall \alpha \in \mathbb{R}, X \in V,$ 

$$N_3(X, Y, Z) = N_3(X + Y + Z) - N_3(X + Y) - N_3(Y + Z) - N_3(X + Z) + N_3(X) + N_3(Y) + N_3(Z)$$

is trilinear.

• A base point: element  $c \in V$  satisfying  $N_3(c) = 1$ .

# The Freudenthal triple system

Freudenthal triple system over a Jordan algebra  $\mathfrak{J}$  [Freudenthal:1954,Brown:1969]:

$$\mathfrak{F}(\mathfrak{J}) = \mathbb{R} \oplus \mathbb{R} \oplus \mathfrak{J} \oplus \mathfrak{J}.$$
  
 $x = \begin{pmatrix} lpha & A \\ B & \beta \end{pmatrix}, \quad \text{where } lpha, eta \in \mathbb{R} \quad \text{and} \quad A, B \in \mathbb{R}$ 

### Defining relations

$$\blacksquare \text{ Quadratic form } \{\bullet, \bullet\} : \ \mathfrak{F}(\mathfrak{J}) \times \mathfrak{F}(\mathfrak{J}) \to \mathbb{R}$$

$$\{x, y\} = \alpha \delta - \beta \gamma + \mathsf{Tr}(A, C) - \mathsf{Tr}(B, D), \text{ where } x = \begin{pmatrix} \alpha & A \\ B & \beta \end{pmatrix}, y = \begin{pmatrix} \gamma & C \\ D & \delta \end{pmatrix}.$$

**2** Quartic form  $\Delta : \mathfrak{F}(\mathfrak{J}) \to \mathbb{R}$ 

$$\Delta(x) = -(\alpha\beta - \operatorname{Tr}(A, B))^2 - 4[\alpha N(A) + \beta N(B) - \operatorname{Tr}(A^{\sharp}, B^{\sharp})].$$

**3** Triple product  $\mathcal{T}:\mathfrak{F}(\mathfrak{J})\times\mathfrak{F}(\mathfrak{J})\times\mathfrak{F}(\mathfrak{J})\to\mathfrak{F}(\mathfrak{J})$  which is uniquely defined by

$$\{T(x, y, w), z\} = 2\Delta(x, y, w, z).$$

J.

## Automorphism group

$$\begin{aligned} \mathsf{Aut}(\mathfrak{F}) &:= \{\sigma | \{\sigma x, \sigma y\} = \{x, y\}, \quad \Delta(\sigma x, \sigma y, \sigma z, \sigma w) = \Delta(x, y, z, w)\}. \\ &\Rightarrow T(\sigma x, \sigma y, \sigma z) = \sigma T(x, y, z) \end{aligned}$$

| J3                                                                              | $Str_0(\mathfrak{J}_3)$                              | $Aut(\mathfrak{F}(\mathfrak{J}_3))$          | $\dim\mathfrak{F}(\mathfrak{J}_3)$ |
|---------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------|
| R                                                                               | _                                                    | <i>SL</i> (2, ℝ)                             | 4                                  |
| $\mathbb{R} \oplus \mathbb{R}$                                                  | SO(1, 1; ℝ)                                          | [SL(2, ℝ)] <sup>2</sup>                      | 6                                  |
| $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$                                | $[SO(1, 1; \mathbb{R})]^2$                           | $[SL(2,\mathbb{R})]^3$                       | 8                                  |
| $\mathbb{R} \oplus \Gamma_{1,n-1}$                                              | $SO(1,1;\mathbb{R}) \times SO(1,n-1;\mathbb{R})$     | $SL(2,\mathbb{R}) \times SO(2,n;\mathbb{R})$ | 2 <i>n</i> + 4                     |
| $\mathbb{R} \oplus \Gamma_{5,n-5}$                                              | $SO(1, 1; \mathbb{R}) \times SO(5, n-5; \mathbb{R})$ | $SL(2,\mathbb{R}) \times SO(6,n;\mathbb{R})$ | 2n + 12                            |
| $J_3^{\mathbb{R}}$                                                              | SL(3, R)                                             | Sp(6, ℝ)                                     | 14                                 |
| Jد                                                                              | SL(3, C)                                             | SU(3,3; R)                                   | 20                                 |
| $J_3^{\mathrm{H}}$                                                              | SU*(6, R)                                            | SO <sup>*</sup> (12, ℝ)                      | 32                                 |
| $J_3^{\mathbb{O}}$                                                              | $E_{6(-26)}(\mathbb{R})$                             | $E_{7(-25)}(\mathbb{R})$                     | 56                                 |
| パ <sub>3</sub><br>パ<br>3<br>パ<br>3<br>パ<br>3<br>パ<br>3<br>パ<br>3<br>3<br>3<br>3 | $E_{6(6)}(\mathbb{R})$                               | $E_{7(7)}(\mathbb{R})$                       | 56                                 |

# FTS symmetries

The automorphism group is generated by [Brown: 1969]:

$$\begin{split} \phi(W) &: \begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha + (Y, W) + (X, W^{\sharp}) + \beta N(W) & X + \beta W \\ Y + X \times W + \beta W^{\sharp} & \beta \end{pmatrix}, \\ \psi(Z) &: \begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha & X + Y \times Z + \alpha Z^{\sharp} \\ Y + \alpha Z & \beta + (X, Z) + (Y, Z^{\sharp}) + \alpha N(Z) \end{pmatrix}, \\ T(s) &: \begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \mapsto \begin{pmatrix} \lambda^{-1} \alpha & s(X) \\ s'^{-1}(Y) & \lambda \beta \end{pmatrix}. \end{split}$$

### Ranks

Natural, Aut invariant rank conditions:

$$\begin{aligned} \operatorname{Rank} x &= 1 \Leftrightarrow 3T(x, x, y) + \{x, y\}x = 0 & \forall y \in \mathfrak{F};\\ \operatorname{Rank} x &= 2 \Leftrightarrow T(x, x, x) = 0, \quad \exists y \quad \text{s.t.} \quad 3T(x, x, y) + \{x, y\}x = 0 \neq 0;\\ \operatorname{Rank} x &= 3 \Leftrightarrow \Delta(x) = 0, \quad T(x, x, x) \neq 0;\\ \operatorname{Rank} x &= 4 \Leftrightarrow \Delta(x) \neq 0. \end{aligned}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

# $\mathfrak{F}^{\mathbb{O}^s}$ : black holes

In the classical supergravity limit the 28+28 electric/magnetic black hole charges  $x_I$  (I = 1, ..., 56) transform as the fundamental **56** of the continuous U-duality group  $E_{7(7)}(\mathbb{R})$ . Under  $SO(1, 1; \mathbb{R}) \times E_{6(6)}(\mathbb{R})$  the **56** breaks as

$$\textbf{56} \rightarrow \textbf{1}_{3} + \textbf{1}_{-3} + \textbf{27}_{1} + \textbf{27'}_{-1}.$$

The charges may be represented as  $x \in \mathfrak{F}(\mathfrak{J}_3^{\mathbb{O}^s}) = \mathfrak{F}^{\mathbb{O}^s}$ ,

$$x = \begin{pmatrix} -q_0 & P \\ Q & p^0 \end{pmatrix}$$
, where  $q_0, p^0 \in \mathbb{R}$  and  $Q, P \in \mathfrak{J}_3^{O^s}$ .

Here, p<sup>0</sup>, q<sub>0</sub> are the graviphotons and P, Q are the magnetic/electric 27' and 27.
Leading order black hole entropy:

$$S_{D=4,\mathrm{BH}} = \pi \sqrt{|\Delta(x)|}$$
  $(\Delta = 1 \in [\mathbf{56} \times \mathbf{56} \times \mathbf{56} \times \mathbf{56}]_s)$ 

| Rank | Rank cond.<br>non-vanishing | Rep state                                                     | Orbit                                                                                  | dim | SUSY |
|------|-----------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-----|------|
| 1    | x                           | $\begin{pmatrix} 1 & (0, 0, 0) \\ 0 & 0 \end{pmatrix}$        | $\frac{E_{7(7)}(\mathbb{R})}{E_{6(6)}(\mathbb{R})\ltimes\mathbb{R}^{27}}$              | 28  | 1/2  |
| 2    | $3T(x,x,y)+x\{x,y\}$        | $\begin{pmatrix} 1 & (1,0,0) \\ 0 & 0 \end{pmatrix}$          | $\frac{E_{7(7)}(\mathbb{R})}{O(6,5;\mathbb{R})\ltimes\mathbb{R}^{32}\times\mathbb{R}}$ | 45  | 1/4  |
| 3    | T(x,x,x)                    | $\begin{pmatrix} 0 & (1,1,1) \\ 0 & 0 \end{pmatrix}$          | $\frac{E_{7(7)}(\mathbb{R})}{F_{4(4)}(\mathbb{R})\ltimes\mathbb{R}^{26}}$              | 55  | 1/8  |
| 4    | $\Delta(x) > 0$             | $\begin{pmatrix} 1 & (1,1,\mathbf{k}) \\ 0 & 0 \end{pmatrix}$ | $\frac{E_{7(7)}(\mathbb{R})}{E_{6(2)}(\mathbb{R})}$                                    | 55  | 1/8  |
| 4    | $\Delta(x) < 0$             | $\begin{pmatrix} 1 & (1,1,-k) \\ 0 & 0 \end{pmatrix}$         | $\frac{E_{7(7)}(\mathbb{R})}{E_{6(6)}(\mathbb{R})}$                                    | 55  | 0    |

# Generalisations

- This Jordan algebra and FTS framework can be use to classify the black holes of a large number of theories
   [Ferrara, Günaydin:hep-th/0606108; Bellucci, Ferrara, Günaydin, Marrani:hep-th/0606209]
- In particular D = 4, N = 2 theories which arise from compactifying type II string theory on a Calabi-Yau
- See "Small Orbits" and "Explicit Orbit Classification of Reducible Jordan Algebras and Freudenthal Triple Systems"

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

[LB, Duff, Ferrara, Marrani, Rubens: arXiv:1108.0424, arXiv:1108.0908]



<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

■ N= number of charges / number of kets

#### Definition

$$\tilde{}:\mathfrak{F} \to \mathfrak{F} \qquad x \mapsto \tilde{x} = rac{T(x,x,x)}{\sqrt{|\Delta(x)|}}$$

### Key properties

$$\{\tilde{x}, x\} = 2 \operatorname{sgn}(\Delta) \sqrt{|\Delta(x)|}$$
 $\tilde{\tilde{x}} = -x$  $\Delta(\tilde{x}) = \Delta(x)$ 

 $\Rightarrow$  The F-dual is a nonlinear transformation acting on the black hole charges which leaves the leading order Bekenstein-Hawking entropy invariant.

### Dirac-Schwinger-Zwanziger quantization

Dirac-Schwinger-Zwanziger quantization condition for two dyons  $x = (q_I, p')$  and  $x' = (\tilde{q}_I, \tilde{p}')$ :

$$\frac{1}{2}[p'\tilde{q}_I-\tilde{p}'q_I]\in\mathbb{Z}.$$

The charges live on an lattice and the U-duality is broken to a discrete subgroup

 $G_4(\mathbb{R}) \to G_4(\mathbb{Z})$ 

Example: M-theory on a 7-torus

 $D = 4, \mathcal{N} = 8$  sugra has U-duality group  $E_{7(7)}(\mathbb{R})$ : gets broken by stringy corrections

 $E_{7(7)}(\mathbb{Z})$ 

Fundamental symmetry of M-theory [Hull, Townsend: hep-th/9410167]

DSZ in FTS language

 $\{x, x'\} \in \mathbb{Z}$ 

[LB, Dahanayake, Duff, W. Rubens: arXiv:0903.5517]

# Quantization of charges: Implications

### Integral FTS

The integral charges implies we must use an "integeral FTS"

 $\mathfrak{F}(\mathbb{R}) o \mathfrak{F}(\mathbb{Z})$ 

based on integral Jordan algebra  $\mathfrak{J}(\mathbb{Z})$ 

Notion made precise by S. Krutelevich

• We focus on the  $\mathcal{N} = 8$  with  $E_{7(7)}(\mathbb{Z})$  symmetry theory hereafter

[Krutelevich, J. Algebra (2002); J. Algebra (2007), arXiv:math/0411104] [LB, Dahanayake, Duff, W. Rubens: arXiv:0903.5517] [LB et al: arXiv:1002.4223]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

# The integral FTS

### Integral Freudenthal triple system $\mathfrak{F}^{\mathbb{O}_{\mathbb{Z}}^{s}}$

The integral Freudenthal triple system  $\mathfrak{F}^{0_{\mathbb{Z}}^{\sharp}}$  provides a natural model for  $E_{7(7)}(\mathbb{Z})$  acting on lattice of charges [Krutelevich: 2004].

The quantized black hole charge vector is given by,

$$x = \begin{pmatrix} -q_0 & P \\ Q & p^0 \end{pmatrix}, \quad \text{where} \quad q_0, p^0 \in \mathbb{Z} \quad \text{and} \quad Q, P \in \mathfrak{J}_3^{\mathbb{O}_\mathbb{Z}^s}.$$

 $\blacksquare$  Here  $\mathfrak{J}$  is given by

$$Q = \begin{pmatrix} q_1 & Q_s & \overline{Q_c} \\ \overline{Q_s} & q_2 & Q_v \\ Q_c & \overline{Q}_v & q_3 \end{pmatrix}, \quad \text{where} \quad q_1, q_2, q_3 \in \mathbb{Z} \quad \text{and} \quad Q_{v,s,c} \in \mathbb{O}_{\mathbb{Z}}^s.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Integral black hole canonical form

### Canonical form

Every element  $x \in \mathfrak{F}^{\mathbb{O}_{\mathbb{Z}}^{\mathfrak{s}}}$  is  $E_{7(7)}(\mathbb{Z})$  equivalent to a diagonally reduced canonical form,

$$x_{\mathsf{can}} = lpha egin{pmatrix} 1 & k \operatorname{diag}(1, l, lm) \\ 0 & j \end{pmatrix}, \quad \mathsf{where} \quad lpha > 0.$$

### Canonical quartic norm

$$\Delta(x) = -(j^2 + 4k^3l^2m)\alpha^4 \quad \Rightarrow \quad \Delta(x) \in \{0,1\} \mod 4$$

Square of the horizon area is quantized!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Proof [Krutelevich: 2004]

Given a discrete subgroup  $G(\mathbb{Z}) \subset G$  we can define new invariants:

gcd(rep).

[Krutelevich:2004]:

$$d_1(x) := \gcd(x), d_2(x) := \gcd(3T(x, x, y) + \{x, y\}x), \forall y d_3(x) := \gcd(T(x, x, x)), d_4(x) := \Delta(x).$$

plus one more

$$d'_4(x) := \gcd(x \wedge T(x)).$$

Insufficient to fix the can form!

$$lpha egin{pmatrix} 1 & (0,0,0) \ (0,0,0) & j \end{pmatrix}, \qquad lpha egin{pmatrix} 1 & (j,0,0) \ (0,0,0) & j \end{pmatrix},$$

However, in particular sub-cases they do the job.

>1/8-BPS and projective black holes.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

# >1/8-BPS black hole orbits

Assuming >1/8-BPS (Rank < 3) improved canonical form:

Every element  $x \in \mathfrak{F}^{\mathbb{O}_{\mathbb{Z}}^{\mathfrak{s}}}$  is  $E_{7(7)}(\mathbb{Z})$  equivalent to a diagonally reduced canonical form,

$$x_{\mathsf{can}} = lpha egin{pmatrix} 1 & k \operatorname{diag}(1,0,0) \\ 0 & 0 \end{pmatrix}, \quad ext{where} \quad lpha > 0.$$

• Uniquely fixed by:  $d_1(x) := \gcd(x), d_2(x) := \gcd(3T(x, x, y) + \{x, y\}x), \forall y$ since  $d_1(x_{can}) = \alpha$  and  $d_2(x_{can}) = 2\alpha^2 k$ .

>1/8-BPS (Rank < 3) black hole orbit classification:

The complete set of distinct 1/2-BPS charge vector orbits is given by,

$$\big\{ \begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix}, \quad \text{where} \quad \alpha > 0 \big\}.$$

2 The complete set of distinct 1/4-BPS charge vector orbits is given by,

$$\left\{ \alpha \begin{pmatrix} 1 & k(1,0,0) \\ 0 & 0 \end{pmatrix}, \text{ where } \alpha, k > 0 \right\}.$$

# Projective black holes

The concept of a projective element was originally introduced for the case  $\mathfrak{J}_3 = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$  by Manjul Bhargava (2004) in the context of generalising Gauss's composition law for quadratic forms.

An element x is said to be *projective* if its U-duality orbit contains a diagonal reduced element

$$\mathbf{x} = \begin{pmatrix} \alpha & (X_1, X_2, X_3) \\ 0 & \beta \end{pmatrix},$$

satisfying

 $\begin{aligned} & \gcd(\alpha X_1, \alpha \beta, X_2 X_3) = 1; \\ & \gcd(\alpha X_2, \alpha \beta, X_1 X_3) = 1; \\ & \gcd(\alpha X_3, \alpha \beta, X_1 X_2) = 1. \end{aligned}$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

# Projective black hole canonical form

Any projective element x is U-duality equivalent to an element (Krutelevich:2004):

$$egin{pmatrix} 1 & (1,1,m) \ (0,0,0) & j \end{pmatrix},\ j\in\{0,1\},\ m\in\mathbb{Z}, \end{cases}$$

where the values of m and j are uniquely determined by  $\Delta(x) = -(j + 4m)$ .

• When  $\Delta$  is odd,  $d_3(x) = 1$  iff x is projective

In the projective case all black holes with the same quartic norm and hence lowest order entropy are U-duality related.

### Reminder: F-duality

$$\widetilde{}:\mathfrak{F}
ightarrow\mathfrak{F}$$
  $x\mapsto\widetilde{x}=rac{T(x,x,x)}{\sqrt{|\Delta(x)|}}$ 

\*\*Not every black hole admits a well defined F-dual\*\*

### Necessary and sufficient conditions

Requiring that x̃ is integer therefore restricts us to that subset of black holes for which |Δ(x)| is a perfect square and for which |Δ(x)|<sup>1/2</sup> divides T(x):

$$d_4(x) = \left[\frac{d_3(x)}{d_1(\tilde{x})}\right]^2 = \left[\frac{d_3(\tilde{x})}{d_1(x)}\right]^2 = d_4(\tilde{x}),$$

ション ふゆ アメリア メリア しょうくの

where  $d_1(x) = \gcd(x)$ ,  $d_3(x) = \gcd(T(x))$  and  $d_4(x) = |\Delta(x)|$ .

# Implications for F-duality

### Discrete invariants under F-duality

- Not all discrete U-duality invariants are F-dual invariant
- For example, the product  $d_1(x)d_3(x)$  is invariant but  $d_1(x)$  and  $d_3(x)$  separately need not be.
- However not only  $d_4(x)$  but also  $d_2(x)$ ,  $d'_2(x)$  and  $d'_4(x)$  are F-dual invariant.
- The invariance of  $d'_4(x)$  follows from

$$\begin{split} \tilde{x} \wedge T(\tilde{x}) &= T(x) |\Delta|^{-1/2} \wedge T(T(x)) |\Delta|^{-1/2}) \\ &= -|\Delta|^{-2} T(x) \wedge \Delta^2 x \\ &= \operatorname{sgn}(\Delta) x \wedge T(x) \end{split}$$

and, hence,  $d'_4(x) = d'_4(\tilde{x})$ .

Since corrections to the black hole can depend on the discrete invariants whether F-duality preserves the entropy to all orders is an open question.

# Implications for F-duality

### Comments

- Large class of F-dual black holes
- We don't know how they are characterised
- Projective black holes:

In the projective case all black holes with the same quartic norm and hence lowest order entropy are U-duality related.

Non-projective black holes:

Non-projective black holes related by an F-duality not conserving  $d_1$  provide examples of configurations with the same quartic norm and hence lowest order entropy that are definitely not U-duality related,

But more surprisingly

Non-projective black holes related by an F-duality conserving  $d_1$  provide examples of configurations with the same quartic norm, and same discrete invariants, that are apparently not U-duality related

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

# Open questions

- Is it possible that the full space of 4-dimensional orbits could be resolved if the complete list of independent arithmetic invariants was known?
- To proceed further, it would serve us well to have a full classification of the independent  $E_{7(7)}(\mathbb{Z})$  arithmetic invariants.
- When is ∆ a perfect square?
- Can the class of black holes admitting an F-dual be classified in a useful way?
- If so what is its physical significance?
- Does the F-dual leave the entropy invariant to all orders? Requires a U-duality invariant black hole entropy formula for arbitrary charges
   For d<sub>2</sub>(x) = 1 (almost, but not quite, projectivity) entropy is determined by d'<sub>4</sub>(x) and Δ(x) [Sen: 0804.0651; Sen: 0908.0039] [Bianchi, Ferrara, Kallosh; 0912.0057, 0910.3674 ]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 Promote to symmetry of supergravity Lagrangians? YES! [Borsten, Duff, Ferrara, Marrani arXiv1212.3254]