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Goal

For any renormalizable quantum field theory, construct an
observable which could:

¥ probe and characterize quantum entanglement
at a given scale.

¥ track the number of degrees of freedom of
the system at a given scale.



Quantum entanglement
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Bi-partite entanglement: entanglement entropy
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Entanglement entropy

Expect it to depend on physics at

> length scales ranging from size R all
the way to short-distance cutoff I .
<€ >
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dominated by short-distance physics | Short-distance cutoff

(Bombelli et al, Srednicki)

@npleasantO features:

¥ ill-defined in the continuum limit: Divergent for a renormalizable QFT

¥ Long range correlations hard to extract.

Even in the large R limit, still sensitive to all the shorter-distance d.o.f., not clear it
will reduce to the behavior of the IR fixed point.



Common practice:

subtract the UV divergent parts by hand, often
ambiguous (e,g. typically not invariant under
reparametrizations of the cutoff)

Even after the subtraction, could still depend on
physics at scales much smaller than the size of the
entangled region.



Free massive fields

For a free massive scalar field for a spherical region

In the regime MR >> 1 in d=3: Herzberg and Wilczek, Heurta
S (mR)‘#ﬁ' MR —— 4+ 48
ealar ™ 6 240mR 7

The finite part diverges linearly in R and does not have a
well defined limit in the large R limit.

At long distances, the system contains nothing.

|deally, we would have liked to have the EE to go to zero.



Entanglement entropy contains too much information (junk):
e.g. in the infinite R limit, it does not reduce to physics

at the IR fixed point, and still depends on physics at
much shorter length scales.

Would like to be able to directly probe entanglement
relations at a given scale.

Here we make a simple proposal.



Renormalized entanglement entropyO

For any entangling (smooth) surface | with a scalable size R:

. 1 R4 _1"RL _3"3aRIL —(d—2) SC)(R) dodd
Sé')(R): (d! 2)n dR grR n dR <# ) () O

(d!12)!!RddR Rix —2 4a&Rgx — (d—2) S')(R) deven
__.ds
d=2: S2(R) = Rd—R
1 5C)
d=3: S{’(R)= R 1 S0
d=4:

s (R) = }RGR(RaRS(! )1 250 )) = }<R2

l R———

OR? OR

02st) ost)
2 2 )



Renormalized entanglement entropy

Will show:

MUV finite, well-defined in the continuum limit

¥R-independent for a scale invariant system Sc(j! )(R) = Sd! )

¥For a general () | (Sé! W) R0
quantum field theory S4 (R) ! 9 s IR) Ly
\ —d '

I It Is most sensitive to degrees of freedom at scale R.

Forasphere:  s®P"*®) = central charge (CFT)

Monotonicity of S$P"*"(R) would then lead to a c-theorem.



UV finiteness

The divergent part of EE should only depend on local physics
at the cutoff scale near the entangling surface, Grover, Turner.

Sc(1!iv) — /dd! 2| ! hE (K 4, Nup) h: induced metric,
I

Vishwanath

K: extrinsic curvature

F: sum of all possible geometric invariants

Séiv) = S((jf,) > Function F must be even in K.

For a scalable | 2 I I 0
smooth surface hap ! R7, Ka! R, Da! R
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UV finiteness (Il)
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CFT.  &! g3, a! —g—z,a8 lg:bare UV cutoff
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negative powers of
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previously known from holographic calculations (Ryu, Takayanagi)

General 1
— h ; | a1 1
OFT: a, 58“ 5 h1(M1do) IL : some mass scale  |l: g

hi(Hlo) = Co+ Co(Hlo)® + cy(lo)® + &8

In a renormalizable theory: cannot contain any singular
dependence on Hinthe L!  Olimit.



UV finiteness (ll1)
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will then get rid of all UV divergent terms for any QFT.

The differential operator also gets rid of finite terms of the
same R-dependence.

Such terms can be modified by redefining the cutoff, thus
not well defined in the continuum limit (OcontaminatedO).

| . - . .
Sé' )(R) Is thus UV finite, and unambiguous (independent of
reparametrizations of the cutoff).



CFT

For a scale invariant system, we must have:
! !
si)(R)= s}’

Converting it back to the EE itself, we then have

! Rj,!j + a4 R +(1 D% sl odd d
st) = ! o ‘
% L, 2 dl 2 (1

# ?8' -+ aaa T—S+(! 1) = sfj )Iog%+const even o

This agrees with what was previously found from holographic
calculations. (Ryu, Takayanagi)

(). N .
Sq  is the OuniversalO part of the entanglement entropy.



General QFTs

Inthe small R limit: ~ SC)(R)1 stV R1 ¢

- Q - SR iV R 0

S )(R) depends on scales from o

to R including all intermediate scales of the
system, M1, M2, ac

In the large R limit:

Nevertheless

s$IURrr SN, R




General QFTs (Il)

Introducing a floating cutoff | :
1 1

U1 Mo

So that between ! and R there is no other physical length scales
and the system can be well approximated by the IR fixed point,

) SU) (8, R, up,a4p=S"(5,R) I SR (5 R)

j> Sé!)(R)! sg R Rpae

In other words, in the large R limit, the contributions to EE from
various mass parameters must have the form:

ciRY 2+ RY 4+ 444 O(R)+ O((MR)' #)  (odd d)

,aabd !l R




General QFTs (llI)

Similarly, for any length L << R,

LT T R

SC(,! )(R) should not be sensitive to contributions from
d.o.f. at scale L.

(Their contributions should be suppressed by positive powers of L/R.)

S(! ) R) c¢an be considered to directly probe and
) S (R) |
characterize entanglement at scale R.

The R-dependence can be interpreted as describing the ORGO
flow of entanglement entropy with distance scale.



Summary

' 1 d N d "4 a0 d " (!
() (R) = @A Ram —1 Rgg =3 aalRgg - d—2) SU)(R) dodd

(d!12)!!RddR Rk —2 4a&Rgk — (d—2) s )(R) deven

MUV finite, well-defined in the continuum limit

¥R-independent for a scale invariant system Sé! )(R) = Sd! )

¥MFor a general () l (sg YW R 0
guantum field theory Sq (R)! o S(! IR) RI"
g !

¥most sensitive to degrees of freedom at scale R.

can be considered as describing the RG flow of
entanglement entropy

Note: definition not unique, simplest



Gapped systems

For a free massive scalar field for a spherical region
In the regime mR >> 1 in d=3:

R 11 11 1
Sccalar(MR)=# — 1 —mR! + aé
lar(MR) 6 240 mR
! 1 ,

In odd d, for generic gapped systems, we expect: (e.g. d=3)

(1) | | v , - Topological entanglement
SB (R) " R " " entropy

(Kitaev, Preskill; Levin, Wen)

In even d: Szln)(R)! o0 RI" | n=12---



An application: non-Fermi liquids

For a system with a Fermi surface, expect at large R:
|
Sé' )(R) x Aps kg! 2
S{)R)1 k¥ 2R* 21 ApgA,, R"#

S'(R)! k¥ “R¥ %log(keR) ! ArsA; log(ArsA )

Wolf: Gioev, Klich

Similarly for higher co-dimensional Fermi surfaces: Swingle,
Swingle, Senthil

(independent whether the system has

S(g! )(R) | (k|: R)d! " quasiparticles or not)

(ke R)¥ "log(ke R) N ever

S (R Ryt n odd



Renyl entropy

1
11 n

Rn(A) = log Tr! A

One can similarly define OrenormalizedRenyi entropies,O
and exactly parallel discussion shows that for all n, Renyi
entropies have the same structure as the entanglement
entropy for a CFT.

The results for the (non)-Fermi liquids also apply
to Renyi entropies.



EE and the number of d.o.f.

S((j! )(R) characterizes entanglement at scale R.
describes the RG flow of entanglement entropy

Could S((j! )(R) track the flow of the number of d.o.f. as we
vary R?

Since RG flow leads to a loss of short-distance d.o.f.

dSé! )(R) (much stronger
R dR <07 condition)

j> Sg! uv) S((j! IR)

l.e. a c-theorem.




dS
S$2(R) = R—
2(R) IR
For a CET 82 — (_’ Holzhey, Larsen, Wilczek
3
For Lorentz-invariant, unitary QFTs Casini and Huerta

alternative proof of

SZ (R ) monotonic ZamolodchikovOs-theorem

Proof uses Lorentz symmetry and strong
sub-additivity condition

S(A)+S(B)! S(A" B)+S(A#B)



Higher dimensions

Sé! )(R) now depends on the shape of | .

Will all shapes work?

d=4: for a CFT Solodukhin

st)=2a, ¥ hE,+c d? hl,

| |
a,,Cc, : coefficients of trace anomaly

(sphere)
54

l, vanishes for sphere, =4 ay

For a general shape, will be a combination of a and c.

Thus only for a sphere, do we always have

(! ,IR)

(1 ,UV)
Sy >s,



Higher dimensions (ll)

For all even spacetime dimensions: Myers, Sinha
Casini, Myers, Heurta
(sphere) _
S, =4a,,
Casini, Myers, Heurta
. . sphere
For all odd dimension: sfj phere)  _ (log Z)pnite

(log Z)enite : finite part of the Euclidean partition for the

CFT on Sd
There are supports that these quantities could satisfy
Cardy,
S((]Isphere ,UV) > g ésphere ,IR) Myers, Sinha

Jefferis, Klebanoy,
Pufu and Safdi

even dimension: coefficient of divergent term, local expression



Thus now focus on a sphere

Sq(R) if monotonic

¥ lead to the conjectured c-theorem in all dimensions

¥ give a scale-dependent measure of the number of
d.o.f. for a general QFT.



d=3

dS
p— — 1
Ss(R)= R=1! S

Free massive scalar and various holographic examples:

monotonically decreasing with R

Conjecture: S3(R) and non-negative

for all Lorentz invariant, unitary QFTs

Monotonicity <:> S"(R)< 0

Casini and Huerta have given a proof shortly after (1202.5650).

But their proof does not appear to give non-negativeness.



Free massive scalar field

For a free massive scalar field for a spherical region
In the regime mR >> 1 in d=3:
| 1

| oy
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monotonic for all R

~~
~
~~
-
_____
——
—
~——
—_—
______




Importance of unitarity

5" SIR#K

4

S T

2

2

e gs g T

Null energy condition

> monotonicity of f(z)
> monotonicity of S3(R)




d=4

1 _,d*S ds
Ss(R)= 5 R =5! R

Various holographic examples:

g (R) neither monotonic
4 nor non-negative

Nevertheless S4(R! 0)> S4(R!"

from a-theorem



Some examples
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d=4
S4(R) neither positive-definite nor always monotonic

Mthe function form should be modified

¥Monotonicity of S, or its improvement would imply
an inequality for S with least three derivatives.

R33S+ R?12S <RI!RS
Not clear it could arise from the strong subadditivity condition.

Despite this: S4 characterizes Qcale-dependent entanglementO

Its non-monotonicity and non-positive-definiteness likely reflects some
iInteresting underlying physics



d>4

When two fixed points are close, I.e .

UV | (IR
Sq. ! S84

UV
Sq

"1

S4(R) IS always monotonically
decreasing in holographic systems



Behavior near a UV fixed point

In all holographic theories:
ForsmallR Sg(R) = s 1 A(1)(UR)? + 4¢A(1) > 0
Il —d! ! (source flow) I =1  (vevflow)
Sy = (UV) ! 0(92) g: least relevant coupling

See also Klebanov, Nishioka, Pufu, Safdi

Free massive field in 2+1 dimension:

Z:O

|
' m2R 3" 22

Klebanov, Nishioka, Pufu, Safdi



Behavior near an IR fixed point

HL, Mezei, to appear

L= 1 d< % odd d | Dimension of leading
— 1 even « ] irrelevant operator
B(k 2
Forlarge R Sy(R) = SSR) + ) +aé B(k)>0

(#R)%*
~ sy + O(g?)

For K outside the above range:

# /7 Vd Ve
— + aaa oddd
Sa(R) = sy” + R °°°
RZ + aaad even c
- n | ] . ,
IR -~ odd d C: OnonlocalO
Sq = S((j ) + Cgl | = < 2 signofC not

2= 1 evend definite in d=4



OPhase transitionsO

We also observed that in holographic systems, the
entanglement entropy has @hase transitionsQn the
Lorentz-invariant vacuum as a function of size:

can be first order or second order

Involving topology change or no topology change

See also Klebanov, Nishioka, Pufu,Safdi

Not yet clear what these phase transitions tell us.

Nishioka and Takayanagi
Klebanov, Kutasov, Murugan
Pakman, Parnachev
Headrick

Albash and JohnsonE.



Some examples
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2"d order phase transitions
involving topology change




Summary

For any renormalizable quantum field theory (not necessarily
Lorentz-invariant), @enormalized entanglement entropy:O

¥ probe and characterize quantum entanglement
at a given scale.

¥ for d=2,3, C-function, candidate for a
measure of the number of degrees of freedom

of the system at a given scale (with Lorentz
symmetry)

MNon-relativistic ?

¥an intrinsically finite definition (mutual information) ?



